Titchmarsh Theorem and its Generalization for the Bessel type transform

Balasaheb Bhagaji Waphare1, Yashodha Sanjay Sindhe2
1Professor, 2Research Scholar, Mathematics Department, MAEER’s MIT Arts, Commerce and Science College, Alandi, Pune-412105, Maharashtra, India

Abstract—In this paper we obtain a generalization of Titchmarsh’s Theorem for the Bessel type transform for functions satisfying the ψ–Bessel type Lipschitz condition in $L_{z,a,b}(\mathbb{R})$ by using a generalized translation operator.

Keywords—Bessel type operator, Bessel type transform, generalized translation operator, Bessel type function.

Mathematics subject classification: 42A38, 42B10.

I Introduction and Preliminaries

In past and recent years Bessel transform is used in engineering, mechanics, Physics, Computational Mathematics etc.

Inspired by Hamma & Daher[3], we obtain generalization of Titchmarsh’s theorem for the Bessel type transform. In this paper Titchmarsh[7, Theorem 85] characterized the set of functions in $L^2(\mathbb{R})$ satisfying the Cauchy Lipschitz condition by means of an asymptotic estimate growth of the norm of their Fourier transforms. We have

Theorem 1.1: Let $\alpha \in (0,1)$ and assume that $f \in L^2(\mathbb{R})$. Then the following are equivalent.

(i) $\|f(t+h)−f(t)\|_{L^2(\mathbb{R})} = O(h^\alpha)$ as $h \to 0$

(ii) $\int_{|\lambda| \geq r} |\lambda| g(\lambda)|^2 d\lambda = O(r^{-2\alpha})$ as $r \to \infty$,

where g stands for the Fourier transform of f. Our main objective in this paper is to obtain a generalization of Theorem 1.1 for the Bessel type operator. Let $B_{a,b} = D_x^2 + \frac{a-b}{x} D_x, D_x \equiv \frac{d}{dx}$, be the Bessel type differential operator.

Now, for $(a-b) \geq 0$, we introduce the Bessel type normalized function of the first kind $j_{\frac{a-b}{2}}$ defined by

$$j_{\frac{a-b}{2}} = \Gamma\left(\frac{a-b+1}{2}\right) \sum_{n=0}^{\infty} \frac{(-1)^n}{n! \Gamma\left(\frac{2n+a-b+1}{2}\right)} \left(\frac{x}{2}\right)^{2n}$$

(1.1)

where $\Gamma(x)$ is the Gamma function (see[5])

From (1.1), it is easily deduced that

$$\lim_{x \to 0} \frac{j_{\frac{a-b}{2}}(x) - 1}{x^2} \neq 0$$
by consequence, there exist $c > 0$ and $\eta > 0$ satisfying

$$|x| \leq \eta \Rightarrow |j_{a-\frac{1}{2}}(x) - 1| \geq c|x|^2$$ \hspace{1cm} (1.2)$$

The function $y = j_{a-\frac{1}{2}}(x)$ satisfies the differential equation

$$B_{a,b}(y) + y = 0$$

with the initial conditions that $y(0) = 1$ and $y'(0) = 0$, $j_{a-\frac{1}{2}}(x)$ is function infinitely differentiable, even and moreover entire analytic.

Lemma 1.1: The following inequalities are valid for the Bessel type function $j_{a-\frac{1}{2}}$:

(i) $|j_{a-\frac{1}{2}}(x)| \leq C$, for all $x \in \mathbb{R}^+$, where C is positive constant.

(ii) $1 - j_{a-\frac{1}{2}}(x) = O(x^2), 0 \leq x \leq 1$

Proof. Proof is clear from [1]

Let $L^2_{2,a,b}(\mathbb{R}^+), (a, b) \geq 0$ be the Hilbert space of measurable functions $f(x)$ on \mathbb{R}^+ with the finite norm

$$\|f\|_{2,a,b} = \left(\int_0^\infty |f(x)|^2 x^{a-b} dx \right)^{1/2}$$

. The generalized Bessel type translation T_h defined by

$$T_h f(t) = c_{a,b} \int_0^\pi f(\sqrt{t^2 + h^2 - 2th \cos \varphi}) \sin^{a-b-1} \varphi \ d\varphi,$$

where

$$c_{a,b} = \left(\int_0^\pi \sin^{a-b-1} \varphi \ d\varphi \right)^{-1} = \frac{\Gamma(\frac{a-b+1}{2})}{\sqrt{\pi} \Gamma(\frac{a-b}{2})}.$$

The Bessel type transform is defined by (see[4,5,6])

$$\hat{f}(\lambda) = \int_0^\infty f(t) j_{a-\frac{1}{2}}(\lambda t)a-b dt, \lambda \in \mathbb{R}^+.$$

The inverse Bessel type transform is given by the formula

$$f(t) = (2\frac{a-b+1}{2} \Gamma(\frac{a-b+1}{2}))^{-2} \int_0^\infty \hat{f}(\lambda) j_{a-\frac{1}{2}}(\lambda t)a-b d\lambda,$$

that is the direct and inverse Bessel type transform differ by the factor$(2\frac{a-b+1}{2} \Gamma(\frac{a-b+1}{2}))^{-2}$

The connection between the Bessel type generalized translation and the Bessel type transform in [2] is given by

$$T_h f(\lambda) = j_{a-\frac{1}{2}}(\lambda h)\hat{f}(\lambda).$$ \hspace{1cm} (1.3)$$

II Main result

In this section we prove the main result of this paper. First we need to define ψ – Bessel type Lipschitz class.
Definition 2.1: A function $f \in L_{2,a,b}(\mathbb{R}^+)$ is said to be in the $\psi-$ Bessel type Lipschitz class, denoted by $\text{Lip}(\psi, a, b, 2)$, if

$$\|T_h f(t) - f(t)\|_{2,a,b} = O(\psi(h)), \text{ as } h \to 0,$$

Where $\psi(t)$ is a continuous increasing function on $[0, \infty)$, $\psi(0) = 0$ and $\psi(ts) = \psi(t)\psi(s)$ for all $t, s \in [0, \infty)$ and this function verify $\int_0^{1/h} s\psi(s^{-2})ds = O\left(\frac{1}{h^2}\psi(h^2)\right)$ as $h \to 0$.

Theorem 2.1: Let $f \in L_{2,a,b}(\mathbb{R}^+)$ then the following are equivalents:

(i) $f \in \text{Lip}(\psi, a, b, 2)$

(ii) $\int_0^\infty |f(\lambda)|^2 \lambda^{a-b} d\lambda = O(\psi(r^{-2}))$ as $r \to \infty$.

Proof. (i)\Rightarrow(ii): Suppose that $f \in \text{Lip}(\psi, a, b, 2)$. Then we obtain

$$\|T_h f(t) - f(t)\|_{2,a,b} = O(\psi(h)), \text{ as } h \to 0$$

By using (1.3) and Parseval’s identity, we obtain

$$\|T_h f(t) - f(t)\|_{2,a,b}^2 = \frac{1}{(2\pi)^{\frac{a+b}{2}}} \int_0^{\infty} |1 - j_{\frac{a-b}{2}}(\lambda h)|^2 |\hat{f}(\lambda)|^2 \lambda^{a-b} d\lambda$$

From (1.2), we have

$$\int_{\frac{2}{\pi}}^{\infty} |1 - j_{\frac{a-b}{2}}(\lambda h)|^2 |\hat{f}(\lambda)|^2 \lambda^{a-b} d\lambda \geq \frac{\epsilon^2 h^4}{16} \int_{\frac{2}{\pi}}^{\infty} |\hat{f}(\lambda)|^2 \lambda^{a-b} d\lambda$$

We can deduce that

$$\int_{\frac{2}{\pi}}^{\infty} |1 - j_{\frac{a-b}{2}}(\lambda h)|^2 |\hat{f}(\lambda)|^2 \lambda^{a-b} d\lambda \leq \int_0^{\infty} |1 - j_{\frac{a-b}{2}}(\lambda h)|^2 |\hat{f}(\lambda)|^2 \lambda^{a-b} d\lambda$$

There exists a positive C_2 such that

$$\int_{\frac{2}{\pi}}^{\infty} |\hat{f}(\lambda)|^2 \lambda^{a-b} d\lambda \leq C_2 \psi(h^2)$$

Now we obtain

$$\int_r^{2r} |\hat{f}(\lambda)|^2 \lambda^{a-b} d\lambda \leq C_2 \psi(2^{-2}r^{-2})$$

Now there exists a positive constant K such that

$$\int_r^{2r} |\hat{f}(\lambda)|^2 \lambda^{a-b} d\lambda \leq K \psi(r^{-2}), \text{ for all } r > 0$$

Thus

$$\int_r^\infty |\hat{f}(\lambda)|^2 \lambda^{a-b} d\lambda = [\int_r^{2r} + \int_{2r}^{4r} + \int_{4r}^{8r} + \cdots] |\hat{f}(\lambda)|^2 \lambda^{a-b} d\lambda$$

$$= O(\psi(r^{-2}) + \psi(2^{-2}r^{-2}) + \cdots)$$

$$= O(\psi(r^{-2}) + O(\psi(r^{-2}) + \cdots)$$

$$= O(\psi(r^{-2}))$$
This proves that
\[\int_r^\infty |\hat{f}(\lambda)|^2 \lambda^{a-b} d\lambda = O(\psi(r^{-2})), \text{ as } r \to \infty. \]

Now we prove (ii) \(\Rightarrow\) (i)

Let \(\int_r^\infty |\hat{f}(\lambda)|^2 \lambda^{a-b} d\lambda = O(\psi(r^{-2})), \text{ as } r \to \infty.\)

we write
\[\int_0^\infty |1 - \frac{j_{a-\frac{1}{2}}}{\lambda} (\lambda h)|^2 |\hat{f}(\lambda)|^2 \lambda^{a-b} d\lambda = I_1 + I_2, \]

and
\[I_2 = \int_{1/h}^\infty |1 - \frac{j_{a-\frac{1}{2}}}{\lambda} (\lambda h)|^2 |\hat{f}(\lambda)|^2 \lambda^{a-b} d\lambda. \]

Estimate the summands \(I_1\) and \(I_2\)

Firstly we have from (1.1) in Lemma 1.2

\[I_2 \leq (1 + c)^2 \int_{1/h}^\infty |\hat{f}(\lambda)|^2 \lambda^{a-b} d\lambda = O(\psi(h^2)). \]

Now set
\[\phi(x) = \int_0^\infty |\hat{f}(\lambda)|^2 \lambda^{a-b} d\lambda. \]

From Lemma 1.2 we have that
\[|1 - \frac{j_{a-\frac{1}{2}}}{\lambda} (\lambda h)| \leq C_1 \lambda^2 h^2 \text{ for } \lambda h \leq 1. \]

Then \(I_1 \leq -C_1 h^2 \int_0^{1/h} x^2 \phi'(x) dx\)

Integration by parts gives
\[I_1 \leq -C_1 h^2 \int_0^{1/h} x^2 \phi'(x) dx \]
\[\leq C_1 \phi \left(\frac{1}{h} \right) + 2C_1 h^2 \int_0^{1/h} x \phi(x) dx \]
\[\leq C_3 h^2 \int_0^{1/h} x \psi(x^{-2}) dx \]
\[\leq C_3 h^2 \psi(h^2) \]
\[\leq C_3 \psi(h^2) \]

where \(C_3\) is a positive constant and thus proof is completed.

\[\square \]

Remarks:
(i) If we take \(a = p + \frac{3}{4}, b = -p - \frac{1}{4}\) throughout this paper, we obtain the results studied in [3].

(ii) Author claims that the results studied in this paper are general than that of [3].
References

