Sequences of Special Dio - Triples

K.Meena ${ }^{1}$, S.Vidhyalakshmi ${ }^{2 \# \#}$, M.A.Gopalan ${ }^{* 3}$, R.Presenna ${ }^{4}$
${ }^{1}$ Former Vice Chancellor, Bharathidasan University,
${ }^{2,3}$ Professor, Department of Mathematics,Shrimati Indira Gandhi College, Tiruchirappalli -2
${ }^{4}$ PG Student, Department of Mathematics,Shrimati Indira Gandhi College, Tiruchirappalli -2

Abstract

This paper concerns with the study of constructing sequences of special Dio-Triples ($\mathbf{a}, \mathbf{b}, \mathbf{c}$) such that the product of any two elements of the set added with their sum and increased by a non-zero integer or a polynomial with integer coefficients is a perfect square.

Keywords: Diophantine Triples, Special Dio-Triple, Integer coefficients

I. Introduction

The problem of constructing the sets with property that product of any two of its distinct elements is one less than a square has a very long history and such sets have been studied by Diophantus [1]. A set of m positive integers $\left\{a_{1}, a_{2}, a_{3}, \ldots a_{m}\right\}$ is said to have the property $D(n) n \in Z-$ $\{0\}$ if $\left(a_{i} * a_{j}\right)+n$ is a perfect square for all $1 \leq i \leq j \leq m$ and such a set is called a Diophantine m - tuple with property $D(n)$

Many mathematicians considered the construction of different formulations of Diophantine Triples with the property $D(n)$ for any arbitrary integer n and also, for any linear polynomials in n. In this context, one may refer [2-19] for an extensive review of various problems on Diophantine Triples. This paper aims at constructing sequences of Special Dio-Triples where the product of any two members of the triple with the addition of the same members and the addition with a non-zero integer or a polynomial with integer coefficients satisfies the required property

II. Method of Analysis

Sequence I

An attempt is made to form a sequence of special Dio-Triples $(a, b, c),(b, c, d),(c, d, e), \ldots$ with the property $D\left(2^{3 n}+5.2^{2 n}+2^{n}+2\right)$
Case I
Let $a=2^{n}$ and $b=2^{3 n}+2$
Let c be any non-zero integer.
Consider $a c+a+c+2^{3 n}+5.2^{2 n}+2^{n}+2=p^{2}$
which yields $\quad\left(2^{n}+1\right) c+2^{3 n}+5.2^{2 n}+2.2^{n}+2=p^{2}$

$$
\begin{equation*}
b c+b+c+2^{3 n}+5.2^{2 n}+2^{n}+2=q^{2} \tag{1}
\end{equation*}
$$

gives $\quad\left(2^{3 n}+3\right) c+2.2^{3 n}+5.2^{2 n}+2^{n}+4=q^{2}$
Using some algebra,

$$
\begin{gather*}
\left(2^{3 n}+3\right) p^{2}-\left(2^{n}+1\right) q^{2}=2^{6 n}+5.2^{5 n}-2.2^{3 n}+ \\
9.2^{2 n}+2^{n}+2 \tag{3}
\end{gather*}
$$

Using the linear transformations

$$
\left.\begin{array}{c}
p=X+\left(2^{n}+1\right) T \\
q=X+\left(2^{3 n}+3\right) T
\end{array}\right\}
$$

and $T=1$, we have $\quad X=2^{2 n}+2^{n}+2 \quad$ and

$$
p=2^{2 n}+2.2^{n}+3
$$

From (1), $\quad c=2^{3 n}+2.2^{2 n}+3.2^{n}+7$
Hence (a, b, c) is the Special Dio-Triple with the property
$D\left(2^{3 n}+5.2^{2 n}+2^{n}+2\right)$
Case II
Let $b=2^{3 n}+2$ and $c=2^{3 n}+2.2^{2 n}+3.2^{n}+7$
Let d be any non-zero integer.
Consider $\quad b d+b+d+2^{3 n}+5.2^{2 n}+2^{n}+2=\beta^{2}$

$$
\begin{equation*}
c d+c+d+2^{3 n}+5.2^{2 n}+2^{n}+2=\gamma^{2} \tag{4}
\end{equation*}
$$

On simplification, we have
$\left(2^{3 n}+3\right) d+2.2^{3 n}+5.2^{2 n}+2^{n}+4=\beta^{2}$

$$
\begin{aligned}
&\left(2^{3 n}+2.2^{2 n}+3.2^{n}+8\right) d+2.2^{3 n}+7.2^{2 n} \\
&+4.2^{n}+9=\gamma^{2}
\end{aligned}
$$

Using some algebra,
$c \beta^{2}-b \gamma^{2}=(c-b)\left[2.2^{3 n}+5.2^{2 n}+2^{n}+4\right]-$

$$
b\left(2.2^{2 n}+3.2^{n}+5\right)
$$

Using the linear transformations

$$
\left.\begin{array}{l}
\beta=X+b T \\
\gamma=X+c T
\end{array}\right\}
$$

and $T=1$, we have $X=2^{3 n}+2^{2 n}+2^{n}+5$ and

$$
\beta=2^{3 n}+2^{2 n}+2^{n}+8
$$

From (4), $\quad d=4.2^{3 n}+4.2^{2 n}+5.2^{n}+20$
Thus (b, c, d) form a Special Dio-Triple with the property
$D\left(2^{3 n}+5.2^{2 n}+2^{n}+2\right)$

Case III

Let $c=2^{3 n}+2.2^{2 n}+3.2^{n}+7$ and
$d=4.2^{3 n}+4.2^{2 n}+5.2^{n}+20$
Let e be any non-zero integer.
Consider $c e+c+e+2^{3 n}+5.2^{2 n}+2^{n}+2=\delta^{2}$

$$
\begin{equation*}
d e+d+e+2^{3 n}+5.2^{2 n}+2^{n}+2=\theta^{2} \tag{5}
\end{equation*}
$$

On simplification, we have
$\left(2^{3 n}+2.2^{2 n}+3.2^{n}+8\right) e+2.2^{3 n}+7.2^{2 n}+4.2^{n}+9$
$=\delta^{2}$
$\left(4.2^{3 n}+4.2^{2 n}+5.2^{n}+21\right) e+5.2^{3 n}+9.2^{2 n}+6.2^{n}$

$$
+22=\theta^{2}
$$

Using some algebra,
$c \delta^{2}-d \theta^{2}=3.2^{6 n}+17.2^{5 n}+15.2^{4 n}+28.2^{3 n}+$

$$
69.2^{2 n}+15.2^{n}+13
$$

Using the linear transformations

$$
\left.\begin{array}{l}
\delta=X+c T \\
\theta=X+d T
\end{array}\right\}
$$

and $T=1$, we have $X=2.2^{3 n}+3.2^{2 n}+4.2^{n}+13$ and

$$
\delta=3.2^{3 n}+5.2^{2 n}+7.2^{n}+21
$$

From (5), $\quad e=9.2^{3 n}+12.2^{2 n}+16.2^{n}+54$
Thus (c, d, e) form a Special Dio - triple with the property $D\left(2^{3 n}+5.2^{2 n}+2^{n}+2\right)$
From all the above cases, $(a, b, c),(b, c, d),(c, d, e) \ldots$ will form a sequence of Special Dio-Triples.
Some Numerical examples are tabulated

n	(a, b, c)	(b, c, d)	(c, d, e)	$D\left(2^{3 n}\right.$ $+5.2^{2 n}$ $+2^{n}$ $+2)$
0	$(1,3,13)$	$(3,13,33)$	$(13,33,91)$	$D(9)$
1	$(2,10,29)$	$(10,29,78)$	$(29,78,206)$	$D(32)$
2	$(4,66,115)$	$(66,115,360)$	$(115,360,886)$	$D(150)$
3	$(8,514,671)$	$(514,671,2364)$	$(671,2364,5558)$	$D(842)$

Sequence II

Deriving another sequence of special Dio-Triples (a, b, c),
$(b, c, d),(c, d, e), \ldots$ with the property
$D\left(4.5^{n}+29\right)$
Case I
Let $a=5^{n}+2$ and $b=5^{n}+6$
Let c be any non-zero integer.
Consider $a c+a+c+4.5^{n}+29=p^{2}$
which yields $\quad\left(5^{n}+3\right) c+5.5^{n}+31=p^{2}$

$$
b c+b+c+4.5^{n}+29=q^{2}
$$

gives $\quad\left(5^{n}+7\right) c+5.5^{n}+35=q^{2}$
Using some algebra,

$$
\begin{equation*}
\left(5^{n}+7\right) p^{2}-\left(5^{n}+3\right) q^{2}=16.5^{n}+112 \tag{6}
\end{equation*}
$$

Using the linear transformations

$$
\left.\begin{array}{l}
p=X+\left(5^{n}+3\right) T \\
q=X+\left(5^{n}+7\right) T
\end{array}\right\}
$$

in (6), we have

$$
\begin{equation*}
X^{2}=\left(5^{2 n}+10.5^{n}+21\right) T^{2}+4.5^{n}+28 \tag{7}
\end{equation*}
$$

Let $T_{0}=1$ and $X_{0}=\left(5^{n}+7\right)$ be the initial solution of (7)
yielding $\quad p=2.5^{n}+10, \quad q=2.5^{n}+14$ and $c=4.5^{n}+23$
Hence (a, b, c) is the Special Dio-Triple with the property
$D\left(4.5^{n}+29\right)$
Case II
Let $b=5^{n}+6$ and $c=4.5^{n}+23$
Let d be any non-zero integer.
Consider

$$
\begin{aligned}
& b d+b+d+4.5^{n}+29=\beta^{2} \\
& c d+c+d+4.5^{n}+29=\gamma^{2}
\end{aligned}
$$

Using some algebra,

$$
(c+1) \beta^{2}-(b+1) \gamma^{2}=(c-b)\left[4.5^{n}+28\right]
$$

Using the linear transformations

$$
\left.\begin{array}{l}
\beta=X+(b+1) T \\
\gamma=X+(c+1) T
\end{array}\right\}
$$

and $T=1$, we have $X=2.5^{n}+14$ and

$$
\beta=3.5^{n}+21
$$

From (8), $\quad d=9.5^{n}+58$
Thus (b, c, d) form a Special Dio - triple with the property

$D\left(4.5^{n}+29\right)$

Case III

Let $c=4.5^{n}+23$ and $d=9.5^{n}+58$
Let e be any non-zero integer.
Consider $\quad c e+c+e+4.5^{n}+29=\delta^{2}$

$$
\begin{equation*}
d e+d+e+4.5^{n}+29=\theta^{2} \tag{9}
\end{equation*}
$$

On simplification, we have

$$
\begin{aligned}
& \left(4.5^{n}+24\right) e+8.5^{n}+52=\delta^{2} \\
& \left(9.5^{n}+59\right) e+13.5^{n}+87=\theta^{2}
\end{aligned}
$$

Using some algebra,

$$
\left(9.5^{n}+59\right) \delta^{2}-\left(4.5^{n}+24\right) \theta^{2}=\underset{980}{20.5^{2 n}+280.5^{n}+}
$$

Using the linear transformation

$$
\left.\begin{array}{c}
\delta=X+\left(4.5^{n}+24\right) T \\
\theta=X+\left(9.5^{n}+59\right) T
\end{array}\right\}
$$

and $T=1$, we have $X=6.5^{n}+38$ and

$$
\delta=10.5^{n}+62
$$

From (9), $\quad e=25.5^{n}+158$
Thus (c, d, e) form a Special Dio-Triple with the property
$D\left(4.5^{n}+29\right)$
Case IV
Let $d=9.5^{n}+58$ and $e=25.5^{n}+158$
Let f be any non-zero integer.
Consider $d f+d+f+4.5^{n}+29=\alpha^{2}$

$$
\begin{equation*}
e f+e+f+4.5^{n}+29=\beta^{2} \tag{10}
\end{equation*}
$$

On simplification, we have
$\left(9.5^{n}+59\right) f+13.5^{n}+87=\alpha^{2}$

$$
\left(25.5^{n}+159\right) f+29.5^{n}+187=\beta^{2}
$$

Using some algebra,

$$
\begin{gathered}
\left(25.5^{n}+159\right) \alpha^{2}-\left(9.5^{n}+59\right) \beta^{2} \\
64.5^{2 n}+848.5^{n}+2800
\end{gathered}
$$

Using the linear transformations

$$
\left.\begin{array}{c}
\alpha=X+\left(9.5^{n}+59\right) T \\
\beta=X+\left(25.5^{n}+159\right) T
\end{array}\right\}
$$

and $T=1$, we have $X=15.5^{n}+97$ and

$$
\alpha=24.5^{n}+156
$$

From (10), $\quad f=64.5^{n}+411$
Thus (d, e, f) form a Dio - triple with the property $D\left(4.5^{n}+29\right)$
From all the above cases, $(a, b, c),(b, c, d),(c, d, e)$, $(d, e, f) \ldots$ will form a sequence of Special Dio-Triples. Some numerical Examples are tabulated.

n	(a, b, c)	(b, c, d)	(c, d, e)	$D\left(4.5^{n}+29\right)$
0	$(3,7,27)$	$(7,27,67)$	$(27,67,183)$	$D(33)$
1	$(7,11,43)$	$(11,43,103)$	$(43,103,283)$	$D(49)$
2	$(27,31,123)$	$(31,123,283)$	$(123,283,783)$	$D(129)$
3	$(127,131,523)$	$(131,523,1183)$	$(523,1183,3283)$	$D(529)$

Sequence III

Forming a special sequence of Dio-Triples $(a, b, c),(b, c, d)$,
$(c, d, e), \ldots$ with the property $D\left(s^{2}+1\right)$
Case I
Let $a=r-s$ and $b=r+s$
Note that (a, b) is a Dio-Double with the property $D\left(s^{2}+1\right)$
Let c be any non-zero integer.
Consider $a c+a+c+s^{2}+1=\alpha^{2}$
which yields $\quad(r-s+1) c+r-s+s^{2}+1=\alpha^{2}$

$$
b c+b+c+s^{2}+1=\beta^{2}
$$

gives $\quad(r+s+1) c+r+s+s^{2}+1=\beta^{2}$
Using some algebra,

$$
\begin{equation*}
(r+s+1) \alpha^{2}-(r-s+1) \beta^{2}=2 s^{3} \tag{12}
\end{equation*}
$$

Using the linear transformations

$$
\left.\begin{array}{c}
\alpha=X+(r-s+1) T \\
\beta=X+(r+s+1) T
\end{array}\right\}
$$

in (12), we have $X^{2}=\left[(r+1)^{2}-s^{2}\right] T^{2}+s^{2}$
When $T=1, X=(r+1)$
Hence, $\alpha=(2 r-s+2)$
From (11), we have $c=4 r+3$
Hence (a, b, c) form a special Dio-Triple with the property
$D\left(s^{2}+1\right)$
Case II
Let $b=r+s$ and $c=4 r+3$
Let d be any non-zero integer.
Consider $\quad b d+b+d+s^{2}+1=p^{2}$
which yields $\quad(r+s+1) d+r+s+s^{2}+1=p^{2}$

$$
\begin{equation*}
c d+c+d+s^{2}+1=q^{2} \tag{13}
\end{equation*}
$$

gives $\quad(4 r+4) d+4 r+3+s^{2}+1=q^{2}$
Using some algebra,
$(4 r+4) p^{2}-(r+s+1) q^{2}=3 r s^{2}+3 s^{2}-s^{3}$
Using the linear transformations

$$
\left.\begin{array}{c}
p=X+(r+s+1) T \tag{14}\\
q=X+(4 r+4) T
\end{array}\right\}
$$

in (14), we have

$$
X^{2}=\left(4 r^{2}+4 r s+8 r+4 s+4\right) T^{2}+s^{2}
$$

When $T=1, X=(2 r+s+2)$
Hence, $p=3 r+2 s+3$
From (13), we have $d=9 r+3 s+8$
Hence (b, c, d) form a special Dio-Triple with the property
$D\left(s^{2}+1\right)$

Case III

Let $c=4 r+3$ and $d=9 r+3 s+8$
Let e be any non-zero integer.

Consider $c e+c+e+s^{2}+1=p^{2}$
which yields $\quad(4 r+4) e+4 r+3+s^{2}+1=p^{2}$

$$
d e+d+e+s^{2}+1=q^{2}
$$

gives $\quad(9 r+3 s+9) e+9 r+3 s+8+s^{2}+1=q^{2}$
Using some algebra,
$(9 r+3 s+9) p^{2}-(4 r+4) q^{2}=s^{2}(5 r+3 s+5)$
Using the linear transformations

$$
\left.\begin{array}{c}
p=X+(4 r+4) T \tag{16}\\
q=X+(9 r+3 s+9) T
\end{array}\right\}
$$

in (16), we have $X^{2}=(9 r+3 s+9)(4 r+4) T^{2}+s^{2}$
When $T=1, X=6 r+s+6$
Hence, $p=10 r+s+10$
From (15), we have $e=25 r+5 s+24$
Hence (c, d, e) form a special Dio-Triple with the property $D\left(s^{2}+1\right)$
Case IV
Let $d=9 r+3 s+8$ and $e=25 r+5 s+24$
Let f be any non-zero integer.
Consider $d f+d+f+s^{2}+1=p^{2}$
which yields $(9 r+3 s+9) f+9 r+3 s+8+s^{2}+1=p^{2}$

$$
\begin{equation*}
e f+e+f+s^{2}+1=q^{2} \tag{17}
\end{equation*}
$$

gives $\quad(25 r+5 s+25) f+25 r+5 s+24+s^{2}+1=q^{2}$
Using some algebra,

$$
\begin{array}{r}
(25 r+5 s+25) p^{2}-(9 r+3 s+9) q^{2} \\
=s^{2}(16 r+2 s+16) \tag{18}
\end{array}
$$

Using the linear transformations

$$
\left.\begin{array}{c}
p=X+(9 r+3 s+9) T \\
q=X+(25 r+5 s+25) T
\end{array}\right\}
$$

in (18), we have

$$
X^{2}=(25 r+5 s+25)(9 r+3 s+94) T^{2}+s^{2}
$$

When $T=1, X=15 r+4 s+15$
Hence, $p=24 r+7 s+24$
From (17), we have $f=64 r+16 s+63$
Hence (d, e, f) form a special Dio-Triple with the property $D\left(s^{2}+1\right)$

Case V

Let $e=25 r+5 s+24$ and $f=64 r+16 s+63$
Let g be any non-zero integer.
Consider $e g+e+g+s^{2}+1=p^{2}$
which yields

$$
\begin{align*}
& (25 r+5 s+25) g+25 r+5 s+25+s^{2}=p^{2} \tag{19}\\
& \quad f g+f+g+s^{2}+1=q^{2}
\end{align*}
$$

gives
$(64 r+16 s+64) g+64 r+16 s+24+s^{2}+64=q^{2}$
Using some algebra,

$$
\begin{gather*}
(64 r+16 s+64) p^{2}-(25 r+5 s+25) q^{2} \\
=s^{2}(39 r+11 s+39) \tag{20}
\end{gather*}
$$

Using the linear transformations

$$
\left.\begin{array}{c}
p=X+(25 r+5 s+25) T \\
q=X+(64 r+16 s+64) T
\end{array}\right\}
$$

in (20), we have

$$
X^{2}=(64 r+16 s+64)(25 r+5 s+25) T^{2}+s^{2}
$$

When $T=1, X=40 r+9 s+40$ and $p=65 r+14 s+65$
From (19), we have $g=169 r+39 s+168$
Hence (e, f, g) form a Dio-Triple with the property $D\left(s^{2}+1\right)$
From all the above cases, we have derived a special sequence of Dio-Triples of the form $(a, b, c),(b, c, d),(c, d, e)$, $(d, e, f),(e, f, g), \ldots$ with the property $D\left(s^{2}+1\right)$
Numerical examples are tabulated.

r	s	(a, b, c)	(b, c, d)	(c, d, e)	$D\left(s^{2}+1\right)$
2	1	$(1,3,11)$	$(3,11,29)$	$(11,29,79)$	$D(2)$
3	2	$(1,5,15)$	$(5,15,41)$	$(15,41,109)$	$D(5)$
4	2	$(2,6,19)$	$(6,19,50)$	$(19,50,134)$	$D(5)$
5	3	$(2,8,23)$	$(8,23,62)$	$(23,62,164)$	$D(10)$

Acknowledgement

The financial support from the UGC, New Delhi (F.No. 5123/14 (SERO/UGC) dated March 2014) for a part of this work is gratefully acknowledged

REFERENCES

[1] I.G.Bashmakova (ed.), Diophantus of Alexandria, Arithmetics and the Book of Polygonal Numbers, Nauka, Moscow, 1974
[2] A.F.Beardon and M.N.Deshpande, Diophantine triples, The Mathematical Gazette 86, 258 - 260, 2002
[3] Bo He, A.Togbe, On the family of Diophantine triples $\{k+1,4 k, 9 k+$ 3 \}, Period Math Hungar, 58, 59 - 70, 2009

4] Bo He, A.Togbe, On a family of Diophantine triples $\left\{k+1, A^{2} k+\right.$ $\left.2 A,(A+1)^{2} k+2(A+1)\right\}$ with two parameters, Acta Math.Hungar, 124, $99-113,2009$
[5] Bo He, A.Togbe, On a family of Diophantine triples $\left\{k, A^{2} k+\right.$ $\left.2 A,(A+1)^{2} k+2(A+1)\right\}$ with two parameters, Period Math.Hungar, 64, 1-10, 2012
[6] Y.Bugeaud, A.Dujella and M.Mignotte, On the family of Diophantine triples $\left\{k-1, k+1,16 k^{3}-4 k\right\}$, Glasgow Math.J, 49, 333-334, 2007
[7] M.N.Deshpande and E.Brown, Diophantine triplets and the Pell sequence, Fibanacci Quart, 39, 242-249, 2001
[8] M.N.Deshpande, One interesting family of Diophantine triplets, Internat. J. Math. Ed. Sci. Tech., 33, 253-256, 2002
[9] M.N.Deshpande, Families of Diophantine triplets, Bulletin of the Marathwada Mathematical Society, 4, 19-21, 2003
[10] A.Dujella and C.Fuchs, Complete solution of the polynomial version of a problem of Diophantus, J. Number Theory, 106, 326-344, 2004
[11] A.Dujella and F.Luca, On a problem of Diophantus with polynomials, Rocky Mountain J. math, 37, 131-157, 2007
[12] A.Dujella and V.Petricevic, Strong Diophantine triples, Experiment Math 17, 83 - 89, 2008
[13] A.Filipin, Bo He, A.Togbe, On the $D(4)-\operatorname{triple}\left\{F_{2 k}, F_{2 k+6}, 4 F_{2 k+4}\right\}$, Fibanacci Quart, 48, 219 - 227, 2012
[14] A.Filipin, Bo He, A.Togbe, On a family of two parametric $D(4)$ triples, Glas. Mat. Ser. III, 47, $31-51,2012$
[15] A.Filipin, Non-extendability of $D(-1)$ triples of the form $\{1,10, c\}$, Internat. J. math. Math. Sci., 35, 2217-2226, 2005
[16] M.A.Gopalan and G.Srividhya, Two special Diophantine Triples, Diophantus J. Math., 1(1), 23-27, 2012
[17] M.A.Gopalan, V.Sangeetha, Manju Somanath, Construction of the Diophantine Triple involving polygonal numbers, Sch. J. Eng. Tech., 2(1), 19-22, 2014
[18] M.A.Gopalan, S.Vidhyalakshmi, S.Mallika, Special family of Diophantine Triples, Sch. J. Eng. Tech., 2(2A), 197 - 199, 2014
[19] V.Pandichelvi, Construction of the Diophantine Triple involving Polygonal numbers, Impact J. Sci. Tech., Vol.5, No.1, 07 - 11, 2011

