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Abstract:  
The purpose of this work is to study the effect of blood flow and cross sectional 

area in artery. The cross sectional area plays an important part in order for the blood to 

flow smoothly through the blood vessels. A small change in the value for the cross 

sectional area may affect the amount of blood flow rate through the arteries which also 

may affect the blood pressure. This paper deals with the study of blood flow which was 

derived from Navier-Stokes equations. A system of non linear partial differential 

equations for blood flow and cross sectional area of the artery was obtained. The 

governing equations are solved numerically by using finite difference method.    
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1.  Introduction: 
Blood is a complex fluid consisting of particulate solids suspended in a non-

Newtonian fluid. The particulate solids are red cells (RBCs), white blood cells (WBCs) 

and platelets. The fluid is plasma, which it self  is a complex mixture of proteins and 

other intergradient in an aqueous base. Blood flow is a study of measuring the blood 

pressure and finding the flow through blood vessels. This work is important for   human 

health.  
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There are several researchers, who examined the blood flow in the arteries and 

veins. The blood flow is significantly already and fluid dynamical factors play an 

important role. Past studies indicated that one of the reasons having hypertension is when 

the blood vessels become narrow. This work will focus on the diastolic hypertension.  

A lot of work is available, but Belardinelli  and Cavalcanti (1991) discussed a 

new non-linear two-dimensional model of blood motion in tapered and elastic vessels. 

Jung et. al. (2004) gave an idea on the axi-symmetric flows of non-Newtonian fluids in 

symmetric stenosed artery. In this work, the hemodynamics behavior of the blood flow is 

influenced by the presence of the arterial stenosis, again Belardinelli and Cavalcanti 

(1992) investigated about the theoretical analysis of pressure pulse propagation in arterial 

vessels. In this study, the model is employed to study the propagation along an arterial 

vessel of a pressure pulse produced by a single flow pulse applied  at  the proximal vessel 

extremity, although Takuji and Guimaraes (1998) observed that the effect of non-

Newtonian property of blood on flow through a stenosed tube.  

 Kumar and Kumar (2006) studied on numerical study of the axi-symmetric blood 

flow in a constricted rigid tube. This is the study of the effect of behavior of blood 

through a constricted rigid tube with an axi-symmetric stenosis, while Sankar and 

Hemalatha (2007) discussed also a non-Newtonian fluid flow model for blood flow 

through a catheterized artery-steady flow, again Kumar and Kumar (2009) observed that 

a mathematical model for Newtonian and non-Newtonian flow through tapered tubes. 

The most recent work in this field, Sahu et. al. (2010) worked on the study of arterial 

blood flow in stenosed vessel using non-Newtonian couple stress fluid model. Singh et. 

al. (2010) observed that the blood flow through an artery having radially    non-

symmetric mild stenosis.   

Blood   behaves   as a non-Newtonian fluid but in this model, blood is assumed to 

be a Newtonian fluid. Even though this will make the problem much simpler, it still is 

valid since blood in large vessel acting almost like a Newtonian fluid. 
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2. Mathematical formulation: 
          Let us assume a cylindrical co-ordinate system  tzr ,,  having the z -axis along the 

axis of arterial segment, while r  and t  are taken along the radial and circumferential 

direction. The arterial vessel is assumed to be a rectilinear, deformable, thick shell of 

isotropic, incompressible material with a circular section and without longitudinal 

movements, while the blood is considered as an incompressible Newtonian fluid and flow 

is axially symmetric. 

 
Figure 1: An arterial segment of a visco-elastic artery with length L  

The model approach is to use the two-dimensional Navier -stokes equation and continuity 

equation for a Newtonian and incompressible fluid is given by: 
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and equation of continuity is: 
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rr
                                                                              (2.3) 

where,  u  is the velocity components  in  radial  direction,  w  is the velocity components 

in axial direction,  P  is the pressure,   =density,   = viscosity of fluid. 

For convenience, we define a new variable which is the radial co-ordinate : 

),( tzR
r

                           (2.4) 

where, ),( tzR denote the inner radius of the vessels and   be the arterial wall viscosity. 
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The pressure P  is assumed to be uniform within the cross section. So that P  is 

independent of the radial co-ordinate  .     i.e.  tzPP ,  

The above equation (2.1), (2.2) and (2.3) can be written in the new co-ordinate  tz,,  is: 
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and equation of continuity is: 
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where,  it can be assumed 
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and using simple algebra to change the variable such as: 
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Now let we are assuming following expression for the solution purpose of the problem 
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The velocity profile in the radial direction is also expressed as: 
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according to  Belardinelli and Cavalcanti (1991), for simplicity, we choose 1N ,           

the equation (2.9) and (2.10) becomes: 

     tzqtzu ,1,, 2           (2.11) 
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By plugging equation (2.11) and (2.12) into equation (2.5) and (2.7), the dynamic 

equations are: 
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The cross-section area S (z, t) and the blood flow rate Q  can be defined as: 
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The equation (2.15) and (2.16) are non linear partial differential equation. Now we 

obtained the solution for the cross sectional area of the artery and corresponding blood 

flow rate by solving equation (2.15) and (2.16). These equations are discretized and 

transformed in to a state equation by using a finite difference method. 

We consider segment   of the artery with length L is equally divided by N and grids with 

a step size of 
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i , where 2....4,3,2,1  NandNi , by using following finite difference formula for first 

order. 
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Then equation (2.15) and (2.16) can be written as. 
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We liberalized the dynamic model for the cross-sectional area and corresponding blood 

flow  rate , for the analysis of the nature of the homodynamic behaviors of arteries flow. 

The pressure gradient 
z
P

  is kept constant and the value is prescribed. 

We can simplify the equation (2.17).  Then we get: 
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Figure: 2 Discretization of the arterial segment 

3. Numerical Approach: 
               For the simplicity of simulation, the dynamic model in the arterial 

hemodynamic model was not included. Instead, measured blood pressure signals at 

section 1S  were used as an input to the arterial model. The definitions of the inputs, state 

variables and outputs in this simplified model are: 

Inputs  TPPu 21 , State variable  T
NN SSSQQQy .............. 2121    

Now we can be written in the form )(yf
t
y



 of equation (2.17) and (2.18): 

where   
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The hemodynamic processes were simulated by using MATLAB. The required value in 

the normal condition can be obtained from past works such as: 

Blood viscosity   poise04.0 ,  Blood density   3/06.1 cmg , 

Radius of artery   mmr 5.0 ,  Arterial wall viscosity   3/100 cmdyns , 

Length of artery segment   cmL 15 , Kinematic viscosity   scm /035.0 2 , 

Initial value of blood flow 0QandQ  utliterto min/4.51 , 

Initial value of cross sectional area 3
0 0.25.1 cmtoSandS  , 

Axial pressure gradient mmHgto
z
P 40100

  
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4. Result and Discussion: 
The main purpose of this work, how the cross sectional area of artery affects the 

blood flow within the artery. Let we are considering, the value of parameters 
3/06.1 cmg , 3

0 5.1 cmS  , sec/7.16 3
0 cmQ  , scm /035.0 2 , cmL 15 and 

node of system 3N and also consider arteries in a diastole condition only,  the choosen 

time span is 0.2 seconds.  

Figure (3) indicated that the blood flow rate against time. It is observed that the 

result for 21 , QQ and 3Q are almost same and the value for blood flow is decreasing 

from its initial value. Figure (4) reveals that the cross-sectional area of artery against 

time. We observed that the value of 21 , SS and 3S  are constant. This could be due to the 

absence of visco-elastic effect in the present work. 

  
Figure 3: Plot of the blood flow rate against time  
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Figure 4: Plot of the cross-sectional area against time 

 

Now, since there is not much difference in the blood flow rate between the 

sections, we will consider only one section which is 2S  to make the comparison of the 

different values of the cross sectional area. 

 

 
Figure 5: Plot of without changing the value of pressure gradient and the cross-sectional 

area against time 
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Figure (5) shows that without changing the value of the pressure gradient and 

cross-sectional area of the arteries. It decreases in smaller ranges and also shows that the 

blood flow rate through the arteries is decreasing as time is increasing. Figure (6) 

observed that if the value of cross-sectional is small, then the blood flow rate is 

decreasing, which shows that when the cross-sectional area is decreased then the blood 

flow rate is increased. This condition occurs when the value of cross sectional area in 

range between  22 9.05.1 cmtocm  .  

       
Figure (6) Blood flow rate with different value of cross-sectional area 

           
        

Figure (7): Blood flow rate at normal cross-sectional area and much smaller cross-sectional 
area 
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The pressure in artery may increase because of large amount of blood flow 

through the arteries in a smaller cross sectional area. Thus the blood pressure increases 

and contributes to high blood pressure. 

  As we can see in figure (7), when the cross sectional area is below 28.0 cm ,      

then the blood flow rate decreases faster than the normal rate. But figure (8) slows that 

the effect of blood flow rate when the cross sectional area is in the range   between  
22 8.01.0 cmtocm . It is indicated that if cross-sectional area of artery continuous to 

decrease below ,8.0 2cm  then the blood flow rate also decreases. 

 
 

 
Figure 8: Blood flow rate when the cross-sectional area is in the range between 

22 8.01.0 cmtocm  

Conclusion:  
In this study, we have study the effect of blood flow and cross-sectional area in 

artery. Even though, the model does not include visco-elastic effect. We observed that a 

small change in the value for the cross-sectional may affect the amount of blood flow rate 

through the arteries, which also may affect the blood pressure.   
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