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ABSTRACT: The main aim of this article is to present the time-evolution as the unitary and 
self-adjoint operators on Hilbert spaces and to describe its application in the development of 
quantum mechanics. The initial value problems associated with the quantum mechanical 
Schrodinger equation, ݅ ௗట(௧)

ௗ௧
= -in the Hilbert space is solved by the use of time  (ݐ)߰ܪ

evolution. The importance of time-evolution is also seen as the operation of turning machine in 
quantum mechanics, which is regarded as the time-evolution of the machine control state. 
Time-evolution of a quantum mechanical system is observed to be unitary and self-adjoint 
operators of Hilbert space, since it corresponds to an observable, specifically energy position 
and momentum. It was observed that time-evolution of a quantum mechanical system is 
generated by a self-adjoint operator, called Hamiltonian,  VKH ˆˆˆ   , expressed by the 
Schrodinger equation, above. 
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1. INTRODUCTION 

Time is the dimension in which events can be ordered from the passed through the present and 
into the future [3]. It can also be explained as the measure of duration of events and the 
intervals between them. Evolution can be explained as the process of transformation or growth. 
Based on these definitions, time-evolution can be explained as the change of state due to the 
passage of time, applicable to the system with interval state (also called stateful system). In this 
formulation, time is not required to be a continuous parameter, but a discrete or even finite. 

In classical physics, time-evolution of a collection of rigid bodies is controlled by the principle 
of classical mechanics. In their most rudimentary form, these principles express on the 
relationship between forces acting on the bodies and their acceleration given by Newton’s law 
of motion. These principles can also be equivalently expressed more abstractly by Hamiltonian 
mechanics. 

The concepts of time-evolution may be applicable to the stateful system as well. For example, 
the operator of a turning machine can be regarded as the time evolution of the machine control 
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state. In this perspective, time is discrete.  The stateful system of operators often has dual 
description in terms of states or in terms of observable values which constitute quantum 
mechanics. In such system, time-evolution can also be called the change in observable values. 
This is particularly important in quantum mechanics where the Schrodinger picture and 
Heisenberg picture are equivalent description of the time-evolution. 

 The time evolution of the state vector )(t of a physical system is governed by the 

Schrӧndiger equation. )()(
)(

ttH
dt

td
i 


 , where H(t) is the observable corresponding to 

the classical Hamiltonian of the system. The evolution of a quantum system is controlled by the 

Schrӧdinger equation, iHf
t
f



 , with solution )0,(),( xfetxf iHt  .The total energy 

fHf ,  of the system is divided between the kinetic energy ff , and the potential energy 

fVf ,   [11]. Time-evolution is aimed at looking at the initial value problem associated with 

the Schrӧdinger equation ݅ ௗట(௧)
ௗ௧

=  in the Hilbert space. If R is one –dimensional, the (ݐ)ܴ߰

solution is given by (ݐ) = ݁ି௜௧ோ߰(0), where R is a real number. Moreover, the unitary operator     
〈߰(ݐ)ܷܴ,߰(ݐ)ܷ〉 = 〈ܴ߰(ݐ)ܷ,߰(ݐ)ܷ〉 = 〈߰,ܴ߰〉 , 

shows that the expectations of the real number R are time- independent which  corresponds to 
the conservation of energy [10]. 

On the other hand, the generator of the time-evolution of a quantum mechanical system is 
observed to be always an operator on Hilbert space (self-adjoint operator), since it corresponds 
to an observable (energy). Moreover, there should be a one-one correspondence between the 
unitary group and its generators. This fact is supported by the Stone’s theorem. 

The time-evolution as an operator (unitary operator) in Hilbert space can be explained through 
the use of the solution of Schrӧdinger equation that can be used for this explanation can be 
written in the form|߰(ݐ)〉 =  .〈(0)߰|{ݐܴ݅−}^݁

The operator ݁^{−ܴ݅ݐ} > is a unitary operator and is called the time-evolution operator, since 
it takes a state at ݐᇱ to time t+ݐᇱ. By the  homomorphism property of the functional calculus, 

the operator 
iHt

eU


   is a unitary operator. It is the time-evolution operator or propagator of 
a closed quantum system. If the Hamiltonian is time- independent, the unitary operator,  )(tU  
form a one parameter unitary group [10] [5]. 

Any symmetry of the system is represented by a unitary operator on its Hilbert space. The 
symmetry here is time-translation invariance. This is because we expect symmetry to have no 
effect on the translation probabilities between various states, which means it should preserve 
the inner product on the Hilbert space and this is precisely what a unitary operator does. This 
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shows that the unitary operator can be thought of as the generalization to Hilbert space of 
orthogonal transformation (i.e., rotation). 

To observe more of this concepts, let us consider a system with state space X for which 
evolution is deterministic and reversible. Let us also suppose that time is a parameter that 
ranges over the set of real number R. The time-evolution is expressed as a family of bijective 
state transformations 

ܺ:௧,௦ܨ		 → ܺ for all ݐ, ݏ ∈ ℛ 

Where 	ܨ௧,௦ is the state of the system at time t, whose state at time s is X. This leads to the 
existence of the following identity operator 

ቀܨ௧,௦(ܺ)ቁ =  (ܺ)௩,௧ܨ

In some contexts in mathematical physics, the mapping, ܨ௧,௦ are called the propagation 
operators. In quantum mechanics, the propagators are usually unitary operators or self-adjoint 
operators on Hilbert space which can be expressed as time-ordered exponentials of the 
combined Hamiltonian operator[6] [1]. 

2. PRELIMINARY 

Definition 1. Time Evolution: Time-evolution is referred to as the change of state due to the 

passage of time, applicable to the system with internal state. If Y is the wavefunction for a 

physical system of an initial time and the system is free of external interactions, then the 

evolution of time of the wavefunction is given by ߰ܪ = ݅ℏ డట
డ௧

, where H is the Hamiltonian. 

Definition 2. Time Evolution for Conservative Systems: A physical system is conservative if 

its Hamiltonian does not depend explicitly on time. In quantum mechanics, as well as, in 

classical mechanics, the most important of such an observation is the conservation of energy. 

The time evolution of the system that was initially in the state )( 0t is using the following 

steps: 

(i)   Expand  state vector )( 0t  in the basis of eigenvector of H, i.e. 

                 
k

nknk
n

tat  )()( 00 , where )()( 0,0 tata knnk 
.
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(ii) To obtain )(t  for t > t0, multiply each coefficient )( 0, ta kn  by 
)( 0ttiEn

e
  where 

En is the eigenvalue of H associated with the state kna , , meaning 

kn
k

ttiE

kn
n

n

etat ,

)(

0,

0

)()(  


  .This step can be 

generalised to the case of )(Hc .S dEetEat kE
k

ttiE

k

n

,

)(

0

0

),()(   


  . The 

eigenstates of H are called stationary states [11]. 

 Definition 2. Time- Evolution for the Mean Value systems: Let )(t  be the normalised ket 

describing the time- evolution of a physical system. The time- evolution of the mean value of 

observable, A is governed by the equation   
dt
AtHA

idt
Ad )(,1


  . If A does not depend 

explicitly on time, we have  )(,1 tHA
idt

Ad


 . By definition, a constant of motion is an 

observable, A, that does not depend explicitly on time and commutes with the Hamiltonian H. 

In this case, 0
dt
Ad

 [11]. 

Definition 3. Self-Adjoint and unitary operators: A bounded linear operator T: H H on a 

Hilbert space H is said to be; 

           i.self-adjoint if   TT i.e.    TyxyTx ,,   for all Hyx ,  

 ii. Unitary if T is bijective if T* = T-1.  

Definition 4. Quantum mechanics: Quantum mechanics is a branch of mechanics (science of 

movement and force) that deals with the mathematical description of the motion on interaction 

with subatomic particles. It describes the motion at every level of microscopic particles [6]. 

Definition 5. Observables: These are measurable operators, where the property of the system 

state can be determined by some sequence of physical operators. They are quantities whose 

values can be measured, for example, momentum, position and energy operators [5].  



International Journal of Mathematics Trends and Technology – Volume 10  Number 2 – Jun  2014 

ISSN: 2231-5373                   http://www.ijmttjournal.org                              Page 64 

 

Definition 6. Hamiltonian operator in Quantum Mechanics: In quantum mechanics, 
Hamiltonian is the operator corresponding to the total energy of the system. This operator is 
usually denoted by H. Its spectrum is the set of possible outcome when one measure of the total 
energy of the system. Due to its close relation to the time-evolution of a system, it is of 
fundamental importance in most formulation of quantum theory [4]. 

Hamiltonian as an operator is quantum mechanics is used to explain the Schrodinger equation. 
It is commonly expressed as the sum of kinetic energies of all the particles and the potential 
energy of the particles associated with the system. It is given in the form, VKH ˆˆˆ 

, where ),(ˆ trVVV   is the potential energy operator and 2
22

22
ˆ

2
ˆ.ˆˆ 




mm
p

m
ppK 

is the 

kinetic energy operator in which m is the mass of the particles involved. The dot denotes the 
dot product of the vectors and  ip̂  is the momentum operator, where  is the gradient 
operator. The dot product of with itself is the laplacian 2
. In three dimensions using Cartesian coordinate, the laplace operator is                    

2

2

2

2

2

2
2

zyx 










 . 

When these forms are combined together, it yields the formula used in the Schrӧdinger 

equation ),(
2

),(
2

ˆ.ˆˆˆˆ 2
2

trV
m

trV
m
ppVKH 

 , which allows one  apply the 

Hamiltonian to system described by a wave function ).,( tr  this is the approach commonly 
taken in introductory treatment of quantum mechanics, using the formalism of Schrodinger’s 
wave mechanics [6] [2]. 

 Definition 7. Schrӧdinger Equation: The Hamiltonian operator generates the time-evolution 

of quantum states. If )(t is the state of function at time, t, then .)()(| t
t

itH 






 
This 

is called the Schrӧdinger equation. It takes the same form as the Hamiton-Jacobian equation, 
 

t
i

U
m







 2
2

)(
2  

which is one of the reasons it is called the Hamiltonian. Given 

the state at some initial time (t = 0), we can solve it to obtain the state at any subsequent time. 

In particular, if Hamiltonian is independent of time, then | )0(|)(  
iHt

et


 [11].  

Definition 8. Schrodinger Picture: In Physics, the Schrodinger Picture is a formation of 
quantum mechanics in which the state vectors evolve in time, but the operators (observables) 
are constant with respect to time. In the Schrodinger Picture, the state of a system evolves with 
time. The evolution for a closed quantum system is brought about by a unitary operator, the 
time evolution operator [8] [9]. 
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Definition 9.  Heseinberg Picture: In Physics, the Heseinberg Picture is a formation of 
quantum mechanics in which the operators (observables) incorporate a dependency on time, 
but the state vectors are time –independent.  In Heseinberg Picture of quantum mechanics, the 
vectors |߮⟩ do not change with time while the observable B satisfy  ௗ

ௗ௧
(ݐ)ܤ = ௜

ℏ
[(ݐ)ܤ,ܪ] +

డ஻(௧)
డ௧

, where H is the Hamiltonian and [. , . ] indicates the computation of two operators (H and 
B). 

Definition 11. The  homomorphism: This is the time-evolution operator or propagator of a 
closed quantum system. It can also be explained using the idea of c*-algebra as seen below: 
Let A and B be two c*-algebras. Then the bounded linear map ܣ:ߨ →  between A and B is ,ܤ
called a  homomorphism if 

(i) For x and y in A, (ݕݔ)ߨ =  (ݕ)ߨ(ݔ)ߨ
(ii) For x in A, (∗ݔ)ߨ =  ∗(ݔ)ߨ

This is also applicable to B [1]. 

Definition 12. Turning Machine: This is one of the aspects of quantum mechanics where 
time-evolution (unitary operator) play its role in its performance. It is a hypothetical device that 
manipulates symbols on a strip of tape according to a table of rules. It helps physicists in taking 
the accurate measurement10of length of moving machines in physics laboratories. It also 
assists the computer scientists to understand the limits of mechanical computations [10]. 

Definition 13. Commutator Relation: This is the basic relation between conjugate qualities 
(quantities which are related by definition such that one is the Fourier transform of another). 
For instance, [ݔ, [ݔ݌ = ݅ℏ between the position x and momentum px in the direction x of a 
point particle in one-dimension, where [ݔ݌,ݔ] = ݔ݌ݔ −  is the commutator of x and px, i  ݔݔ݌
is the imaginary unit and ℏ is the reduced plank’s constant i.e ℏ = ௛

ଶగ
. It may look different 

than in the Schrodinger picture because of the time dependent of operator. For example, 
consider the operators x(t1), x(t2), p(t1) and p(t2). The time- evolution of these operators depend 
on the Hamiltonian of the system in quantum mechanics [8] [9]. 

3. BASIC THEOREMS 

Here, we use this avenue to look at the initial value problem associated with the Schrӧdinger 
equation in the Hilbert space,	ℵ. If ℵ is one- dimensional, the solution is given by  |

)0()(  itAet  , where A is a real number. Our hope is that this formula also applies in the 
general case and that we can reconstruct a one-parameter unitary group U(t) from its generator 
A through ).exp()( itAtU   we first investigate the family of operator exp(-itA)  
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Theorem 1: Let A be self-adjoint and let   ).exp()( itAtU   then 

i  U(t) is a strongly continuous one-parameter unitary group; 

ii  The ))((1lim 0   tU
tt   exists if and only if )(AD and in case  

 iAtU
tt  ))((1lim 0 . And and the other hand, the generator of the time-evolution of a 

quantum mechanical system should always be a self-adjoint operator since it corresponds to an 
observable (energy). Moreover, there should be a one-one correspondence between the unitary 
group and its generator. This is ensured by the Stone’s theorem [10].  

Theorem 2: Stone’s theorem. Let ܷ(ݐ) be a weekly continuous one-parameter unitary group. 
Then its generator R is self-adjoint and ܷ(ݐ) = ݁ି௜௧ோ. 

Now we have seen that the time-evolution of a quantum mechanical system is generated by a 
self-adjoint operator (Hilbert space operator), called Hamiltonian and is expressed and 
governed by a linear ordinary differential equation, the Schrodinger equation, 

)()( tHt
dt
di   . [10]. 

 Remark 1: Unitary Relation of Position and Momentum Operators 

The position and momentum operators are unitarily equivalent with the unitary operator being 
given explicitly by the Fourier transform. Thus, they have the same spectrum. In physical 
sense, the force p acting on momentum space wavefunction is the same as position space 
wavefunction. This resulted in the Heseinberg Uncertainty Principle. 

Theorem 3: Heisenberg Uncertainty principle. Let H be a Hilbert space and let (D(T),T) and 
(D(S),S) be self-adjoint operators on H. Also, let )()( SDTDv   be such that

)()(, SDTDSvTv  . Again let ST  ,  be the spectral measure for v with respect to T and S. 

Furthermore, let  
R TT xdtx )()( 2

0
2

  and   
R sS xdsx )()( 2

0
2

 ,  

where t0, s0 are the average of T and S .Then we have  

                           
222 ),(

4
1 viST   , 

where  vSTSTvTSv ,  [7]. 

Remark 2: It was observed that we can use the idea of the principle above to explain the 
uncertainty of the result of measurements of two observables of quantum mechanics. To 
achieve that, let us consider two observables a and b, with corresponding operators â  and b̂ . 
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Let   be a vector such that )ˆˆˆˆ( abba  makes sense. The uncertainties of the result of 
measurement of a and b in the state   are just 

  aaaaa  ˆ  

  bbbbb  ˆ  

We have ),)ˆˆˆˆ((
2
1 abbaba  . Indeed let ,ˆ1 Iaaa   Ibbb 1̂ . Then 1111 ˆˆˆˆ abba  . 

Hence  

.2

ˆˆ2

ˆˆ2)ˆ,ˆ(2)ˆ,ˆ(2

)ˆ,ˆ()ˆ,ˆ(

),)ˆˆ(),ˆˆ(

),)ˆˆˆˆ((),)ˆˆˆˆ((

111111

1111

1111

1111

ba

bbaa

bababaim

baab

abba

abbaabba

























 

We say that the observables a and b are convergent if I
i
habba  ˆˆˆˆ .  In this case, the right 

hand part of the Heisenberg commutation relation     jkqpI
i
hqp jkjk  ,0ˆ,ˆˆ,ˆ , and 

2
ˆˆ hqp jk  . 

4. RESULTS 

Remark 3:  It was deduced from the work that the Hamiltonian operator generates the time-
evolution of quantum states by the Schrodinger equation, (ݐ)߰|ܪ⟩ = ݅ℏ డట(௧)

డ௧
 . Bearing in mind 

the commutator relation and considering the one-dimensional harmonic oscillator ܪ = ௣మ

ଶ௠
+

௠ఠమ௫మ

ଶ
, the time- evolution of the position and momentum operators is given by

 

 
 ௗ
ௗ௧
(ݐ)ݔ = ௜

ℏ
[(ݐ)ݔ,ܪ] = ௣

௠
			 , ௗ

ௗ௧
(ݐ)݌ = ௜

ℏ
,ܪ] [(ݐ)݌ = −݉߱ଶݔ.  

Differentiating once more and solving with proper initial condition, 

(0)ݔ =
଴݌

߱

̇
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(0)݌ = −݉߱ଶ̇ݔ , leads to 

(ݐ)ݔ = ଴ݔ cos(߱ݐ) +
଴݌

߱݉ sin	(߱ݐ) 

(ݐ)݌ = ଴݌ cos(߱ݐ) −  (ݐ߱)	଴sinݔ߱݉

Direct computation yields more general commutator relation as 

൧(ଶݐ)ݔ,(ଵݐ)ݔൣ   = ௜ℏ
௠ఠ

sin	(߱ݐଶ                                          (ଶݐ߱−
,(ଵݐ)݌] [ଶݐ)݌ = ݅ℏ݉߱cos	(߱ݐଶ −                                                                     (ଵݐ߱
[(ଶݐ)݌,(ଵݐ)ݔ] = ݅ℏcos	(߱ݐଶ −  (ଵݐ߱

For t1 = t2 we simply recovers the standard canonical commutator relations valid in all pictures. 

Remark 4: It was also deduced that the position and momentum operators in quantum 
mechanics are equal with the same spectrum as well as the force acting on their wavefunction. 
This is supported by theorem 3. 

Remark 5: Theorems 1 and 2 indicate that the time-evolution of a quantum mechanical system 
is always a self-adjoint operator since it corresponds to an observable (energy). Furthermore, 
there is a one-one correspondence between the unitary group and its generator showing that it 
is also unitary.  

Remark 6: One of the aspects of quantum mechanics where time-evolution (unitary operator) 
play its role in its performance is ‘Turning Machine’. It helps physicists in taking correct 
measurement and can be adopted by the computer scientists to simulate the logic of an 
computer algorithm. It is also useful in explaining the functions of central processing unit 
(CPU) of a computer. The limits of mechanical computations is also understood by the system. 

5. CONCLUSION 
 From the discussion above, it was clearly observed that time-evolution  has played a 
significant role in the formation of quantum mechanical systems as being both the unitary and 
self-adjoint operators of Hilbert space. This is so since it corresponds to the  observables  
(energy position and momentum) of quantum mechanics. The idea of commutator relation and  

the one-dimensional harmonic oscillator ܪ = ௣మ

ଶ௠
+ ௠ఠమ௫మ

ଶ
, facilitate the time- evolution of the 

position and momentum operators as ௗ
ௗ௧
(ݐ)ݔ = ௣

௠
			ܽ݊݀		 ௗ

ௗ௧
(ݐ)݌ = −݉߱ଶݔ, generated from 

 
 

௜
ℏ

		݀݊ܽ		[(ݐ)ݔ,ܪ] ௜
ℏ

,ܪ]  The time-evolution of a quantum mechanical system is also .[(ݐ)݌

generated by a self-adjoint operator, called Hamiltonian, VKH ˆˆˆ  = ).(
2

2
2

xV
m



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