...

  • Home
  • Articles
    • Current Issue
    • Archives
  • Authors
    • Author Guidelines
    • Policies
    • Downloads
  • Editors
  • Reviewers
...

International Journal of Mathematics Trends and Technology

Research Article | Open Access | Download PDF

Volume 70 | Issue 11 | Year 2024 | Article Id. IJMTT-V70I11P107 | DOI : https://doi.org/10.14445/22315373/IJMTT-V70I11P107

Convergence Analysis of the Balanced Implicit Method for the Wright-Fisher Model with No Drift


Yaqi An, Jianguo Tan
Received Revised Accepted Published
01 Oct 2024 04 Nov 2024 19 Nov 2024 30 Nov 2024
Abstract

In this paper, we discuss the Balanced Implicit Method (BIM) of the Wright-Fisher model, and the convergence of this method for the Wright-Fisher model with no drift is proved in šæ1sense. Finally, we give an example to illustrate the convergence of the BIM. The numerical experiment shows that the convergence order is 1 2 theoretical results.

Keywords

Balanced implicit method, Numerical solution, Stochastic differential equation, Strong convergence, Wright-Fisher model.

References

[1] Warren J. Ewens, Mathematical Population Genetics 1, 2nd ed., Springer, New York, 2004.
[CrossRef] [Google Scholar] [Publisher Link]
[2] Samuel Karlin, and Howard M. Taylor, A Second Course in Stochastic Processes, Academic Press, New York, 1981.
[Google Scholar] [Publisher Link]
[3] C.E. Dangerfield, D. Kay, and K. Burrage, ā€œStochastic models and simulation of ion channel dynamics,ā€ Procedia Computer Science, vol. 1, no. 1, pp. 1587-1596, 2010.
[CrossRef] [Google Scholar] [Publisher Link]
[4] F. De Jong, F.C. Drost, and B.J.M. Werker, ā€œA Jump-Diffusion Model for Exchange-Rates in a Target Zone,ā€ Statistica Neerlandica, vol. 55, no. 3, pp. 270-300, 2001.
[CrossRef] [Google Scholar] [Publisher Link]
[5] Freddy Delbaen, and Hiroshi Shirakawa, ā€œAn Interest Rate Model with Upper and Lower Bounds,ā€ Asia-Pacific Financial Markets, vol. 9, no. 3, pp. 191-209, 2002.
[CrossRef] [Google Scholar] [Publisher Link]
[6] P.E. Kloeden, and E. Platen, Numerical Solution of Stochastic Differential Equations, vol. 23, Springer, 1992.
[CrossRef] [Google Scholar] [Publisher Link]
[7] G.N. Milstein, E. Platen, and H. Schurz, ā€œBalanced Implicit Methods for Stiff Stochastic Systems,ā€ SIAM Journal on Numerical Analysis, vol. 35, no. 3, pp. 1010-1019, 1998.
[CrossRef] [Google Scholar] [Publisher Link]
[8] Henri Schurz, ā€œModeling, Analysis and Discretization of Stochastic Logistic Equations,ā€ International Journal of Numerical Analysis and Modeling, vol. 4, no. 2, pp. 178-197, 2007.
[Google Scholar] [Publisher Link]
[9] C. E. Dangerfield et al., ā€œA Boundary Preserving Numerical Algorithm for the Wright-Fisher Model with Mutation,ā€ BIT Numerical Mathematics, vol. 52, no. 2, pp. 283-304, 2012.
[CrossRef] [Google Scholar] [Publisher Link]
[10] Henri Schurz, Numerical Regularization for SDE’s: Construction of Nonnegative Solutions, Weierstrass Institute for Applied Analysis and Stochastics, 1996.
[Google Scholar] [Publisher Link]

Citation :

Yaqi An, Jianguo Tan, "Convergence Analysis of the Balanced Implicit Method for the Wright-Fisher Model with No Drift," International Journal of Mathematics Trends and Technology (IJMTT), vol. 70, no. 11, pp. 45-50, 2024. Crossref, https://doi.org/10.14445/22315373/IJMTT-V70I11P107

  • PDF
  • Abstract
  • Keywords
  • References
  • Citation
Abstract Keywords References Citation
  • Home
  • Authors Guidelines
  • Paper Submission
  • APC
  • Archives
  • Downloads
  • Open Access
  • Publication Ethics
  • Copyrights Infringement
  • Journals
  • FAQ
  • Contact Us

Follow Us

Copyright Ā© 2025 Seventh Sense Research GroupĀ® . All Rights Reserved