On Strongly πgr-Irresolute Functions

C.Janaki
Assistant Professor, Department of Mathematics
L.R.G. Govt. Arts College for Women,Tirupur-4

V.Jeyanthi
Assistant Professor, Department of Mathematics
Sree Narayana Guru College,Coimbatore-105

Abstract:

The purpose of this paper is to introduce strongly πgr-irresolute functions, strongly regular πgr-irresolute functions and strongly β- πgr-irresolute functions and study some of their basic properties. Also, some new forms of homeomorphism are defined and obtained their characterizations.

Keywords: strongly πgr-irresolute, strongly regular πgr-irresolute, strongly β- πgr-irresolute, strongly πgr-homeomorphism, Strongly regular πgr-homeomorphism.

Mathematics Subject Classification: 54C10,54C08,54C05.

1.Introduction:

Levine [10]introduced the concept of generalized closed sets in topological spaces and a class of topological space called $T_{1/2}$-space. The concept of π-closed sets in topological spaces was initiated by Zaitsev[21] and the concept of πg-closed set was introduced by Noiri and Dontchev[6]. N.Palaniappan[18] studied and introduced regular closed sets in topological spaces. The notion of homeomorphism has been studied by many topologists[13,16].Maki et al [13]introduced β-homeomorphisms. The strong forms of continuous map have been discussed by Noiri[17], Levine[11], Arya and Gupta[2], Reily, Vamanamurthy[19] and Zorlutuna et.al[22], Munshi and Basan[15]. Strongly πgα-irresolute functions and its properties were studied by Janaki.C[7].

In this paper, we introduce strongly πgα-irresolute function, strongly regular πgα-irresolute functions and obtained their characterizations. Throughout this paper (X,τ),(Y,σ),(Z,η) or simply X,Y,Z represent the topological spaces on which no separation axioms are assumed unless otherwise mentioned.

2.Preliminaries:

Let (X,τ) or simply X be a topological space and A be a subset of X. The closure and interior of A are denoted by Cl(A) and Int(A) respectively.

Definition: 2.1
A subset A of X is called is called
(i) Pre-open[14] if $A \subseteq \text{Int}(\text{Cl}(A))$.
(ii) Regular open [18] if $\text{Int}(\text{Cl}(A)) = A$.
(iii) β-open [1] if $A \subseteq \text{Cl}(\text{Int}(\text{Cl}(A)))$.

Finite union of regular open set is π-open[21] and its complement is π-closed.

Definition: 2.2
A subset A of X is called πgα-closed [8] if rcl(A) ⊆U whenever A ⊆U and U is π-open in X. Let πGRO(X) denote the collection of πgα-open set of X and πGRC(X) denote the collection of πgα-closed set of X.

Definition: 2.3
A function $f: X \rightarrow Y$ is called
(i) Continuous [11] if $f^{-1}(V)$ is closed in X for every closed set V of Y.
(ii) g-continuous [11] if $f^{-1}(V)$ is g-closed in X for every closed set V of Y.
(iii) r-continuous[18] if $f^{-1}(V)$ is regular closed in X for every closed set V of Y.
(iv) π-irresolute[6,7] if $f^{-1}(V)$ is π-closed in X for every π-closed set V of Y.
(v) an R-map [3] if $f^{-1}(V)$ is regular closed in X for every regular closed set V of Y.
(vi) πg-continuous[9] if $f^{-1}(V)$ is πg-closed in X for every closed set V of Y.
(vii) πg-irresolute[9] if $f^{-1}(V)$ is πg-closed in X for every πg-closed set V of Y.
(viii) β-irresolute[12] if $f^{-1}(V)$ is β-open in X for every β-open set V of Y.

Definition: 2.4
A topological space X is called
Thus, \(f(x) \) is \(\text{regular} \) in \(X \).

Theorem 3.3

If \(f: X \rightarrow Y \) is a \(\text{regular} \) \(Y \)-irresolute, then \(f \) is \(\text{r-irresolute} \).

Proof:

Let \(V \) be a regular open set in \(Y \) and hence \(V \) is \(\text{r-open} \) in \(Y \). Since \(f \) is \(\text{regular} \) \(Y \)-irresolute, \(f^{-1}(V) \) is open in \(X \). Therefore \(f^{-1}(V) \) is open in \(X \) for every \(\text{regular open set V} \) in \(Y \). Hence \(f \) is \(\text{r-irresolute} \).

Theorem 3.4

If \(f: X \rightarrow Y \) is a \(\text{continuous} \) and \(Y \) is a \(\text{r-T}_{1/2} \)-space, then \(f \) is \(\text{r-irresolute} \).

Proof:

Let \(V \) be a \(\text{regular} \) open set in \(Y \). Since \(Y \) is a \(\text{r-T}_{1/2} \)-space, \(V \) is open in \(Y \). Since \(f \) is \(\text{continuous} \), \(f^{-1}(V) \) is open in \(X \). Thus, \(f^{-1}(V) \) is open in \(X \) for every \(\text{regular open set V} \) in \(Y \). Hence \(f \) is \(\text{r-irresolute} \).

Theorem 3.5

If \(f: X \rightarrow Y \) is a \(\text{r-irresolute} \), \(X \) is a \(\text{r-T}_{1/2} \)-space, then \(f \) is \(\text{r-irresolute} \).

Proof:

Let \(V \) be a \(\text{regular} \) open set in \(Y \). Since \(f \) is \(\text{r-irresolute} \), \(f^{-1}(V) \) is \(\text{regular} \) open in \(X \). Since \(X \) is a \(\text{r-T}_{1/2} \)-space, \(f^{-1}(V) \) is \(\text{regular} \) open in \(X \) and hence \(f^{-1}(V) \) is \(\text{regular} \) open in \(X \). Thus, \(f^{-1}(V) \) is open in \(X \) for every \(\text{regular open set V} \) in \(Y \). Hence \(f \) is \(\text{r-irresolute} \).

Theorem 3.6

Let \(f: X \rightarrow Y \) and \(g: Y \rightarrow Z \) be any functions. Then

(i) \(g \circ f: X \rightarrow Z \) is \(\text{r-irresolute} \) if \(f \) is \(\text{continuous} \) and \(g \) is \(\text{r-irresolute} \).

(ii) \(g \circ f: X \rightarrow Z \) is \(\text{r-irresolute} \) if \(f \) is \(\text{r-irresolute} \) and \(g \) is \(\text{r-irresolute} \).

Proof:

(i) Let \(V \) be a \(\text{regular} \) open set in \(Z \). Since \(g \) is \(\text{r-irresolute} \), \(g^{-1}(V) \) is open in \(Y \). Since \(f \) is \(\text{continuous} \), \(f^{-1}(g^{-1}(V)) \) is \(\text{regular} \) open in \(X \).

\[\Rightarrow (g \circ f)^{-1}(V) \text{ is \(\text{regular} \) open in \(X \) for every \(\text{regular open set V} \) in \(Z \).} \]

\[\Rightarrow (g \circ f)^{-1}(V) \text{ is \(\text{r-irresolute} \).} \]

(ii) Let \(V \) be a \(\text{regular} \) open set in \(Z \). Since \(g \) is \(\text{r-irresolute} \), \(g^{-1}(V) \) is \(\text{regular} \) open in \(Y \). Since \(f \) is \(\text{r-irresolute} \), \(f^{-1}(g^{-1}(V)) \) is open in \(X \).
The following are equivalent for a function $f: X \to Y$:

(i) f is strongly πgr-irresolute.
(ii) For each $x \in X$ and each πgr-open set V of Y containing $f(x)$, there exists an open set U in X containing x such that $f(U) \subseteq V$.
(iii) $f^{-1}(V) \subseteq \text{int}(f^{-1}(V))$ for each πgr-open set V of Y.
(iv) $f^{-1}(F)$ is closed in X for every πgr-closed set F of Y.

Proof: (i) \Rightarrow (ii):

Let $x \in X$ and V be a πgr-open set in Y containing $f(x)$. By hypothesis, $f^{-1}(V)$ is open in X and contains x.

Set $U = f^{-1}(V)$. Then U is open in X and $f(U) \subseteq V$.

(ii) \Rightarrow (iii):

Let V be a πgr-open set in Y and $x \in f^{-1}(V)$.

By assumption, there exists an open set U in X containing x such that $f(U) \subseteq V$.

Then $x \in U \subseteq \text{int}(U) \subseteq \text{int}(f^{-1}(V))$.

Then $f^{-1}(V) \subseteq \text{int}(f^{-1}(V))$.

(iii) \Rightarrow (iv):

Let F be a πgr-closed set in Y. Set $V = Y - F$. Then V is πgr-open in Y.

By (iii), $f^{-1}(V) \subseteq \text{int}(f^{-1}(V))$.

Hence $f^{-1}(F)$ is closed in X.

(iv) \Rightarrow (i):

Let V be πgr-open in Y. Let $F = Y - V$. That is F is πgr-closed set in Y. Then $f^{-1}(F)$ is closed in X (by (iv)). Then $f^{-1}(V)$ is open in X. Hence f is strongly πgr-irresolute.

Theorem 3.8

A function $f: X \to Y$ is strongly πgr-irresolute if A is open in X, then $f/A: A \to Y$ is strongly πgr-irresolute.

Proof: Let V be a πgr-open set in Y. By hypothesis, $f^{-1}(V)$ is open in X. But $(f/A)^{-1}(V) = A \cap f^{-1}(V)$ is open in A and hence f/A is strongly πgr-irresolute.

Theorem 3.9

Let $f: X \to Y$ be a function and $\{A_i: i \in \Lambda\}$ be a cover of X by open sets of (X, τ). Then f is strongly πgr-irresolute if $f/A_i : (A_i, \tau/A_i) \to (Y, \sigma)$ is strongly πgr-irresolute for each $i \in \Lambda$.

Proof: Let V be a πgr-open set in Y. By hypothesis, $(f/A_i)^{-1}(V)$ is open in A_i. Since A_i is open in X, $(f/A_i)^{-1}(V)$ is open in X for every $i \in \Lambda$.

$$f^{-1}(V) = X \cap f^{-1}(V) = \bigcup \{A_i \cap f^{-1}(V): i \in \Lambda\} = \bigcup \{(f/A_i)^{-1}(V): i \in \Lambda\}$$

Hence f is strongly πgr-irresolute.

Theorem 3.10

Let $f: X \to Y$ be a strongly πgr-irresolute surjective function. If X is compact, then Y is πGRO-compact.

Proof: Let $\{A_i: i \in \Lambda\}$ be a cover of πgr-open sets of Y. Since f is strongly πgr-irresolute and X is compact, we get $X \subseteq \bigcup \{f^{-1}(A_i): i \in \Lambda\}$. Since f is surjective, $Y = f(X) \subseteq \bigcup \{A_i: i \in \Lambda\}$. Hence Y is πGRO-compact.

Theorem 3.11

If $f: X \to Y$ is strongly πgr-irresolute and a subset B of X is compact relative to X, then $f(B)$ is πGRO-compact relative to Y.

Proof: Obvious.

Definition 3.12

A function $f: X \to Y$ is said to be

(i) a strongly regular πgr-irresolute function if $f^{-1}(V)$ is regular open in X for every πgr-open set V in Y.

ISSN: 2231-5373 http://www.ijmttjournal.org Page 131
Theorem: 3.13
(i) If \(f: X \rightarrow Y \) is strongly regular \(\pi gr \)-irresolute, then \(f \) is strongly \(\pi gr \)-irresolute.

(ii) If \(f: X \rightarrow Y \) is strongly regular \(\pi gr \)-irresolute, then \(f \) is strongly \(\beta \)-\(\pi gr \)-irresolute.

Proof: (i) Let \(f \) be a strongly regular \(\pi gr \)-irresolute function and let \(V \) be a \(\pi gr \)-open set in \(Y \). Then \(f^{-1}(V) \) is regular open in \(X \) and hence open in \(X \).

\[\Rightarrow f^{-1}(V) \text{ is open in } X \text{ for every } \pi gr \text{-open set } V \text{ in } Y. \]

Hence \(f \) is strongly regular \(\pi gr \)-irresolute.

(ii) Let \(f \) be a strongly regular \(\pi gr \)-irresolute function and let \(V \) be a \(\pi gr \)-open set in \(Y \). Then

\[f^{-1}(V) \text{ is regular open in } X \text{ and hence open in } X. \]

\[\Rightarrow f^{-1}(V) \text{ is open in } X \text{ for every } \pi gr \text{-open set } V \text{ in } Y. \]

Hence \(f \) is strongly \(\beta \)- \(\pi gr \)-irresolute.

Remark: 3.14
Converse of the above need not be true as seen in the following examples.

Example: 3.15
(i) Let \(X = \{a,b,c\} \), \(\tau = \{\emptyset, X, \{a\}, \{b\}, \{a,b\}, \{a,c\}\} \) and \(\sigma = \{\emptyset, Y, \{a\}, \{b\}, \{a,b\}\} \).

Let \(f: X \rightarrow Y \) be an identity map. Here for every \(\pi gr \)-open set \(V \) in \(Y \), \(f^{-1}(V) \) is open and \(\beta \)-open in \(X \). Hence \(f \) is strongly \(\pi gr \)-irresolute and strongly \(\beta \)-\(\pi gr \)-irresolute.

But for every \(\pi gr \)-open set \(V \) in \(Y \), \(f^{-1}(V) \) is not regular open in \(X \). Thus, \(f \) is not strongly regular \(\pi gr \)-irresolute. Hence strongly \(\pi gr \)-irresolute function need not be strongly regular \(\pi gr \)-irresolute function and strongly \(\beta \)-\(\pi gr \)-irresolute function.

Theorem: 3.16
If \(f: X \rightarrow Y \) and \(g: Y \rightarrow Z \), then \(g \circ f: X \rightarrow Z \) is

(i) strongly \(\pi gr \)-irresolute if \(f \) is strongly regular \(\pi gr \)-irresolute and \(g \) is \(\pi gr \)-irresolute.

Proof: Let \(V \) be an \(\pi gr \)-open set in \(Z \). Since \(g \) is \(\pi gr \)-irresolute, \(g^{-1}(V) \) is \(\pi gr \)-open in \(Y \). Since \(f \) is strongly regular \(\pi gr \)-irresolute, \(f^{-1}(g^{-1}(V)) \) is regular open in \(X \).

\[\Rightarrow (g \circ f)^{-1}(V) \text{ is regular open in } X \text{ and hence open in } X. \]

Hence \((g \circ f)^{-1}(V) \text{ is } \beta \text{- open in } X \) for every \(\pi gr \)-open set \(V \) in \(Z \).

Therefore \((g \circ f)^{-1}(V) \text{ is } \beta \text{- open in } X \) for every \(\pi gr \)-open set \(V \) in \(Z \).

Hence \((g \circ f)^{-1}(V) \text{ is } \beta \text{- open in } X \) for every \(\pi gr \)-open set \(V \) in \(Z \).

(ii) Let \(V \) be an \(\pi gr \)-open set in \(Z \). Since \(g \) is strongly \(\pi gr \)-irresolute, \(g^{-1}(V) \) is regular open in \(Y \). Since \(f \) is regular irresolute, \(f^{-1}(g^{-1}(V)) \) is regular open in \(X \).

\[\Rightarrow (g \circ f)^{-1}(V) \text{ is regular open in } X \text{ and hence open in } X. \]

Hence \((g \circ f)^{-1}(V) \text{ is } \beta \text{- open in } X \) for every \(\pi gr \)-open set \(V \) in \(Z \).

Therefore \((g \circ f)^{-1}(V) \text{ is } \beta \text{- open in } X \) for every \(\pi gr \)-open set \(V \) in \(Z \).

(ii) Let \(V \) be an \(\pi gr \)-open set in \(Z \). Since \(g \) is strongly \(\pi gr \)-irresolute, \(g^{-1}(V) \) is regular open in \(Y \). Since \(f \) is continuous, \(f^{-1}(g^{-1}(V)) \) is regular open in \(X \).

Since \(f \) is continuous, \(f^{-1}(g^{-1}(V)) \) is regular open in \(X \).

Hence \((g \circ f)^{-1}(V) \text{ is } \beta \text{- open in } X \) for every \(\pi gr \)-open set \(V \) in \(Z \).

Therefore \((g \circ f)^{-1}(V) \text{ is } \beta \text{- open in } X \) for every \(\pi gr \)-open set \(V \) in \(Z \).
\((g \circ f)^{-1}(V) \) is open in X and hence \(\beta \)-open in X. Hence \((g \circ f) \) is strongly \(\beta \)-\pi-gr-irresolute.

Theorem 3.18

The following are equivalent for a function \(f: X \rightarrow Y \):

(i) \(f \) is strongly \(\beta \)-\pi-gr-irresolute.

(ii) For each \(x \in X \) and each \(\pi-gr \)-open set \(V \) of \(Y \) containing \(f(x) \), there exists a \(\beta \)-open set \(U \) in \(X \) containing \(x \) such that \(f(U) \subset V \).

(iii) \(f^{-1}(V) \subset Cl(\text{Int}(f^{-1}(V))) \) for each \(\pi-gr \)-open set \(V \) of \(Y \).

(iv) \(f^{-1}(F) \) is \(\beta \)-closed in \(X \) for every \(\pi-gr \)-closed set \(F \) of \(Y \).

Proof: Similar to that of Theorem 3.7

Theorem 3.19

The following are equivalent for a function \(f: X \rightarrow Y \):

(i) \(f \) is strongly \(\beta \)-\pi-gr-irresolute.

(ii) For each \(x \in X \) and each \(\pi-gr \)-open set \(V \) of \(Y \) containing \(f(x) \), there exists a \(\beta \)-open set \(U \) in \(X \) containing \(x \) such that \(f(U) \subset V \).

(iii) \(f^{-1}(V) \subset Cl(\text{Int}(f^{-1}(V))) \) for each \(\pi-gr \)-open set \(V \) of \(Y \).

(iv) \(f^{-1}(F) \) is \(\beta \)-closed in \(X \) for every \(\pi-gr \)-closed set \(F \) of \(Y \).

Proof: Similar to that of Theorem 3.7.

Lemma 3.20

If \(f: X \rightarrow Y \) is strongly regular \(\pi-gr \)-irresolute and \(A \) is a regular open subset of \(X \), then \(f/A : A \rightarrow Y \) is strongly regular \(\pi-gr \)-irresolute.

Proof: Let \(f \) be a \(\pi-gr \)-open set in \(Y \). By hypothesis, \(f^{-1}(V) \) is \(\beta \)-open in \(X \). Let \(V \) be any \(\pi-gr \)-open set of \(Y \) such that \(f^{-1}(V) \) is \(\beta \)-open in \(X \). Hence \(f/A \) is strongly \(\beta \)-\pi-gr-irresolute.

Theorem 3.21

Let \(f: X \rightarrow Y \) and \(\{A_{\lambda} : \lambda \in \Lambda \} \) be a cover of \(X \) by \(\pi-gr \)-open set of \((X, t) \). Then \(f \) is a strongly regular \(\pi-gr \)-irresolute function if \(f/A_{\lambda} : A_{\lambda} \rightarrow Y \) is strongly regular \(\pi-gr \)-irresolute for each \(\lambda \in \Lambda \).

Let \(f: X \rightarrow Y \) and \(\{A_{\lambda} : \lambda \in \Lambda \} \) be a cover of \(X \) by \(\pi-gr \)-open set of \((X, t) \). Then \(f \) is a strongly regular \(\pi-gr \)-irresolute function if \(f/A_{\lambda} : A_{\lambda} \rightarrow Y \) is strongly regular \(\pi-gr \)-irresolute for each \(\lambda \in \Lambda \).

Proof: Let \(V \) be any \(\pi-gr \)-open set in \(Y \). By hypothesis, \((f/A_{\lambda})^{-1}(V) \) is regular open in \(A_{\lambda} \). Since \(A_{\lambda} \) is regular open in \(X \), it follows that \((f/A_{\lambda})^{-1}(V) \) is \(\pi-gr \)-open in \(X \) for each \(\lambda \in \Lambda \).

Let \(V \) be any \(\pi-gr \)-open set in \(Y \). By hypothesis, \(f^{-1}(V) \) is \(\beta \)-open in \(X \). But \((f/A_{\lambda})^{-1}(V) = A_{\lambda} \cap f^{-1}(V) \) is \(\beta \)-open in \(A_{\lambda} \). Hence \(f/A \) is strongly \(\beta \)-\pi-gr-irresolute.

Theorem 3.22

If \(f: X \rightarrow Y \) is strongly \(\beta \)-\pi-gr-irresolute and \(A \) is a regular-open subset of \(X \), then \(f/A : A \rightarrow Y \) is strongly \(\beta \)-\pi-gr-irresolute.

Proof: Let \(V \) be a \(\pi-gr \)-open set in \(Y \). By hypothesis, \(f^{-1}(V) \) is \(\beta \)-open in \(X \). But \((f/A_{\lambda})^{-1}(V) = A_{\lambda} \cap f^{-1}(V) \) is \(\beta \)-open in \(A_{\lambda} \). Hence \(f/A \) is strongly \(\beta \)-\pi-gr-irresolute.

Theorem 3.23

If a function \(f: X \rightarrow Y \) is strongly \(\beta \)-\pi-gr-irresolute, then \(f^{-1}(B) \) is \(\beta \)-closed in \(X \) for any nowhere dense set \(B \) of \(Y \).

Proof: Let \(B \) be any nowhere dense subset of \(Y \). Then \(Y-B \) is regular in \(Y \) and hence \(\pi-gr \)-open in \(Y \). By hypothesis, \(f^{-1}(Y-B) \) is \(\beta \)-open in \(X \). Hence \(f^{-1}(B) \) is \(\beta \)-closed in \(X \).

Theorem 3.24

If a function \(f: X \rightarrow Y \) is strongly \(\beta \)-\pi-gr-irresolute, then \(f^{-1}(B) \) is \(\beta \)-closed in \(X \) for any nowhere dense set \(B \) of \(Y \).

Proof: Let \(B \) be any nowhere dense subset of \(Y \). Then \(Y-B \) is regular in \(Y \) and hence \(\pi-gr \)-open in \(Y \). By hypothesis, \(f^{-1}(Y-B) \) is \(\beta \)-open in \(X \). Hence \(f^{-1}(B) \) is \(\beta \)-closed in \(X \).

Theorem 3.25

If a function \(f: X \rightarrow Y \) and \(g: Y \rightarrow Z \), then \(g \circ f : X \rightarrow Z \) is strongly \(\beta \)-\pi-gr-irresolute if

a) \(f \) is strongly \(\beta \)-\pi-gr-irresolute and \(g \) is \(\pi-gr \)-irresolute.
b) \(f \) is an R-map and \(g \) is strongly regular πgr-irresolute.

c) \(f \) is β-irresolute and \(g \) is strongly β-πgr-irresolute.

d) \(f \) is β-irresolute and \(g \) is strongly πgr-irresolute.

e) \(f \) is β-continuous and \(g \) is strongly πgr-irresolute.

f) \(f \) is β-irresolute and \(g \) is strongly regular πgr-irresolute.

Proof: Follows from the definitions.

Theorem 3.26

Let \(X \) be a sub maximal and extremally disconnected space. Then the following are equivalent for a function \(f: X \to Y \).

Then the following are equivalent:

a) \(f \) is strongly regular πgr-irresolute.

b) \(f \) is strongly πgr-irresolute.

c) \(f \) is strongly β-πgr-irresolute.

Proof:

If \(X \) is sub maximal and extremally disconnected, then \(\tau = RO(X) = \beta O(X) \) and hence the result follows.

Definition 3.27

A bijection \(f: X \to Y \) is

(i) a πgr-homeomorphism if both \(f \) and \(f^{-1} \) are πgr-continuous.

(ii) a πgrc-homeomorphism if both \(f \) and \(f^{-1} \) are πgr-irresolute.

(iii) a strongly πgrc-homeomorphism if both \(f \) and \(f^{-1} \) are strongly πgr-irresolute.

(iv) a strongly regular πgrc-homeomorphism if both \(f \) and \(f^{-1} \) are strongly regular πgr-irresolute.

(v) a strongly β-πgrc-homeomorphism if both \(f \) and \(f^{-1} \) are strongly β-πgr-irresolute.

Theorem 3.28

If a bijective function \(f: X \to Y \) is strongly regular πgrc-homeomorphism, then

1) \(f \) is πgrc-homeomorphism.

2) \(f \) is strongly πgrc-homeomorphism.

Proof: (1) Since a bijection \(f \) is strongly regular πgrc-homeomorphism, \(f \) and \(f^{-1} \) are strongly regular πgr-irresolute. Every strongly regular πgr-irresolute function is πgr-irresolute. Since every regular open set is πgr-open. Therefore, both \(f \) and \(f^{-1} \) are πgr-irresolute functions and hence \(f \) is a πgrc-homeomorphism.

(2) Since every strongly regular πgr-irresolute function is strongly πgr-irresolute and hence the result follows.

Proposition 3.29

(i) Every strongly regular πgrc-homeomorphism is a strongly πgrc-homeomorphism and a strongly β-πgrc-homeomorphism.

(ii) Every strongly regular πgrc-homeomorphism is a strongly β-πgrc-homeomorphism.

Proof: Follows from the definitions.

Remark 3.30

The family of all strongly πgrc-homeomorphism from \((X, \tau)\) onto itself is denoted by \(\pi r c h(X, \tau) \).

Theorem 3.31

If \(f: X \to Y \) and \(g: Y \to Z \) are strongly regular πgrc-homeomorphisms, then \(g \circ f: X \to Z \) is a strongly πgrc-homeomorphism.

Proof: Let \(V \) be a πgr-open set in \(Z \). Then \((g \circ f)^{-1}(V) = f^{-1}(g^{-1}(V)) = f^{-1}(U), \) where \(U = g^{-1}(V) \). Since \(g \) is strongly regular πgrc-homeomorphism, \(g \) is strongly regular πgr-irresolute and \(g^{-1}(V) \) is regular open in \(Y \) for every πgr-open set \(V \) in \(Z \). Hence \(U = g^{-1}(V) \) is πgr-open in \(Y \). Since every regular open set is πgr-open. Also, since \(f \) is strongly regular πgr-irresolute, \(f^{-1}(U) \) is regular open in \(X \) and hence open in \(X \). Therefore, \((g \circ f)^{-1}(V) = f^{-1}(g^{-1}(V)) \) is open in \(X \). Hence \((g \circ f)\) is strongly πgr-irresolute. Now, \((g \circ f)(A) = g(f(A)) = g(B), \) where \(B = f(A) \). Since \(f \) is strongly regular πgrc-homeomorphism, \(f(A) \) is regular open in \(Y \) and hence πgr-open in \(Y \). Now \(g \) is strongly regular πgrc-homeomorphism implies \(g(B) \) is regular open in \(Z \) and hence open in \(Z \). Hence \((g \circ f)^{-1} \) is strongly πgr-irresolute.

\(\Rightarrow (g \circ f) \) is a strongly πgrc-homeomorphism.

Bibliography

