Higher Six Dimensional Plane Gravitational Waves In Bimetric Relativity

  IJMTT-book-cover
 
International Journal of Mathematical Trends and Technology (IJMTT)          
 
© 2014 by IJMTT Journal
Volume-5                           
Year of Publication : 2014
Authors : V.Mahurpawar
  10.14445/22315373/IJMTT-V5P515

citation

V.Mahurpawar Article:Higher Six Dimensional Plane Gravitational Waves In Bimetric Relativity.International Journal of Mathematical Trends and Technology (IJMTT),V5:22-26: January 2014. Published by Seventh Sense Research Group.

Abstract
In this paper, I studied the type plane gravitation waves for higher six dimensions and it will observed that the result for vacuum space and for matter cosmic strings respectively.

 

References

[1] H. Bondi,; F.A. E.  Pirani, and I. Robinson, (1959). Gravitational waves in general relativity III. Exact plane waves.Proc.Roy.Soc.Lond.A23, 25,519-533.
[2]    Donato, Bini, et al(2003). Test particle motion in     gravitational plane wave collision background. Class. Quantum Grav., 20,341.
[3]  Einstein, Albert.(1916) Die Grundlage der allgemeinen
Relativitatstheorie. Annanlender Physik ,49.
[4]  N.N. Ghosh, (1955). On the solution of r’s for atype of non-symmetric field              . Prog.Theo.Phys., 13,No.6,587-593.
[5]   N.N.  Ghosh. (1956). On a solution of field equations in Einstein unified field theory I. Porg.Theo. Phys., 16, No.5, 421-428.
[6]  N.N. Ghosh. (1957). On a solution of field equations in Einstein unified field theory II. Porg.Theo. Phys., 17, No.2, 131-138.
[7] P.A.  Hogan, (199). Gravitational waves and Bertotti-Robinson space- time. Math. Proc. Roy. Irish Acad. 99A, 51-55.
[8] M. Ikeda, (1952). On the approximate solutions of the unified field theory of Einstein and Schrodinger. Prog.Theo. Phys.07,127-128.
[9] M. Ikeda, (1954). On static solutions of Einstein’s generalized theory of gravitation I. Prog.Theo. Phys. ,12,17-30.
[10] M. Ikeda, (1955). On static solutions of Einstein’s generalized theory
of gravitation II. ProgTheo Phys.,13, 266-275.
[11] S.  Kessari, , D. Singh, et al,(2002). Scattering of spinning test particles by plane gravitational and electromagnetic waves. gr- qc/0203038,Class. Quant. Grav. 19  4943-4952.
[12] K. B. Lal; N. Ali, (1970a). Wave solutions of the field equations of general relativityin ageneralized Takno space-time.  Tensor N.S.,21,134-
137.
[13] K. B. Lal; N.Ali, (1970b). Plane wave solutions of Einstein’s unified
field theories space-time. Tensor N.S.,21,349-353.
[14] K. B. Lal; Shafiullah (1980). On plane wave solutions of non- symmetricfield equations of unified theories of Einstein Bonnar and Schrodinger. Annali de mathematica ed Pure Applicata., 126,285-298.
[15]  Lu Hui quing (1988). Plane gravitational waves under a non-zero cosmological constant. Chi. Astronomy and astrophys. 12, 186-190.
[16] N.V. Mitskievic and Pandey, S.N. (1980). On the motion of test particle in the field of a plane gravitational wave. Gen. Rela. Grav., Vol.
12, No.7,581-583.
[17]  M.Mohseni; Tucker, R.W.; Wang, C. (2001). On the motion of spinning test particles in plane gravitational waves. Class. Quant. Grav.,
18 3007-3017
[18] M. Mohseni; H.R. Sepangi, (2008). Gravitational waves and spinning test particles. gr-qu/0009070, Class. Quant. Grav. 17 4615-4625.
[19] S.N.  Pandey (1979). Plane wave solutions in Finzi’s non-symmetric unified field theory. Theo. Math. Phys. 39, 371-375.
[20] H. Takeno (1958a). A comparison of plane wave solutions in general relativity with those in non-symmetric theory. Prog. Theo. Phys. 20, 267-
276.
[21] H. Takeno (1958b). on some generalized plane waves solutions of non-symmetric unified field theories II. Tensor N. S., 8, 71-78.
[22] H. Takeno 1961). The mathematical theory of plane gravitational waves in general relativity. A Scientific Report of  The Research Institute for The Theoretical  Physics Hiroshima University, Japan.
[23]  C.G.Torre (2006). Gravitational waves- Just   plane symmetry. Gen. Rela. Grav.38, 653-662.
Keywords

Plane gravitation, Cosmic strings, Bimetric Relativity.