An Upper Bound of an Achromatic Index of K_{14} is 43

Ganesh Vishwas Joshi ${ }^{\# 1}$, S.D.Deo ${ }^{\# 2}$
${ }^{\# 1}$ Asst.Prof. in Dept.of Mathemetics, Maharshi Dayanand College Parel, Mumbai, India 400012.
${ }^{\text {\#2 }}$ Asst.Prof. in Dept.of Mathemetics, N.S.College, Bhadrawati
Dist.Chandrapur (M.S.)India442902

Abstract

Achromatic Indices $\mathbf{A}\left(\mathrm{K}_{\mathrm{n}}\right)$ of complete graphs on \mathbf{n} vertices are not known in general. It is known that $A\left(K_{14}\right) \leq 44$.In this paper we have tightened the upper bound of $A\left(K_{14}\right)$ to 43.

Key Words- Achromatic index, colouring of graphs, complete edge colouring, proper edge colouring.

I. Introduction

A k-edge colouring of a simple graph G is assigning k colours to the edges of G so that no two adjacent edges receive same colours. If for each pair $t_{i} \& t_{j}$ of colours there exist adjacent edges with this colours then the colouring is said to be complete. ${ }^{[1]}$ Let G be a simple graph. The achromatic index $\psi^{\prime}(\mathrm{G})$ of a simple graph G is the maximum number of colours used in the edge colouring of G such that the colouring is complete. All though $\psi^{l}(\mathrm{G})$ is known for some graphs but in general it is not known for arbitrary simple graphs. For Complete graph G of order $\mathrm{n}, \psi^{\mathrm{l}}(\mathrm{G})$ is denoted by $\mathrm{A}\left(\mathrm{K}_{\mathrm{n}}\right)$. It is known that $39 \leq \mathrm{A}\left(\mathrm{K}_{14}\right) \leq 44$ In this paper we are going to prove that $\mathrm{A}\left(\mathrm{K}_{14}\right) \neq 44$

II. Proof

Suppose A(K14)=44

Let C be the optimal colouring of $\mathrm{A}\left(\mathrm{K}_{14}\right)$ with 44 colours.
"Any colour in the optimal colouring C has atleast 2 edges of that colour in C " we denote the above argument by *
(If not, Suppose some colour i has only one edge in C then the number of distinct colours represented at the extremities of this edge are at the most $12+12=24$
Any other colour apart from above 25 colours ($24+$ colour i) cann't be present in C as the adjacencies with colour i are exhausted hence C consist of at the most 25 colours
which contradicts to the choice of C. Hence *)
Now $\left|E\left(K_{14}\right)\right|{ }^{14} \mathrm{c}_{2}=91$
C can have the following possible structures.
Case i) forty three colours with each colour with twice edges in $\mathrm{C} \&$ one colour (say t) with five edges.
Or
Case ii)forty two colours with each colour with twice edges
in C, one colour (say c1) with three edges \& one colour (say c2) with four edges.
Or

Caseiii) forty one colours with two edges of each colour, three colours (say $\mathrm{t}_{1}, \mathrm{t}_{2}, \mathrm{t}_{3}$) with three edges each.
[Note: Any other combination fails to give the combination $\mathrm{A}\left(\mathrm{K}_{14}\right)=44 \&\left|\mathrm{E}\left(\mathrm{K}_{14}\right)\right|{ }^{14} \mathrm{c}_{2}=91 \&$ each colour appearing at least twice in C]

Before discussing the above cases, we will prove that if C contains the following structure for some colour i having exactly two edges of the colour i in C then $\mathrm{A}\left(\mathrm{K}_{14}\right) \leq 43$ Suppose colour i has exactly two edges in C \& for some colours j, k the following position is appearing in K_{14}

(Numbers on edges represent colours throughout this paper.)

The number of distinct colours at the extremities of the edges coloured i apart from the colours j, k are at the most
$10+10+10+10=40$
Any other colour apart from above 43 colours
($40+$ colours $\mathrm{i}, \mathrm{j}, \mathrm{k}$)
cann't be present in C as the adjacencies with colour i are exhausted hence C consist of at the most 43 colours which contradicts to the choice of C .
The above position we will denote by "PP".
Now consider the case i
Apart from 10 extremities of colour t , the any of the remaining 4 vertices has 13 colours incident with it \& these 13 colours (WLG say $1,2, \ldots .13$) have exactly two edges in C (i.e exactly two edges are colored 1 ,exactly two edges are coloured $2, \ldots \ldots$, exactly two edges are coloured 13) WLG we arrive at the following situation.

Some pair of vertices must be joined to each other coloured as 1.W.L.G. $\mathrm{V}_{2} \mathrm{~V}_{3}$ be coloured as 1 .

Now neither of the colours from 2 to 13 can be incident with V_{2} or V_{3} because if 2 is incident with V_{2} or 3 is incident with V_{3} will contradict to the fact C is proper edge colouring of K_{14} If colour $\mathrm{c}(3 \leq \mathrm{c} \leq 13)$ is incident with V_{2} then "PP" appears as shown below.

Similarly if colour c (either $\mathrm{c}=2$ or $4 \leq \mathrm{c} \leq 13$) is incident with V_{3} then"PP" appears. Similarly we can argue for the remaining vertices,
The vertices from V_{1} to V_{13} can be joined pair wise by edges \& can accommodate at the most 6 colours from the colours $1,2, \ldots 13$ leaving no choice for the second edges of the remaining 7 colours. Therefore case i is discarded.
Caseii) Colours c1 \& c2 together have 7 edges. If all of them are disjoint then it contradicts to the fact that C is complete colouring of K_{14}.hence \ni a vetex at which $\mathrm{c} 1 \& \mathrm{c} 2$ are adjacent to each other once so \ni a vetex at which neither c1 nor c2 are incident with it \& hence v has 13 colours incident with it \& these 13 colours (WLG say $1,2, \ldots . .13$) have exactly two edges in C. So the case becomes similar to case i
hence we discard case ii .
Case iii) If \ni a vetex as in the case i then we arrive at contradiction. Hence \nexists a vertex as in the case i
If at every vertex at least two of $\mathrm{t} 1, \mathrm{t} 2, \mathrm{t} 3$ are incident then
Let H be the subgraph of K_{14} having edges coloured by t_{1}, t_{2}, t_{3} therefore $|\mathrm{E}(\mathrm{H})|=9$ \& $\operatorname{deg}_{\mathrm{H}} \mathrm{V} \geq 2$ for all vertices $\mathrm{V} \in \mathrm{V}\left(\mathrm{K}_{14}\right)$ Now $2|\mathrm{E}(\mathrm{H})|=18$
$\therefore 18=\sum \operatorname{deg}_{\mathrm{H}} \mathrm{V}_{\mathrm{i}}$ for $\mathrm{i}=1$ to 14 But $\sum \operatorname{deg}_{\mathrm{H}} \mathrm{V}_{\mathrm{i}} \geq 2 \mathrm{x} 14=28$
$\therefore 18 \geq 28$ which is a contradiction.
$\therefore \quad \ni$ a vertex (wlg say V_{14}) such that exactly one of the colours t_{1} or t_{2} or $t_{3}\left(w \lg\right.$ say $\left.t_{1}\right)$ is incident with $i t$. In general we arrive at the following position.

Now we will think of second edges of the colours 1 to 12 .
As discuss in the case i , vertices $\mathrm{V}_{1}, \mathrm{~V}_{2}, \ldots . . \mathrm{V}_{12}$ are pair wise joined \& can be coloured with at most 6 colours from the colours 1 to 12 hence at least one of the colours from the colours 1 to 12 is incident with V_{13}
Suppose q edges are of the type $V_{13} V_{j}$ where $1 \leq j \leq 12$ \& are coloured with some of q colours from $1,2, \ldots, 12$.
\therefore the remaining $12-\mathrm{q}$ vertices can accommodate at the most $(12-q) / 2$ colours from the remaining $12-q$ colours
(at most (12-q)/2 comes from the discussion of case i)
$\therefore \mathrm{q}+(12-\mathrm{q}) / 2=12$
$\therefore \mathrm{q}=12$
$\therefore \mathrm{V}_{1} \mathrm{~V}_{13}, \mathrm{~V}_{2} \mathrm{~V}_{13}, \ldots \ldots \ldots \ldots, \mathrm{~V}_{11} \mathrm{~V}_{13}, \mathrm{~V}_{12} \mathrm{~V}_{13}$ are coloured using the colours $1,2, \ldots .12$.
WLG $V_{12} V_{13}$ is coloured with1.
\therefore The number of distinct colours adjacent to colour 1 in C are at the most
13 (namely $1,2, \ldots 12, \mathrm{t}_{1}$) +12 (namely $\mathrm{V}_{1} \mathrm{~V}_{2}, \mathrm{~V}_{1} \mathrm{~V}_{3}, \ldots, \mathrm{~V}_{1} \mathrm{~V}_{12}$) +10 (namely $\quad \mathrm{V}_{12} \mathrm{~V}_{2} \mathrm{~V}_{12} \mathrm{~V}_{3, \ldots \ldots \ldots \ldots . .} \mathrm{V}_{12} \mathrm{~V}_{13}$) $=35$ colours
Any other colour apart from above 36 colours ($35+$ colour 1) Can't be present in C as the adjacencies with colour 1 are exhausted hence C consist of at the most 36 colours which contradicts to the choice of C.

III. CONCLUSION

\nexists an complete edge colouring of K_{14} with 44 colours.
$\therefore \mathrm{A}\left(\mathrm{K}_{14}\right) \leq 43$

References

[1] R.E. Jamison, on the edge of achromatic numbers of graphs, Discrete Mathematics (1989), 99-115

