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Abstract  
      In this paper the FDM & LT method has been established for the numerical solution of a two-point 

second order boundary value problem’s (BVP) are analyzed. Numerical solutions of both methods were 

implemented and are tabulated. Finally it was observed that the finite-difference method is numerically more 

strengthen and converges the nearer to LT solution by taking the lengthen intervals. 
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I.INTRODUCTION 
 

In Mathematics, Two-point bvp’s have received a major concentration due to its priority in many areas 

of sciences and engineering field. Different types of differential equations arise very frequently in optimal 

control, aerodynamics, fluid mechanics, chemical–reactor theory, quantum mechanics, reaction-diffusion process 

and geophysics . 

Different types of logical and computational ideas used for the result of differential equations are given 

in the survey literature; Differential Transform Method [1-6], Bernoulli Polynomials [7], Adomain 

Decomposition Method [8-13], Block Method [14-16], Modified Picard Technique [17], Sinc Collocation 

Method [18], Runge-kutta 4th Order Method [19], Cubic  Spline Method [20], Homotopy Perturbation Method 

[21-23]. 

In this Paper, we use FDM for the result of two-point boundary value problems has been extensively 

used [24-27]. In the example problems the step length is elongated and it is examined that the access strengthen 

the convergence of the result when compared with the explicit from Laplace Transforms (which gives a close 

form of solution), see Table 1. 

II.EVALUATION OF FDM 

 
Consider the second order BVP as, 

 𝝌′′ + 𝒔 𝝔 𝝌′ + 𝒕 𝝔 𝜻 = 𝒖 𝝔 , 𝝔 ∈  𝜸, 𝜹                                                                                                (1) 

With the boundary conditions 

𝜻 𝜸 = 𝐌  𝐚𝐧𝐝  𝜻 𝜹 = 𝚴                                                                                                                                      (2) 

 

The period  𝒗,𝒘  is partitioned into into 𝑛 equal subintervals. The subintervals length is denoted  as ℎ ,  

i.e) 𝒉 =
𝜹−𝜸

𝒏
                               (3) 

Let us examine the following points 

 𝜸 = 𝝔𝟎, 𝝔𝟏 = 𝝔𝟎 + 𝒉, 𝝔𝟐 = 𝝔𝟎 + 𝟐𝒉,…… . . 𝝔𝒎 = 𝝔𝟎 + 𝒎𝒉,…… . , 𝝔𝒏 = 𝝔𝟎 + 𝒏𝒉                             (4) 

The analytical solution at any point 𝝋𝒎 is indicated by 𝜻𝒎 and abstract solution is denoted as 𝝌 𝝔𝒎 . 
The Central difference approximation for the differential equation is given below 

  𝜒𝑚
′=

1

2ℎ
  𝜒𝑚+1−𝜒𝑚  

 𝜒𝑚
′′=

1

ℎ 2  𝜒𝑚+1−2𝜒𝑚 +𝜒𝑚−1 
                                                                                                                          (5) 

Substitute (5) in (1) 

      
1

ℎ 2  𝜒𝑚+1 − 2𝜒𝑚 + 𝜒𝑚−1 + 𝑠 𝜚 
1

2ℎ
 𝜒𝑚+1 − 𝜒𝑚  + 𝑡 𝜚 𝜒𝑚 = 𝑢 𝜚                                                              

(6) 

     2 𝜒𝑚+1 − 2𝜒𝑚 + 𝜒𝑚−1 + ℎ 𝑠 𝜚  𝜒𝑚+1 − 𝜒𝑚−1 + 2ℎ 2𝑡 𝜚 𝜒𝑚 = 2ℎ 2𝑢 𝜚                                                   
(7) 

Equation (7) can be written as 

𝑖𝑚𝜒𝑚−1 + 𝑗𝑚𝜒𝑚 + 𝑘𝑚𝜒𝑚+1 = 𝑙𝑚 , 𝑚 = 1,2,3……………                                                                                    (8) 
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Where 

     

𝑖𝑚 = 2 − ℎ 𝑠(𝜚)

      𝑗𝑚 = −4 + 2ℎ 2𝑡(𝜚)
𝑘𝑚 = 2 + ℎ 𝑠(𝜚)

𝑙𝑚 = 2ℎ 2𝑤(𝜚)  
 

 

                                                                                                                                    

(9) 

The following equations are obtained from (8) 

    𝑖1𝜒0 + 𝑗1𝜒1 + 𝑘1𝜒2 = 𝑙                                                                                                                                    (10) 

 

     𝒊𝟐𝝌𝟏 + 𝒋𝟐𝝌𝟐 + 𝒌𝟐𝝌𝟑 = 𝒍𝟐                                                                                                                               (11) 

etc. 

Hence the result of the above equations to a logical order of equations of the form 𝐴𝜒 = 𝑙 for the undistinguished  

𝜒1, 𝜒2, 𝜒3, … . 𝜒𝑛−1, where 𝐴 is the co-efficient    matrix determine  the logical order of equations above provide 

the results of the bvp’s. 
 

III.NUMERICAL EXAMPLES 

 

A. Problem 3.1: 

 Evaluate the two-point BVP of χ′′ 𝜚 + χ 𝜚 = 0, χ′ 0 = 1, χ 𝜋 2  = 0, by Laplace transform and 

Finite difference method. 

Solution: 

Given: χ′′  ϱ + χ ϱ = 1, χ′ 0 = 1, χ π 2  = 0                                                                                      (12) 

The general solution of (12) is 

χ ϱ = sin ϱ                                                                                                                                                          (13) 

Solving by Laplace Transform 

Equation (12) gives 

L χ′′  + L χ = L 0                                       (14) 

s2χ − sχ 0 − χ′ 0 + χ = 0                                                   (15) 

Let L χ 0   = ς                                          (16) 

 

Substituting equation (16) in (15), we get 

s2χ − sχ 0 − 1 + χ = 0                                                                                                                                     (17) 

And simplifying, we obtain 

χ =
sς

 s2+1 
+

1

s2+1
                                            (18) 

Converting into partial fraction , 

χ ω =
sς

s2+1
 + 

𝟏

𝐬𝟐+𝟏
                                                                                               (19) 

Taking inverse Laplace transform 

χ ω = sinϱ + ςcosϱ                                                                                                            (20) 

Using χ π 2  = 0, we obtain 

0 = sin
π

2
+ ςcos

π

2
                                                                                                                       (21) 

Which gives ς = 0, then 

χ ϱ = sin ϱ + 0 cos ϱ                                                                                                         (22) 

Then, 𝛘 𝛠 = 𝐬𝐢𝐧 𝛠                                                         (23) 

Which is explicit solution 

Solving by Finite difference Method 

The following steps are written using equation (12) 

i.e) n = 10 , h =
ν−υ

10
=  

π
2 −0

10
=

π

20
                                                           (24) 

From the above we have 

χ 0 = 1, χ π 20  =? , χ 2π
20  =? ,……………χ π 2  = 0                                                (25) 

 Equation (12) is expressed by central difference approximations as follows 
400

π2
 χm+1 − 2χm + χm−1 + χm = 0                                  (26) 

For 

m = 1,   χ0 = 1:       (−800 + π2)χ1 + 400χ2 = 0                                                                                              (27) 
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m = 2 ∶          400χ1 + (−800 + π2)χ2 + 400χ3 = 0                                                    (28) 

m = 3 ∶         400χ2 + (−800 + π2)χ3 + 400χ4 = 0                                                                                          (29) 

: 

m = 9 ∶        400χ10 + (−800 + π2)χ9 + 400χ8 = 0                                                                                         (30) 

Deriving the logical of equations (27-30) gives the result of the bvp’s; and the comparison with the nearer form 

result is presented in table 1. 
 

IV. Table 1 NUMERICAL SOLUTION OF PROBLEM 1 

n 
LAPLACE 

TRANSFORM 
FDM ERROR 

0 0 0 0 

𝜋
20  0.156434465 0.156594616 1.60149-04 

2𝜋
20  0.309016994 0.309325411 3.08417-04 

3𝜋
20  0.453990499 0.454423909 -4.3341-04 

4𝜋
20  0.587785252 0.588309948 -5.24696-04 

5𝜋
20  0.707106781 0.70768002 -5.73239-04 

6𝜋
20  0.809016994 0.809588788 -5.71794-04 

7𝜋
20  0.891006524 0.89152754 -5.1523-04 

8𝜋
20  0.951056516 0.951457303 -4.00787-04 

9𝜋
20  0.98768834 0.987916584 -2.28244-04 

𝜋
2  1 1 0 

 

 

 

         
                       

Fig 1 :  n value and Laplace Transform 
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Fig 2: n value and FDM 

 

               
 

Fig 3: Comparison of n value, LT, FDM and Error 
 

V.CONCLUSION 
 

In this paper, LTM and FDM technique are proposed to solve two point boundary value problems. The 

step length is extended in FDM to enhance the convergence of the method; the results are compared with the 

close form solution of LT in table  
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