Sequences of Special Dio - Triples

K.Meena¹, S.Vidhyalakshmi^{2##}, M.A.Gopalan^{*3}, R.Presenna⁴

¹Former Vice Chancellor, Bharathidasan University,

^{2,3} Professor, Department of Mathematics, Shrimati Indira Gandhi College, Tiruchirappalli -2

⁴PG Student, Department of Mathematics, Shrimati Indira Gandhi College, Tiruchirappalli -2

Abstract -This paper concerns with the study of constructing sequences of special Dio-Triples (a, b, c) such that the product of any two elements of the set added with their sum and increased by a non-zero integer or a polynomial with integer coefficients is a perfect square.

Keywords: Diophantine Triples, Special Dio-Triple, Integer coefficients

I. INTRODUCTION

The problem of constructing the sets with property that product of any two of its distinct elements is one less than a square has a very long history and such sets have been studied by Diophantus [1]. A set of m positive integers $\{a_1, a_2, a_3, \dots, a_m\}$ is said to have the property D(n) $n \in \mathbb{Z}$ – {0} if $(a_i * a_i) + n$ is a perfect square for all $1 \le i \le j \le m$ and such a set is called a Diophantine m - tuple with property D(n)

Many mathematicians considered the construction of different formulations of Diophantine Triples with the property D(n) for any arbitrary integer n and also, for any linear polynomials in n. In this context, one may refer [2 - 19]for an extensive review of various problems on Diophantine Triples. This paper aims at constructing sequences of Special Dio-Triples where the product of any two members of the triple with the addition of the same members and the addition with a non-zero integer or a polynomial with integer coefficients satisfies the required property

II. METHOD OF ANALYSIS

Sequence I

An attempt is made to form a sequence of special Dio-Triples $(a, b, c), (b, c, d), (c, d, e), \dots$ with the property $D(2^{3n} + 5.2^{2n} + 2^n + 2)$ Case I Let $a = 2^n$ and $b = 2^{3n} + 2$ Let c be any non-zero integer. Consider $ac + a + c + 2^{3n} + 5 \cdot 2^{2n} + 2^n + 2 = p^2$ (1)which yields $(2^n + 1)c + 2^{3n} + 5 \cdot 2^{2n} + 2 \cdot 2^n + 2 = p^2$ $bc + b + c + 2^{3n} + 5 \cdot 2^{2n} + 2^n + 2 = q^2$ (2) $(2^{3n}+3)c + 2 \cdot 2^{3n} + 5 \cdot 2^{2n} + 2^n + 4 = a^2$ gives Using some algebra,

$$\begin{array}{c} (2^{n} + 3)p & (2^{n} + 1)q & -2^{n} + 3 & 2^{n} + 2 & (3) \\ 9 & 2^{2n} + 2^{n} + 2 & (3) \\ \end{array}$$
Using the linear transformations

$$\begin{array}{c} p = X + (2^{n} + 1)T \\ q = X + (2^{3n} + 3)T \\ \end{array}$$
and $T = 1$, we have $X = 2^{2n} + 2^{n} + 2$ and
 $p = 2^{2n} + 2 & 2^{n} + 3 \\ p = 2^{2n} + 2 & 2^{n} + 3 \\ \end{array}$
From (1), $c = 2^{3n} + 2 & 2^{2n} + 3 & 2^{n} + 7 \\$ Hence (a, b, c) is the Special Dio-Triple with the property
 $D(2^{3n} + 5 & 2^{2n} + 2^{n} + 2)$
Case II
Let $b = 2^{3n} + 2$ and $c = 2^{3n} + 2 & 2^{2n} + 3 & 2^{n} + 7 \\$ Let d be any non-zero integer.
Consider $bd + b + d + 2^{3n} + 5 & 2^{2n} + 2^{n} + 2 = \beta^{2} \\ cd + c + d + 2^{3n} + 5 & 2^{2n} + 2^{n} + 2 = \gamma^{2} \\$ On simplification, we have
 $(2^{3n} + 3)d + 2 & 2^{3n} + 5 & 2^{2n} + 2^{n} + 4 = \beta^{2} \\ (2^{3n} + 2 & 2^{2n} + 3 & 2^{n} + 8)d + 2 & 2^{3n} + 7 & 2^{2n} \\ + 4 & 2^{n} + 9 = \gamma^{2} \\$ Using some algebra,
 $c\beta^{2} - b\gamma^{2} = (c - b)[2 & 2^{3n} + 5 & 2^{2n} + 2^{n} + 4] - \\ b(2 & 2^{2n} + 3 & 2^{n} + 5) \\$ Using the linear transformations
 $\beta = X + bT \\ \gamma$

 $(2^{3n} + 3)n^2 - (2^n + 1)a^2 - 2^{6n} + 5 2^{5n} - 2 2^{3n} +$

an Fre He D(Ca Le Let Co On (2^{2}) Us сβ Us $\gamma = X + cT \int$ and T = 1, we have $X = 2^{3n} + 2^{2n} + 2^n + 5$ and $\beta = 2^{3n} + 2^{2n} + 2^n + 8$ $d = 4 \cdot 2^{3n} + 4 \cdot 2^{2n} + 5 \cdot 2^n + 20$ From (4), Thus (b, c, d) form a Special Dio-Triple with the property $D(2^{3n} + 5.2^{2n} + 2^n + 2)$ Case III Let $c = 2^{3n} + 2 \cdot 2^{2n} + 3 \cdot 2^n + 7$ and $d = 4.2^{3n} + 4.2^{2n} + 5.2^n + 20$ Let *e* be any non-zero integer. Consider $ce + c + e + 2^{3n} + 5 \cdot 2^{2n} + 2^n + 2 = \delta^2$ (5) $de + d + e + 2^{3n} + 5 \cdot 2^{2n} + 2^n + 2 = \theta^2$ On simplification, we have $(2^{3n} + 2.2^{2n} + 3.2^{n} + 8)e + 2.2^{3n} + 7.2^{2n} + 4.2^{n} + 9$ $= \delta^2$ $(4.2^{3n} + 4.2^{2n} + 5.2^{n} + 21)e + 5.2^{3n} + 9.2^{2n} + 6.2^{n}$ $+22 = \theta^{2}$

Using some algebra,

International Journal of Mathematics Trends and Technology – Volume 10 Number 1 – Jun 2014

 $c\delta^2 - d\theta^2 = 3.2^{6n} + 17.2^{5n} + 15.2^{4n} + 28.2^{3n} + 69.2^{2n} + 15.2^n + 13$ Using the linear transformations

$$\left. \begin{array}{c} \delta = X + cT \\ \theta = X + dT \end{array} \right\}$$

and T = 1, we have $X = 2 \cdot 2^{3n} + 3 \cdot 2^{2n} + 4 \cdot 2^n + 13$ and $\delta = 3 \cdot 2^{3n} + 5 \cdot 2^{2n} + 7 \cdot 2^n + 21$ From (5), $e = 9 \cdot 2^{3n} + 12 \cdot 2^{2n} + 16 \cdot 2^n + 54$

Thus (c, d, e) form a Special Dio – triple with the property $D(2^{3n} + 5 \cdot 2^{2n} + 2^n + 2)$

From all the above cases,	(a,b,c),((b,c,d),	(c,d,e)) will
form a sequence of Specia	l Dio-Tri	ples.		
Some Numerical average	one tobul	atad		

Some Numerical examples are tabulated

(a,b,c)	(b,c,d)	(c, d, e)	$D(2^{3n} + 5.2^{2n} + 2^n + 2^n + 2)$
(1,3,13)	(3,13,33)	(13,33,91)	D(9)
(2,10,29)	(10,29,78)	(29,78,206)	D(32)
(4,66,115)	(66,115,360)	(115,360,886)	D(150)
(8,514,671)	(514,671,2364)	(671,2364,5558)	D(842)
	(<i>a</i> , <i>b</i> , <i>c</i>) (1,3,13) (2,10,29) (4,66,115) (8,514,671)	(a, b, c)(b, c, d)(1,3,13)(3,13,33)(2,10,29)(10,29,78)(4,66,115)(66,115,360)(8,514,671)(514,671,2364)	(a, b, c)(b, c, d)(c, d, e)(1,3,13)(3,13,33)(13,33,91)(2,10,29)(10,29,78)(29,78,206)(4,66,115)(66,115,360)(115,360,886)(8,514,671)(514,671,2364)(671,2364,5558)

Sequence II

Deriving another sequence of special Dio-Triples (a, b, c), $(b, c, d), (c, d, e), \dots$ with the property $D(4.5^n + 29)$ Case I Let $a = 5^n + 2$ and $b = 5^n + 6$ Let c be any non-zero integer. Consider $ac + a + c + 4.5^n + 29 = p^2$ $(5^n + 3)c + 5.5^n + 31 = p^2$ which yields $bc + b + c + 4.5^n + 29 = q^2$ $(5^n + 7)c + 5.5^n + 35 = q^2$ gives Using some algebra, $(5^n + 7)p^2 - (5^n + 3)q^2 = 16.5^n + 112$ (6)Using the linear transformations $p = X + (5^n + 3)T$ $q = X + (5^n + 7)T$ in (6), we have $X^{2} = (5^{2n} + 10.5^{n} + 21)T^{2} + 4.5^{n} + 28$ (7)Let $T_0 = 1$ and $X_0 = (5^n + 7)$ be the initial solution of (7) $p = 2.5^n + 10$, $q = 2.5^n + 14$ and yielding $c = 4.5^n + 23$ Hence (a, b, c) is the Special Dio-Triple with the property $D(4.5^n + 29)$ Case II Let $b = 5^n + 6$ and $c = 4.5^n + 23$ Let d be any non-zero integer. $bd + b + d + 4.5^n + 29 = \beta^2$ (8) Consider $cd + c + d + 4.5^{n} + 29 = \gamma^{2}$

Using some algebra, $(c + 1)\beta^2 - (b + 1)\gamma^2 = (c - b)[4.5^n + 28]$ Using the linear transformations $\beta = X + (b+1)T$ $\gamma = X + (c+1)T \int$ and T = 1, we have $X = 2.5^{n} + 14$ and $\beta = 3.5^n + 21$ $d = 9.5^n + 58$ From (8), Thus (b, c, d) form a Special Dio – triple with the property $D(4.5^n + 29)$ Case III Let $c = 4.5^n + 23$ and $d = 9.5^n + 58$ Let *e* be any non-zero integer. $ce + c + e + 4.5^n + 29 = \delta^2$ Consider (9) $de + d + e + 4.5^n + 29 = \theta^2$ On simplification, we have $(4.5^n + 24)e + 8.5^n + 52 = \delta^2$ $(9.5^n + 59)e + 13.5^n + 87 = \theta^2$ Using some algebra, $(9.5^{n} + 59)\delta^{2} - (4.5^{n} + 24)\theta^{2} = 20.5^{2n} + 280.5^{n} +$ 980 Using the linear transformation $\delta = X + (4.5^{n} + 24)T \\ \theta = X + (9.5^{n} + 59)T$ and T = 1, we have $X = 6.5^{n} + 38$ and $\delta = 10.5^n + 62$ From (9), $e = 25.5^n + 158$ Thus (c, d, e) form a Special Dio–Triple with the property $D(4.5^n + 29)$ Case IV Let $d = 9.5^n + 58$ and $e = 25.5^n + 158$ Let f be any non-zero integer. Consider $df + d + f + 4.5^n + 29 = \alpha^2$ (10) $ef + e + f + 4.5^n + 29 = \beta^2$ On simplification, we have $(9.5^n + 59)f + 13.5^n + 87 = \alpha^2$ $(25.5^n + 159)f + 29.5^n + 187 = \beta^2$ Using some algebra, $(25.5^{n} + 159)\alpha^{2} - (9.5^{n} + 59)\beta^{2}$ $64.5^{2n} + 848.5^{n} + 2800$ Using the linear transformations $\alpha = X + (9.5^n + 59)T$ $\beta = X + (25.5^n + 159)T$ and T = 1, we have $X = 15.5^{n} + 97$ and $\alpha = 24.5^n + 156$ From (10), $f = 64.5^n + 411$

Thus (d, e, f) form a Dio – triple with the property $D(4.5^n + 29)$ From all the above cases, (a, b, c), (b, c, d), (c, d, e), (d, e, f)... will form a sequence of Special Dio-Triples. Some numerical Examples are tabulated.

International Journal of Mathematics Trends and Technology – Volume 10 Number 1 – Jun 2014

n (a, b, c) 0 (3,7,27)		(a, b, c)	(b, c, d)	(c,d,e)	$D(4.5^n + 29)$
		(3,7,27)	(7,27,67)	(27,67,183)	D(33)
	1	(7,11,43)	(11,43,103)	(43,103,283)	D(49)
	2	(27,31,123)	(31,123,283)	(123,283,783)	D(129)
	3	(127,131,523)	(131,523,1183)	(523,1183,3283)	D(529)

Sequence III

Forming a special sequence of Dio-Triples (a, b, c), (b, c, d),(c, d, e),... with the property $D(s^2 + 1)$ Case I Let a = r - s and b = r + sNote that (a, b) is a Dio-Double with the property $D(s^2 + 1)$ Let c be any non-zero integer. Consider $ac + a + c + s^2 + 1 = \alpha^2$ (11) $(r-s+1)c + r - s + s^2 + 1 = \alpha^2$ which yields $bc + b + c + s^2 + 1 = \beta^2$ $(r + s + 1)c + r + s + s^{2} + 1 = \beta^{2}$ gives Using some algebra, $(r + s + 1)\alpha^2 - (r - s + 1)\beta^2 = 2s^3$ (12)Using the linear transformations $\alpha = X + (r - s + 1)T$ $\beta = X + (r + s + 1)T \quad \int$ in (12), we have $X^2 = [(r+1)^2 - s^2]T^2 + s^2$ When T = 1, X = (r + 1)Hence, $\alpha = (2r - s + 2)$ From (11), we have c = 4r + 3Hence (a, b, c) form a special Dio–Triple with the property $D(s^2 + 1)$ Case II Let b = r + s and c = 4r + 3Let d be any non-zero integer. Consider $bd + b + d + s^2 + 1 = p^2$ (13) $(r + s + 1)d + r + s + s^{2} + 1 = p^{2}$ which yields $cd + c + d + s^2 + 1 = q^2$ $(4r + 4)d + 4r + 3 + s^{2} + 1 = q^{2}$ gives Using some algebra, $(4r+4)p^2 - (r+s+1)q^2 = 3rs^2 + 3s^2 - s^3$ (14)Using the linear transformations $\left.\begin{array}{l}p=X+(r+s+1)T\\q=X+(4r+4)T\end{array}\right\}$ in (14), we have $X^{2} = (4r^{2} + 4rs + 8r + 4s + 4)T^{2} + s^{2}$ When T = 1, X = (2r + s + 2)Hence, p = 3r + 2s + 3From (13), we have d = 9r + 3s + 8Hence (b, c, d) form a special Dio–Triple with the property $D(s^2 + 1)$ Case III Let c = 4r + 3 and d = 9r + 3s + 8Let *e* be any non-zero integer.

Consider $ce + c + e + s^2 + 1 = p^2$ (15)which yields $(4r + 4)e + 4r + 3 + s^2 + 1 = p^2$ $de + d + e + s^2 + 1 = a^2$ $(9r + 3s + 9)e + 9r + 3s + 8 + s^{2} + 1 = q^{2}$ gives Using some algebra, $(9r + 3s + 9)p^2 - (4r + 4)q^2 = s^2(5r + 3s + 5)$ (16) Using the linear transformations p = X + (4r + 4)Tq = X + (9r + 3s + 9)Tin (16), we have $X^2 = (9r + 3s + 9)(4r + 4)T^2 + s^2$ When T = 1, X = 6r + s + 6Hence, p = 10r + s + 10From (15), we have e = 25r + 5s + 24Hence (c, d, e) form a special Dio–Triple with the property $D(s^2 + 1)$ Case IV Let d = 9r + 3s + 8 and e = 25r + 5s + 24Let f be any non-zero integer. Consider $df + d + f + s^2 + 1 = p^2$ (17)which yields $(9r + 3s + 9)f + 9r + 3s + 8 + s^2 + 1 = p^2$ $ef + e + f + s^2 + 1 = q^2$ $(25r + 5s + 25)f + 25r + 5s + 24 + s^{2} + 1 = q^{2}$ gives Using some algebra, $(25r + 5s + 25)p^2 - (9r + 3s + 9)q^2$ $= s^2(16r + 2s + 16)$ (18)Using the linear transformations p = X + (9r + 3s + 9)Tq = X + (25r + 5s + 25)Tin (18), we have $X^{2} = (25r + 5s + 25)(9r + 3s + 94)T^{2} + s^{2}$ When T = 1, X = 15r + 4s + 15Hence, p = 24r + 7s + 24From (17), we have f = 64r + 16s + 63Hence (d, e, f) form a special Dio–Triple with the property $D(s^2 + 1)$ Case V Let e = 25r + 5s + 24 and f = 64r + 16s + 63Let g be any non-zero integer. Consider $eg + e + g + s^2 + 1 = p^2$ (19)which yields $(25r + 5s + 25)g + 25r + 5s + 25 + s^2 = p^2$ $fg + f + g + s^2 + 1 = q^2$ gives $(64r + 16s + 64)g + 64r + 16s + 24 + s^2 + 64 = q^2$ Using some algebra, $(64r + 16s + 64)p^2 - (25r + 5s + 25)q^2$ $= s^2(39r + 11s + 39)$ (20)Using the linear transformations p = X + (25r + 5s + 25)Tq = X + (64r + 16s + 64)Tin (20), we have $X^{2} = (64r + 16s + 64)(25r + 5s + 25)T^{2} + s^{2}$

International Journal of Mathematics Trends and Technology – Volume 10 Number 1 – Jun 2014

When T = 1, X = 40r + 9s + 40 and p = 65r + 14s + 65From (19), we have g = 169r + 39s + 168Hence (e, f, g) form a Dio–Triple with the property $D(s^2 + 1)$

From all the above cases, we have derived a special sequence of Dio-Triples of the form (a, b, c), (b, c, d), (c, d, e), (d, e, f), (e, f, g), with the property $D(s^2 + 1)$ Numerical examples are tabulated.

r	s	(a, b, c)	(b,c,d)	(c,d,e)	$D(s^{2} + 1)$
2	1	(1,3,11)	(3,11,29)	(11,29,79)	D(2)
3	2	(1,5,15)	(5,15,41)	(15,41,109)	D(5)
4	2	(2,6,19)	(6,19,50)	(19,50,134)	D(5)
5	3	(2,8,23)	(8,23,62)	(23,62,164)	D(10)

ACKNOWLEDGEMENT

The financial support from the UGC, New Delhi (F.No. 5123/14 (SERO/UGC) dated March 2014) for a part of this work is gratefully acknowledged

REFERENCES

- [1] I.G.Bashmakova (ed.), *Diophantus of Alexandria, Arithmetics and the Book of Polygonal Numbers*, Nauka, Moscow, 1974
- [2] A.F.Beardon and M.N.Deshpande, Diophantine triples, The Mathematical Gazette 86, 258 – 260, 2002
- [3] Bo He, A.Togbe, On the family of Diophantine triples $\{k + 1, 4k, 9k + 3\}$, *Period Math Hungar*, 58, 59 70, 2009

- [4] Bo He, A.Togbe, On a family of Diophantine triples $\{k + 1, A^2k + 2A, (A + 1)^2k + 2(A + 1)\}$ with two parameters, *Acta Math.Hungar*, 124, 99 113, 2009
- [5] Bo He, A.Togbe, On a family of Diophantine triples $\{k, A^2k + 2A, (A + 1)^2k + 2(A + 1)\}$ with two parameters, *Period Math.Hungar*, 64, 1 10, 2012
- [6] Y.Bugeaud, A.Dujella and M.Mignotte, On the family of Diophantine triples $\{k 1, k + 1, 16k^3 4k\}$, *Glasgow Math.J*, 49, 333 334, 2007
- [7] M.N.Deshpande and E.Brown, Diophantine triplets and the Pell sequence, *Fibanacci Quart*, 39, 242 249, 2001
- [8] M.N.Deshpande, One interesting family of Diophantine triplets, Internat. J. Math. Ed. Sci. Tech., 33, 253 - 256, 2002
- [9] M.N.Deshpande, Families of Diophantine triplets, Bulletin of the Marathwada Mathematical Society, 4, 19 - 21, 2003
- [10] A.Dujella and C.Fuchs, Complete solution of the polynomial version of a problem of Diophantus, J. Number Theory, 106, 326 - 344, 2004
- [11] A.Dujella and F.Luca, On a problem of Diophantus with polynomials, *Rocky Mountain J. math*, 37, 131 – 157, 2007
- [12] A.Dujella and V.Petricevic, Strong Diophantine triples, *Experiment Math* 17, 83 89, 2008
- [13] A.Filipin, Bo He, A.Togbe, On the D(4) triple { $F_{2k}, F_{2k+6}, 4F_{2k+4}$ }, *Fibanacci Quart*, 48, 219 – 227, 2012
- [14] A.Filipin, Bo He, A.Togbe, On a family of two parametric D(4) triples, *Glas. Mat. Ser. III*, 47, 31-51, 2012
- [15] A.Filipin, Non-extendability of D(-1) triples of the form {1,10, c}, Internat. J. math. Math. Sci., 35, 2217 - 2226, 2005
- [16] M.A.Gopalan and G.Srividhya, Two special Diophantine Triples, Diophantus J. Math., 1(1), 23 – 27, 2012
- [17] M.A.Gopalan, V.Sangeetha, Manju Somanath, Construction of the Diophantine Triple involving polygonal numbers, *Sch. J. Eng. Tech.*, 2(1), 19 – 22, 2014
- [18] M.A.Gopalan, S.Vidhyalakshmi, S.Mallika, Special family of Diophantine Triples, *Sch. J. Eng. Tech.*, 2(2A), 197 – 199, 2014
- [19] V.Pandichelvi, Construction of the Diophantine Triple involving Polygonal numbers, *Impact J. Sci. Tech.*, Vol.5, No.1, 07 - 11, 2011