Volume 66 | Issue 7 | Year 2020 | Article Id. IJMTT-V66I7P508 | DOI : https://doi.org/10.14445/22315373/IJMTT-V66I7P508
Kanint Teerapabolarn, "Improved Negative Binomial Approximation to Negative PÓlya Distribution," International Journal of Mathematics Trends and Technology (IJMTT), vol. 66, no. 7, pp. 69-72, 2020. Crossref, https://doi.org/10.14445/22315373/IJMTT-V66I7P508
We determine an improved negative binomial distribution with parameters n ε ¥ and 0 < p < 1 from a negative Polya distribution with parameters N, n and r, where P = n-r-1/N-1. Following improved negative binomial and negative binomial approximations to the negative Polya distribution, the improved negative binomial approximation is more accurate than the negative binomial approximation.
[1] R. B. Chapman and M. S. Plesset, “Thermal effects in the free oscillations of gas bubbles,” Trans. ASME, Ser. D, 93 No. 3, p.373, 1971.
[2] R. I. Nigmatulin, Dynamics of Multiphase Media, Vols. 1 and 2, Hemisphere, New York, 1991.
[3] R. I. Nigmatulin, N. S. Khabeev, and F. B. Nagiev, “Dynamics heat and mass transfer of gas vapor bubbles in liquids,“ Int. J. Heat Mass Transfer, 24, No. 6, pp.1033-1044, 1981.
[4] J. H. Mathews and R. W. Howell, Complex Analysis for Mathematics and Engineering, Jones and Bartlett, London, 2006.