On Radio Geometric Mean D- Distance Number of Some Basic Graphs

K. John Bosco¹, S. Priya²

¹Assistant Professor, ²Research scholar (Reg.No: 20213232092003)
Department of Mathematics, St. Jude’s College, Thoothoor, Tamil Nadu, India

Abstract

A Radio geometric mean D-distance labeling of a connect graph G is an injective function f from the vertex set $V(G)$ to the \mathbb{N} such that for two distinct vertices u and v of G, $d^0(u, v) + \sqrt{f(u)f(v)} \geq 1 + \text{diam}^D(G)$, where $d^0(u, v)$ denotes the D-distance between u and v $\text{diam}^D(G)$ denotes the D-diameter of G. The radio geometric mean D-distance number of f, $r\text{gmn}^D(f)$ is the maximum label assigned to any vertex of G. The radio geometric mean D-distance number of $r\text{gmn}^D(G)$ is the minimum value of G, $r\text{gmn}^D(G)$ is the minimum value of $r\text{gmn}^D(f)$ taken over all radio geometric mean D-distance labeling f of G. In this paper we find the radio geometric mean D-distance number of some basic graphs.

Keywords: D-distance, Radio geometric mean D-distance, Radio geometric mean D-distance number.

I. INTRODUCTION

By a graph $G = (V(G), E(G))$ we mean a finite undirected graph without loops or multiple edges. The order and size of G are denoted by p and q respectively. Radio labeling (multi-level distance labeling) can be regarded as an extension of distance two labeling which is motivated by the channel assignment problem introduced by Hale [3]. Chartrand et al [2] introduced the concept of radio labeling of graph. We are introduce the concept of radio geometric mean Dd–distance number of some basic graphs[6]

The concept of D-distance was introduced by D. Reddy Babu et al [11]. For a connected graph G, the D-length of a connected $u - v$ path is defined as $l^D(s) = l(s) + \text{deg}(v) + \text{deg}(u) + \sum \text{deg}(w)$ where the sum runs over all intermediate vertices w of s and $l(s)$ is length of the path. The D – distance, $d^0(u, v)$ between u and v of connected graph G is defined $d^0(u, v) = \min \{l^D(s)\}$ where the minimum is taken over all u-v paths s in G. In other words, $d^0(u, v) = \min \{l(s) + \text{deg}(v) + \text{deg}(u) + \sum \text{deg}(w)\}$ where the sum runs over all intermediate vertices w in s and minimum is taken over all u-v paths s in G. The lower bound is clear from the definition and the upper bound follows from the triangular inequality.

In [9], Radio geometric mean labeling was introduced by V. Hemalatha et al. A radio geometric mean labeling is a one to one mapping f from $V(G)$ to \mathbb{N} satisfying the condition $d(u, v) + \sqrt{f(u)f(v)} \geq 1 + \text{diam}(G)$, for every $u, v \in G$. The span of labeling f is the maximum integer that f maps to a vertex of G. The radio geometric mean number of G, $r\text{gmn}(G)$ is the lowest span taken over all radio geometric mean labeling of the graph G. The above condition is called radio geometric mean condition.

Further we are introduced the concept of radio geometric mean D-distance. The radio geometric labeling is a function $f: V(G) \rightarrow \mathbb{N}$ such that $d^0(u, v) + \sqrt{f(u)f(v)} \geq 1 + \text{diam}^D(G)$. It is denoted by $r\text{gmn}^D(G)$, where $r\text{gmn}^D(G)$ is called the radio geometric mean D- distance number. The radio geometric mean D-distance number of f, $r\text{gmn}^D(f)$ is the maximum label assigned to any vertex of G. The radio geometric mean D-distance number of, $r\text{gmn}^D(G)$ is the minimum value of G, $r\text{gmn}^D(G)$ is the minimum value of $r\text{gmn}^D(f)$ taken over all radio geometric mean D-distance labeling f of G. In this paper we find the radio geometric mean D-distance number of some basic graphs.
II. MAIN RESULTS

Theorem 2.1
The Radio geometric mean D-distance number of a complete graph K_n, $rgmn^D(K_n) = n$.

Proof.
Let $V(K_n) = \{v_1, v_2, v_3, ..., v_n\}$ be the vertex set and $E(K_n) = \{v_i, v_j, 1 \leq i, j \leq n, i \neq j\}$ be the edge set. Its $\text{diam}^D(K_n) = 2n - 1$. We define the vertex label $f(v_i) = i, 1 \leq i \leq n$.

The radio geometric mean D-distance condition is

$$d^D(u, v) + \left|\sqrt{f(u)f(v)}\right| \geq 1 + \text{diam}^D(G),$$

Compute the pair $(v_i, v_j) = 2n - 1, 1 \leq i, j \leq n, i \neq j$ are adjacent

$$d^D(v_i, v_j) + \left|\sqrt{f(v_i)f(v_j)}\right| \geq 1 + \text{diam}^D(K_n),$$

$$\left|\sqrt{ij}\right| \geq 1$$

Hence, $rgmn^D(K_n) = n$.

Theorem 2.2
The Radio geometric mean D-distance number of a star graph $K_{1,n}$.

$rgmn^D(K_{1,n}) = n + 2$.

Proof.
Let $V(K_{1,n}) = \{v_0, v_1, v_2, v_3, ..., v_n\}$ be the vertex set, where v_0 is the central vertex and $E(K_{1,n}) = \{v_0v_i, 1 \leq i \leq n\}$ be the edge set. Its $\text{diam}^D(K_{1,n}) = n + 4$. We define the vertex label $f(v_0) = 2, f(v_i) = i + 2, 1 \leq i \leq n, f(v_j) = j + 2, 1 \leq j \leq n$.

By the radio geometric mean D-distance condition is

$$d^D(u, v) + \left|\sqrt{f(u)f(v)}\right| \geq 1 + \text{diam}^D(G),$$

For every pair of vertices (u, v) where $u \neq v$.

Case(i): Compute the pair $(v_0, v_i) = n + 2, 1 \leq i \leq n$ are adjacent

$$d^D(v_0, v_i) + \left|\sqrt{f(v_0)f(v_i)}\right| \geq 1 + \text{diam}^D(K_{1,n}),$$

$$\left|\sqrt{(2)(i + 2)}\right| \geq 3$$

Case(ii): Compute the pair $(v_i, v_j) = n + 4, 1 \leq i, j \leq n, i \neq j$ are non adjacent

$$d^D(v_i, v_j) + \left|\sqrt{f(v_i)f(v_j)}\right| \geq 1 + \text{diam}^D(K_{1,n}),$$

$$\left|\sqrt{(i + 2)(j + 2)}\right| \geq 1$$

Hence, $rgmn^D(K_{1,n}) = n + 2$.

104
Theorem 2.3

The Radio geometric mean D-distance number of a Fan graph F_n,

$$rgmn^D (F_n) = 2n - 2, n \geq 6.$$

Proof.

Let $V(F_n) = \{v_0, v_1, v_2, v_3, ..., v_n\}$ be the vertex set and $E(F_n) = \{v_0v_j, v_iv_{i+1}, 1 \leq i \leq n - 1, 1 \leq j \leq n\}$ be the edge set. Its $diam^D(F_n) = n + 6$. we define the vertex label $f(v_0) = 2, f(v_i) = n + i - 2, 1 \leq i \leq n.$

By the radio geometric mean D-distance condition is

$$d^D(u, v) + \left\lfloor \sqrt{f(u)f(v)} \right\rfloor \geq 1 + diam^D(G),$$

For every pair of vertices (u, v) where $u \neq v$.

Case(i): Compute the pair $(v_0, v_i) = n + 3$ are adjacent. If v_i is end vertices,

$$d^D(v_0, v_i) + \left\lfloor \sqrt{f(v_0)f(v_i)} \right\rfloor \geq 1 + diam^D(F_n),$$

$$\left\lfloor \sqrt{(2)(n + i - 2)} \right\rfloor \geq 4$$

Case(ii): Compute the pair $(v_0, v_i) = n + 4$ are adjacent. If v_i is intermediate vertices,

$$d^D(v_0, v_i) + \left\lfloor \sqrt{f(v_0)f(v_i)} \right\rfloor \geq 1 + diam^D(F_n),$$

$$\left\lfloor \sqrt{(2)(n + i - 2)} \right\rfloor \geq 3$$

Case(iii): Compute the pair $(v_i, v_j) = n + 6$, are both end vertices $1 \leq i \leq n, i + 1 \leq j \leq n,$

$$d^D(v_i, v_j) + \left\lfloor \sqrt{f(v_i)f(v_j)} \right\rfloor \geq 1 + diam^D(F_n),$$

$$\left\lfloor \sqrt{(n + i - 2)(n + j - 2)} \right\rfloor \geq 1$$

Case(iv): Compute the pair $(v_i, v_j) = 7$, intermediate adjacent vertices

$$d^D(v_i, v_j) + \left\lfloor \sqrt{f(v_i)f(v_j)} \right\rfloor \geq 1 + diam^D(F_n),$$

$$\left\lfloor \sqrt{(n + i - 2)(n + j - 2)} \right\rfloor \geq n$$

Hence, $rgmn^D (F_n) = 2n - 2, n \geq 6.$

Note: $rgmn^D (F_n) = n + 4$ if $n = 1, 2, 3, 4, 5.$

Theorem 2.4

The Radio geometric mean D-distance number of a Double Fan graph DF_n,

$$rgmn^D (DF_n) = 2n, n \geq 5.$$
Proof.

Let $V(DF_n) = \{v_1, v_2, v_3, ..., v_n, w, u\}$ be the vertex set and let $v_1, v_2, v_3, ..., v_n$ be the path graph and u, w are two vertex are joined to the end vertex of the path graph. Its $diam^D(DF_n) = 2n + 5$. we define the vertex label as

$$f(u) = 9, f(v_i) = n + i, 1 \leq i \leq n, f(w) = 10, f(v_j) = n + j, 1 \leq j \leq n.$$

By the radio geometric mean D-distance condition is

$$d^D(u, v) + \left[\sqrt{f(u)f(v)}\right] \geq 1 + diam^D(G),$$

For every pair of vertices (u, v) where $u \neq v$.

Case(i): Compute the pair $(u, v_i) = n + 4, i = 1, n$

$$d^D(u, v_i) + \left[\sqrt{f(u)f(v_i)}\right] \geq 1 + diam^D(DF_n)$$

$$\left[\sqrt{9(n + i)}\right] \geq n + 2$$

Case(ii): Compute the pair $(w, v_i) = n + 4, i = 1, n$

$$d^D(w, v_i) + \left[\sqrt{f(w)f(v_i)}\right] \geq 1 + diam^D(DF_n)$$

$$\left[\sqrt{10(n + i)}\right] \geq n + 2$$

Case(iii): Compute the pair $(v_i, v_j) = n + 8$, are both end vertices

$$d^D(v_i, v_j) + \left[\sqrt{f(v_i)f(v_j)}\right] \geq 1 + diam^D(DF_n)$$

$$\left[\sqrt{(n + i)(n + j)}\right] \geq n - 2$$

Case(iv): Compute the pair $(u, w) = 2n + 5$, are both end vertices

$$d^D(u, w) + \left[\sqrt{f(u)f(w)}\right] \geq 1 + diam^D(DF_n)$$

$$\left[\sqrt{(9)(10)}\right] \geq 1$$

Case(v): Compute the pair $(v_i, v_j) = 9$ both are intermediate adjacent vertices

$$d^D(v_i, v_j) + \left[\sqrt{f(v_i)f(v_j)}\right] \geq 1 + diam^D(DF_n)$$

$$\left[\sqrt{(n + i)(n + j)}\right] \geq 2n - 3$$

Case(vi): Compute the pair $(u, v_i) = n + 5, 2 \leq i \leq n - 1$

$$d^D(u, v_i) + \left[\sqrt{f(u)f(v_i)}\right] \geq 1 + diam^D(DF_n)$$

$$\left[\sqrt{(9)(n + i)}\right] \geq n + 1$$

Hence, $rgmn^D(DF_n) = 2n, n \geq 5$.

Note: $rgmn^D(DF_n) = 2n - 2$ if $n = 1, 2, 3, 4$.

K. John Bosco & S. Priya / IJMTT, 67(2), 103-108, 2021
Theorem 2.5
The Radio geometric mean D-distance number of a Subdivision of a star graph $S(K_{1,n})$.

$$\text{rgmn}^D \left(S(K_{1,n})\right) = 3n + 4, n \geq 3.$$

Proof.
Let $V \left(S(K_{1,n})\right) = \{v_0, v_1, v_2, v_3, \ldots, v_n, u_1, u_2, u_3, \ldots, u_n\}$ be the vertex set, where v_0 is the central vertex and $E \left(S(K_{1,n})\right) = \{v_0v_i, v_iu_i | 1 \leq i \leq n\}$ be the edge set. Its $\text{diam}^D(S(K_{1,n})) = n + 10$. We define the vertex label $f(v_0) = 7, f(v_i) = n + 2i + 3, 1 \leq i \leq n, f(u_i) = n + 2i + 4, 1 \leq i \leq n$.

By the radio geometric mean D-distance condition is

$$d^D(u, v) + \left[\sqrt{f(u)f(v)}\right] \geq 1 + \text{diam}^D(G),$$

For every pair of vertices (u, v) where $u \neq v$.

Case (i): Compute the pair $(v_0, v_i) = n + 3, 1 \leq i \leq n$ are adjacent

$$d^D(v_0, v_i) + \left[\sqrt{f(v_0)f(v_i)}\right] \geq 1 + \text{diam}^D(S(K_{1,n})),$$

$$\left[\sqrt{(7)(n + 2i + 3)}\right] \geq 8$$

Case (ii): Compute the pair $(v_0, u_i) = n + 5, 1 \leq i \leq n$ are non adjacent

$$d^D(v_0, u_i) + \left[\sqrt{f(v_0)f(u_i)}\right] \geq 1 + \text{diam}^D(S(K_{1,n})),$$

$$\left[\sqrt{(7)(n + 2i + 4)}\right] \geq 6$$

Case (iii): Compute the pair $(v_i, v_j) = n + 6, 1 \leq i, j \leq n, i \neq j$ are non adjacent

$$d^D(v_i, v_j) + \left[\sqrt{f(v_i)f(v_j)}\right] \geq 1 + \text{diam}^D(S(K_{1,n})),$$

$$\left[\sqrt{(n + 2i + 3)(n + 2j + 3)}\right] \geq 5$$

Case (iv): Compute the pair $(v_i, u_j) = 4, if \ |i - j| = 1$ are non adjacent

$$d^D(v_i, u_j) + \left[\sqrt{f(v_i)f(u_j)}\right] \geq 1 + \text{diam}^D(S(K_{1,n})),$$

$$\left[\sqrt{(n + 2i + 3)(n + 2j + 4)}\right] \geq n + 7$$

Case (v): Compute the pair $(u_i, u_j) = 10, 1 \leq i, j \leq n, i \neq j$ are non adjacent

$$d^D(u_i, u_j) + \left[\sqrt{f(u_i)f(u_j)}\right] \geq 1 + \text{diam}^D(S(K_{1,n})),$$

$$\left[\sqrt{(n + 2i + 4)(n + 2j + 4)}\right] \geq 1$$

Case (vi): Compute the pair $(v_i, u_j) = n + 8, if \ |i - j| > 1$
\[d^p(v_i, u_j) + \left\lfloor \sqrt{f(v_i)f(u_j)} \right\rfloor \geq 1 + \text{diam}^p(S(K_{1,n}))\]

\[\left\lfloor \sqrt{(n+2i+3)(n+2j+4)} \right\rfloor \geq 3\]

Hence, \(rgmn^p(S(K_{1,n})) = 3n + 4, n \geq 3\).

Note: \(rgmn^p(S(K_{1,n})) = 2n + 7, \text{if } n = 1, 2\).

III. Reference