Nirmala Index

V.R. Kulli

Department of Mathematics, Gulbarga University, Gulbarga 585106, India

Abstract: In Chemical Graph Theory, several degree based topological indices were introduced and studied since 1972. In this paper, a novel invariant is considered, which is the Nirmala index defined as the sum of the square root of sum of the degrees of the pairs of adjacent vertices. We initiate a study of the Nirmala index.

Keywords: topological index, Nirmala index, Nirmala exponential, dendrimer.

Mathematics Subject Classification: 05C05, 05C12, 05C35.

I. Introduction

Let G be a simple, finite, connected graph with the vertex set $V(G)$ and edge set $E(G)$. The degree $d_G(u)$ of a vertex u is the number of vertices adjacent to u. The additional definitions and notations, the reader may refer to [1].

A molecular graph is a graph in which the vertices correspond to the atoms and the edges to the bonds of a molecule. A topological index is a numeric quantity from structural graph of a molecule. Several topological indices have been considered in Theoretical Chemistry, and have found some applications, especially in QSPR/QSAR study, see [2, 3, 4].

In Chemical Science, numerous vertex degree based topological indices or graph indices have been introduced and extensively studied in [4, 5].

The Sombor index was defined by Gutman in [6] as

$$SO(G) = \sum_{u \in V(G)} \sqrt{d_G(u)^2 + d_G(v)^2}.$$

Recently, some Sombor indices were studied in [7, 8, 9, 10, 11, 12, 13, 14].

Inspired by work on Sombor indices, we introduce the Nirmala index of a graph G as follows:

The Nirmala index of a molecular graph G is defined as

$$N(G) = \sum_{u \in V(G)} \sqrt{d_G(u) + d_G(v)}.$$

Considering the Nirmala index, we define the Nirmala exponential of a graph G as

$$N(G, x) = \sum_{u \in V(G)} x^{d_G(u) + d_G(v)}.$$

In this study, we compute the Nirmala index, Nirmala exponential of four families of dendrimers. For dendrimers, see [15].

II. Results for Porphyrin Dendrimer D_nP_n

We consider the family of porphyrin dendrimers. This family of dendrimers is denoted by D_nP_n. The molecular graph of D_nP_n is shown in Figure 1.

Figure 1. The molecular graph of D_nP_n
Let G be the molecular graph of D_nP_n. By calculation, we find that G has $96n - 10$ vertices and $105n - 11$ edges. In D_nP_n, there are six types of edges based on degrees of end vertices of each edge as given in Table 1.

<table>
<thead>
<tr>
<th>$d_G(u), d_G(v) \forall uv \in E(G)$</th>
<th>(1, 3)</th>
<th>(1, 4)</th>
<th>(2, 2)</th>
<th>(2, 3)</th>
<th>(3, 3)</th>
<th>(3, 4)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Number of edges</td>
<td>$2n$</td>
<td>$24n$</td>
<td>$10n - 5$</td>
<td>$48n - 6$</td>
<td>$13n$</td>
<td>$8n$</td>
</tr>
</tbody>
</table>

Table 1. Edge partition of D_nP_n

In the following theorem, we compute the Nirmala index and its exponential of D_nP_n.

Theorem 1. Let D_nP_n be the family of porphyrin dendrimers. Then

(i) $N(D_nP_n) = (24 + 72\sqrt{5} + 13\sqrt{6} + 8\sqrt{7})n - (10 + 6\sqrt{5})$.

(ii) $N(D_nP_n, x) = (12n - 5)x^2 + (72n - 6)x^5 + 13nx^6 + 8nx^7$.

Proof: From definitions and by using Table 1, we deduce

(i) $N(D_nP_n) = \sum_{uv \in E(G)} \left[d_G(u) + d_G(v) \right]^2$

$= (1 + 3)^2 2n + (1 + 4)^2 24n + (2 + 2)^2 (10n - 5) + (2 + 3)^2 (48n - 6)$

$+ (3 + 3)^2 13n + (3 + 4)^2 8n$

$= (24 + 72\sqrt{5} + 13\sqrt{6} + 8\sqrt{7})n - (10 + 6\sqrt{5})$.

(ii) $N(D_nP_n, x) = \sum_{uv \in E(G)} x^{(d_G(u) + d_G(v))^2}$

$= 2nx^{(1+3)^2} + 24nx^{(1+4)^2} + (10n - 5)x^{(2+2)^2} + (48n - 6)x^{(2+3)^2} + 13nx^{(3+3)^2} + 8nx^{(3+4)^2}$

$= (12n - 5)x^2 + (72n - 6)x^5 + 13nx^6 + 8nx^7$.

III. Results for Propyl Ether Imine Dendrimer PETIM

We consider the family of propyl ether imine dendrimers. This family of dendrimers is denoted by PETIM. The molecular graph of PETIM is depicted in Figure 2.
Let G be the molecular graph of $PETIM$. By calculation, we find that G has $24 \times 2^n - 23$ vertices and $24 \times 2^n - 24$ edges. In $PETIM$, there are three types of edges based on degrees of end vertices of each edge as given in Table 2.

<table>
<thead>
<tr>
<th>$d_G(u), d_G(v) \setminus uv \in E(G)$</th>
<th>(1, 2)</th>
<th>(2, 2)</th>
<th>(2, 3)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Number of edges</td>
<td>2×2^n</td>
<td>$16 \times 2^n - 18$</td>
<td>$6 \times 2^n - 6$</td>
</tr>
</tbody>
</table>

Table 2. Edge partition of $PETIM$

In the following theorem, we compute the Nirmala index and its exponential of $PETIM$.

Theorem 2. Let $PETIM$ be the family of polypropyl ether imine dendrimers. Then

(i) $N(PETIM) = (2\sqrt{3} + 32 + 6\sqrt{5}) 2^n - (36 + 6\sqrt{5})$.

(ii) $N(PETIM, x) = 2 \times 2^n x^{\frac{1}{2}} + (16 \times 2^n - 18) x^2 + (6 \times 2^n - 6) x^{\frac{3}{2}}$.

Proof: From definitions and by using Table 2, we derive

(i) $N(PETIM) = \sum_{uv \in E(G)} \left[d_G(u) + d_G(v) \right]^{\frac{1}{2}}$

$$= (1 + 2) \frac{1}{2} 2 \times 2^n + (2 + 2)^{\frac{1}{2}} (16 \times 2^n - 18) + (2 + 3)^{\frac{1}{2}} (6 \times 2^n - 6)$$

$$= (2\sqrt{3} + 32 + 6\sqrt{5}) 2^n - (36 + 6\sqrt{5}) .$$

(ii) $N(PETIM, x) = \sum_{uv \in E(G)} x^{[d_G(u) + d_G(v)]^{\frac{1}{2}}}$

$$= 2 \times 2^n x^{(1+2)^{\frac{1}{2}}} + (16 \times 2^n - 18) x^{(2+2)^{\frac{1}{2}}} + (6 \times 2^n - 6) x^{(2+3)^{\frac{1}{2}}};$$

$$= 2 \times 2^n x^{\frac{1}{2}} + (16 \times 2^n - 18) x^2 + (6 \times 2^n - 6) x^{\frac{3}{2}} .$$

IV. Results for Poly Ethylene Amide Amine Dendrimer PETAA

We consider the family of polyethylene amide amine dendrimers. This family of dendrimers is denoted by $PETAA$. The molecular graph of $PETAA$ is presented in Figure 3.

![Figure 3. The molecular graph of PETAA](image_url)
In the following theorem, we determine the Nirmala index and its exponential of PET_{AA}.

Theorem 3. Let PET_{AA} be the family of poly ethylene amide amine dendrimers. Then

(i) $N(PET_{AA}) = (4\sqrt{3} + 40 + 20\sqrt{5})2^n - (16 + 9\sqrt{5})$.

(ii) $N(PET_{AA}, x) = 4 \times 2^n x^{45} + (20 \times 2^n - 10) x^2 + (20 \times 2^n - 9) x^{65}$.

Proof: By using definitions and Table 3, we obtain

(i) $N(PET_{AA}) = \sum_{uv \in E(G)} \left[d_G(u) + d_G(v)\right]^{\frac{1}{2}}$

\[= (1 + 2)^\frac{1}{2} 4 \times 2^n + (1 + 3)^\frac{1}{2} (4 \times 2^n - 2) + (2 + 2)^\frac{1}{2} (16 \times 2^n - 8) + (2 + 3)^\frac{1}{2} (20 \times 2^n - 9)\]

\[= (4\sqrt{3} + 40 + 20\sqrt{5})2^n - (16 + 9\sqrt{5}).\]

(ii) $N(PET_{AA}, x) = \sum_{uv \in E(G)} x^{\left[d_G(u) + d_G(v)\right]}$

\[= 4 \times 2^n x^{(1+2)^\frac{1}{2}} + (4 \times 2^n - 2) x^{(1+3)^\frac{1}{2}} + (16 \times 2^n - 8) x^{(2+2)^\frac{1}{2}} + (20 \times 2^n - 9) x^{(2+3)^\frac{1}{2}}\]

\[= 4 \times 2^n x^{45} + (20 \times 2^n - 10) x^2 + (20 \times 2^n - 9) x^{65}.

V. Results for Zinc Prophyrin Dendrimer DPZ_n

We consider the family of zinc prophyrin dendrimers. This family of dendrimers is denoted by DPZ_n, where n is the steps of growth in this type of dendrimers. The molecular graph of DPZ_n is shown in Figure 4.

![Figure 4](image)

Table 3. Edge partition of PET_{AA}

<table>
<thead>
<tr>
<th>$d_G(u), d_G(v) \setminus uv \in E(G)$</th>
<th>(1, 2)</th>
<th>(1, 3)</th>
<th>(2, 2)</th>
<th>(2, 3)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Number of edges</td>
<td>4×2^n</td>
<td>$4 \times 2^n - 2$</td>
<td>$16 \times 2^n - 8$</td>
<td>$20 \times 2^n - 9$</td>
</tr>
</tbody>
</table>

Table 4. Edge partition of DPZ_n

<table>
<thead>
<tr>
<th>$d_G(u), d_G(v) \setminus uv \in E(G)$</th>
<th>(2, 2)</th>
<th>(2, 3)</th>
<th>(3, 3)</th>
<th>(3, 4)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Number of edges</td>
<td>$16 \times 2^n - 4$</td>
<td>$40 \times 2^n - 16$</td>
<td>$8 \times 2^n + 12$</td>
<td>4</td>
</tr>
</tbody>
</table>
In the following theorem, we determine the Nirmala index and its exponential of DPZ_n.

Theorem 4. Let DPZ_n be the family of zinc prophyrin dendrimers. Then

(i) $N(DPZ_n) = (32 + 40\sqrt{5} + 8\sqrt{6})2^n - (8 + 16\sqrt{5} - 12\sqrt{6} + 4\sqrt{7})$.

(ii) $N(DPZ_n, x) = (16 \times 2^n - 4)x^2 + (40 \times 2^n - 16)x^\sqrt{5} + (8 \times 2^n + 12)x^\sqrt{6} + 4x^\sqrt{7}$.

Proof: From definitions and by using Table 4, we deduce

(i) $N(DPZ_n) = \sum_{uv \in E(G)} \left[d_G(u) + d_G(v) \right]^{-\frac{1}{2}}$

$= (2 + 2)^{\frac{1}{2}} (16 \times 2^n - 4) + (2 + 3)^{\frac{1}{2}} (40 \times 2^n - 16) + (3 + 3)^{\frac{1}{2}} (8 \times 2^n + 12) + (3 + 4)^{\frac{1}{2}} 4$

$= (32 + 40\sqrt{5} + 8\sqrt{6})2^n - (8 + 16\sqrt{5} - 12\sqrt{6} + 4\sqrt{7})$.

(ii) $N(DPZ_n, x) = \sum_{uv \in E(G)} x^{d_G(u) + d_G(v)}$

$= (16 \times 2^n - 4)x^{2 + 2} + (40 \times 2^n - 16)x^{2 + 3} + (8 \times 2^n + 12)x^{3 + 3} + 4x^{3 + 4}$

$= (16 \times 2^n - 4)x^2 + (40 \times 2^n - 16)x^\sqrt{5} + (8 \times 2^n + 12)x^\sqrt{6} + 4x^\sqrt{7}$.

CONCLUSION

In this study, a novel invariant is considered which is the Nirmala index. Also we have defined the Nirmala exponential of a molecular graph. Furthermore, the Nirmala index and its corresponding exponential for certain dendrimers are computed.

REFERENCES

