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Abstract 

 The Binet forms for the well known Fibonacci and 

Lucas Sequences {Fn} and {Ln}are discussed, in detail, in 

this paper.  
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I. Introduction 

Among numerical Sequences, real valued or complex 

valued, the Fibonacci sequence Fn defined by the 

recurrence relation,   

    Fn+2 = fn+1 + fn ,  n    ,  f0 = 0 , f1 = 1               (1.1)                                               

has found not only an historic importance, but also an 

applicable value from mathematics point of view.  

It is one of the two shining stars, the second being 

Lucas Sequence defined by the recurrence relation,                                                                                                                                                      

       L n+2 = L n+1 + L n ,        ,  L 0 = 2 ,  L 1 = 1          (1.2)                          

Fibonacci sequence is more famous than the Lucas 

Sequence. In 1202, the Italian mathematician Leonardo 

Fibonacci, also known as Leonardo of pisono, introduced 

the Fibonacci sequence {Fn},with the help of the rabbit 

problem [4]. 

Changing the initial values give in the definition 

of Fibonacci sequence, different sequences can be 

obtained. These are known as Fibonacci like sequences. 

One such a sequence is the Lucas Sequence {Ln}, 

                           L n = L n-2 +L n-1 , L 1 = 1, L 2 = 3, n     
                       

 

named after E Lucas (1842 - 1891). 

In the next section we give the detail proof of the 

Binet formula for {Fn} and its extension for {L n }. 

II. The Binet forms for the Fibonacci and Lucas 

Numbers 

 The Sequence {Fn} is recursively defined by  
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well known as the Fibonacci Sequence with the same 

recurrence relation, changing initial values, we get the 

Lucas Sequence defined by 
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two sequences are related by the formula 
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More relations between the sequences can be 

found in Hoggatt [2].  

  Let   and   be the roots of the quadratic 

equation.  
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The two roots play an important role in studying 

the Fibonacci and Lucas Sequences. The number alpha is 

called the golden ratio. 
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          √          =   1& 

                                                                                  (1.2) 

The equation (1.1) is called the recurrence relation 

for Fibonacci sequence. The Binet form for the Fibonacci 

numbers, is given by 
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We  give below the proof of this formula.  

Proof : We will prove (1.3) by using mathematics 

induction on n. 

When n = 1, it is clear that 
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an arbitrary positive integer. Suppose , 
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any positive integer form 1 to k. Then we must show that 

equation also holds when n = k + 1. 

Thus, by the inductive hypothesis, we have 
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 Hence it follows that  

    

    

 21

11

2121

11

11

11

.by

FFF

kk

kk

kkkk

kkk































 

        





 11 kk

 

Thus, by the principle of mathematical induction, 

isF
nn

n



  true for all positive integer n and the 

proof is complete. 

  

However, in 2004,  another proof  are also given 

by, sury [3] based by (1.3). 

 Therefore the Binet form for the Lucas numbers 

is given by  
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 Proof : we have prove (1.4) by using mathematical 

induction on n.  

When n = 1, then 
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nL   is  true   for n = 1. 

We now suppose that 
nn

nL   is true for any integer 

n form 1 to k, where k is an arbitrary positive integer. 

Then, we will show the above equation also holds when  n 

= k + 1. 

 Thus, we have  
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Hence, by the principle of mathematical induction, 

nn

nL   is true for all positive integers n. 

 

III. Conclusion 

In the present article, we have listed only various types of 

Binet form available in the literature. Further a few basic 

result on Binet Form for The Fibonacci and the Lucas 

numbers have been derived. There are short proof are 

covered here. The article is partly based on the contents of 

paper [1], [2], [3] are cited in the bibliography. 
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