...

  • Home
  • Articles
    • Current Issue
    • Archives
  • Authors
    • Author Guidelines
    • Policies
    • Downloads
  • Editors
  • Reviewers
...

International Journal of Mathematics Trends and Technology

Research Article | Open Access | Download PDF

Volume 68 | Issue 4 | Year 2022 | Article Id. IJMTT-V68I4P507 | DOI : https://doi.org/10.14445/22315373/IJMTT-V68I4P507

Lower Bounds for Symmetric Division Degree Invariant of Graphs


P. Murugarajan, R. Aruldoss
Received Revised Accepted
11 Mar 2022 13 Apr 2022 17 Apr 2022
Abstract

Topological invariants are such numbers or set of numbers that describe topology of structures. Virtually 200 topological invariants are calculated so far. In this paper, a comparative study of the symmetric division degree topological invariant with some well-known and mostly used graph invariants in a regular (or) biregular graph is performed.

Keywords
Degree, topological invariant, symmetric division deg invariant.
References

[1] B. Furtula, K. C. Das, I. Gutman, Comparative Analysis of Symmetric Division Deg Invariant as Potentially Useful Molecular Descriptor, International Journal of Quantum Chemistry. 118(17) (2018) e25659.
[2] C. K. Gupta, V. Lokesha, B. Shwetha Shetty, P. S. Ranjini, Graph Operations on the Symmetric Division Deg Invariant of Graphs, Palestine Journal of Mathematics. 5 (2016) 117.\
[3] C. K. Gupta, V. Lokesha, B. Shwetha Shetty, P. S. Ranjini, On the Symmetric Division Deg Invariant of Graph, Southeast Asian Bulliten of Mathematics. 41 (2016) 117.
[4] Jos´e Luis Palacios, New Upper Bounds for the Symmetric Division Deg Invariant of Graphs, Discrete Mathamatics Letters. 2 (2019) 52-56.
[5] A. Ili´c, G. Yu, L. Feng, On the Eccentric Distance Sum of Graphs, Journal of MathematicalAnalysis and Applications. 381 (2011) 590-600.
[6] H. Kober, On the Arithmetic and Geometric Means and On Holder S Inequality, Proccedins ofAmerican Mathematical Socity. 9 (1958) 452-459.
[7] V. Lokesha, T. Deepika, Symmetric Division Deg Invariant of Tricyclic and Tetracyclic Graphs, International Journal of Science and Engineering Research. 7 (2016) 5317.
[8] G. Mohanappriya, D. Vijayalakshmi, Symmetric Division Degree Invariant and Inverse Sum Invariant of Transformation Graph, IOP Confrence Series, Journal of Physics. 1139 (2018) 012048.
[9] S. Nikolic, G. Kovacevic, A. Milicevic, N.Trinajstic, The Zagreb Indices 30 Years After, Croatica Chemica Acta. 76 (2003) 113-124.
[10] B.C. Rennie, On a Class of Inequalities, Journal of Australian Mathematical Socity. 3 (1963) 442-448.
[11] J. Radon, Theory and Applications of the Absolutely Additive Set Functions, Conference Report. Acad. Wissen. Wien. 122 (1913) 1295-1438.
[12] G. P´olya , G. Szego, Problems and Theorems in Analysis, Series, Integral Calculus, Theory of Functions, Springer-Verlag, Berlin. (1972).
[13] M. Randi´c, On Characterization of Molecular Branching, Jornal of American Chemical Socity. 97 (1975) 6609-6615.
[14] R. Todeschini, V. Consonni, Handbook of Molecular Descriptors, Wiley-VCH, Weinheim. (2000).
[15] D. Vukicevi´C, M. Gasperov, Bond Aditive Modelling 1. Ariatic Indices, Croatica Chemica Acta. 83 (2010) 243-260.
[16] A. Vasilev, Upper and Lower Bounds of Symmetric Division Deg Index, Iranian Journal of Mathematical Chemistry. 5(2) (2014) 91-98.
[17] J. M. Rodriguez, J.M. Sigarreta, On the Geometric Arithmetic Index, MATCH Communications in Mathematical and in Computer Chemistry. l74 (2015) 103170.
[18] M. Ghorbani, S. Zangi, N. Amraei, New Results on Symmetric Division Deg Index, Journal of Applied Mathematics and Computing. 65 (2021) 161-176.
[19] R. Aguilar-Sanchez, J. A. Mendez-Bermudez, Jose M. Rodriguez, Jose M. Sigarreta, Analytical and Computational Properties of the Variable Symmetric Division Deg Index. arXiv:2106.00913.
[20] Z. Wang, Y. Mao, Y. Li, B. Furtula, On Relations Between Sombor and Other Degree-Based Indices, Journal of Applied Mathematics and Computing. (2021). https://doi.org/10.1007/s12190-021-01516-x.
[21] J.M. Rodrlguez, J. L. Sanchez, J.M. Sigarreta, E. Tourls, Bounds on the Arithmetic-Geometric Index, Symmetry. 13(4) (2021) 689. https://doi.org/10.3390/sym13040689

Citation :

P. Murugarajan, R. Aruldoss, "Lower Bounds for Symmetric Division Degree Invariant of Graphs," International Journal of Mathematics Trends and Technology (IJMTT), vol. 68, no. 4, pp. 38-42, 2022. Crossref, https://doi.org/10.14445/22315373/IJMTT-V68I4P507

  • PDF
  • Abstract
  • Keywords
  • References
  • Citation
Abstract Keywords References Citation
  • Home
  • Authors Guidelines
  • Paper Submission
  • APC
  • Archives
  • Downloads
  • Open Access
  • Publication Ethics
  • Copyrights Infringement
  • Journals
  • FAQ
  • Contact Us

Follow Us

Copyright © 2025 Seventh Sense Research Group® . All Rights Reserved