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I. INTRODUCTION 

     During the last forty years, the economic situation of most 
of the countries has changed to such an extent due to large-
scale inflation and consequent sharp decline in the purchasing 
power of money, that it is not possible to ignore the effects of 
inflation and time-value of money. Buzacott [7] was the first 
to develop an EOQ  model taking inflation into consideration. 
Several other researchers like Misra ([17], [18]), Bierman and 
Thomas [5], Aggarwal [1], Chandra and Bahner [8], Sarker 
and Pan [25], etc., have considered various interesting 
situations like the time-value of money, different inflation 
rates for the internal and external costs, finite replenishment 
rate, shortage etc. in their models. The market demand rate 
was however assumed to be constant in their models. Dutta 
and Pal [10] investigated a finite time-horizon inventory 
model with a linearly time-dependent demand rate, allowing 
shortages and considering the effects of inflation and time-
value of money. An EOQ model for deteriorating items 
incorporating the effects of inflation, time value of money, a 
linearly time-dependent demand rate and shortages was also 
developed by Bose et. al. [6]. 
     Generally for a consumer – goods  type of inventory 
especially in supermarkets or shopping malls, the demand rate 
may go up and down if the on-hand inventory level increases 
or decreases respectively. Large piles of goods displayed in 
the supermarkets and malls usually tempt the customer to buy 
more. Silver and Peterson [24], Gupta and Vrat [11], Baker 
and Urban [3], Mandal and Phaujder [13], Datta and Pal [9], 
Pal et. al. [21], etc. have developed economic order quantity 
models with inventory-level-dependent demand rate. 
However, these authors did not consider the inflationary 
effects in their models. Ray and Chaudhuri [22] were the first 
to develop an inventory model with stock-dependent demand 
rate incorporating the concepts of inflation and time - value of 
money. They developed this model without taking 
deterioration of items into account and allowing shortages in 
all cycles except the last one. Valliathal and Uthayakumar 
[30] have however discussed the effects of inflation and time 
value of money on an EOQ model for deteriorating items 

under stock-dependent demand and time- dependent partial 
backlogging. This inventory model is studied under the 
replenishment policy starting with no shortages.  
     Researchers are continuously modifying the inventory 
models so as to make them more practicable. Basu and Sinha 
[4] have taken into account the impact of inflation for an 
inventory model with time-dependent demand and 
deterioration, considering permissible delay in payments and 
partial backlogging. Kumar and Rajput [12] also developed a 
similar type of general inventory model with constant demand 
and studied the effects of inflation therein. Tripathi [29] dealt 
with economic ordering policies for perishable items with 
inflation dependent demand rate under permissible delay in 
payments. Shortages are not allowed in this model. Tripathi, 
Misra and Shukla [28] also developed a cash-flow oriented 
EOQ model under permissible delay in payments without 
shortages, incorporating inflationary effects. Mehta and Shah 
[15] however have studied the effect of inflation and time-
discounting for an inventory model for deteriorating items 
with exponentially increasing demand and shortages, without 
considering the permissible delay in payments. Mishra et. al. 
[16] have investigated the influences of inflation and time-
value of money on an inventory system with power demand of 
deteriorating items without allowing shortages. Misra et. al. 
[20] derived an optimal inventory replenishment policy with 
constant demand and no shortages for two- parameter Weibull 
deteriorating items with a permissible delay in payment under 
inflation.  Tripathi [27] in his paper establishes an inventory 
model for non-deteriorating items with time-dependent 
demand rate under inflation when the supplier offers a 
permissible delay to the purchaser. In this paper also, 
shortages are not allowed. However, Misra et. al. [19] 
investigated the inventory system for perishable items with 
quadratic demand pattern and shortages, under the influence 
of  inflation and time-value of money. In the recent interesting 
works of Mandal and De [14], Amutha and Chandrasekaran 
[2], Singh, Tripathi and Mishra [26], Ray [23], the inflationary 
effects can be taken into consideration for further realistic 
development of their models. 
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     In the present study, the model of Ray and Chaudhuri [22] 
is reconsidered. This model has been modified by allowing 
shortages in all replenishment cycles. The effect of 
deterioration is also taken into account. On comparing the 
optimal solutions for the two models by considering the same 
numerical example as considered by Ray and Chaudhuri [22], 
we see that the system cost decreases considerably and the 
duration of no-shortage period increases, as a result of 
allowing shortages in all cycles. We also consider the limiting 
case of this model when there is no deterioration and compare 
the optimal result with that of the model developed by Ray 
and Chaudhuri [22]. 

 
II. THE MODEL 

The inventory model is developed for a deteriorating item. 
The costs considered in this model are (i) replenishment cost 
per cycle, (ii) purchase cost, (iii) holding cost, (iv) shortage 
cost and (v) deterioration cost. These costs are influenced by 
the rate of inflation. We consider here two distinct inflation 
rates – the internal (company) inflation rate and the external 
(general economy) inflation rate. Generally, the replenishment 
cost increases at the internal inflation rate and the unit 
purchase cost at the external inflation rate. The holding cost 
which comprises of costs in the form of taxes, insurance and 
costs of storage, etc. increases with the external inflation rate. 
The storage cost may be however affected by both the 
inflation rates depending on whether the company has its own 
warehouse or has a rented warehouse. The shortage cost is 
also affected by both the rates. Lastly, the deterioration cost, 
which depends on the cost of purchasing, increases at the 
external inflation rate. The classification of costs in this 
manner may vary, but in the present model, we assume a 
clear-cut categorization of the costs and the costs are 
determined accordingly. Shortages are allowed in all the 
replenishment cycles. In this model, our purpose is to find out 
the optimal reorder and shortage points that minimize the total 
cost over the time-horizon [0,퐻] . 
 

III. ASSUMPTIONS AND NOTATIONS 
    The model is developed with the following assumptions   

and notations: 
(i)   퐻	is taken to be the fixed time-horizon. 
(ii)   The demand rate is assumed to be stock-dependent. If 

푅(푖) be the rate of demand for the  item when the on-
hand inventory level is 푖, then 

푅(푖) =
퐷, (푗 − 1)푇 ≤ 푡 ≤ (퐾 + 푗 − 1)푇; 푗 = 1,2, …푛 − 1
훼푖 ,														(퐾 + 푗 − 1)푇 ≤ 푡 ≤ 푗푇; 	푗 = 1,2, … 푛  

where  훼 > 0   and  0 < 훽 < 1  are scale and shape 
parameters respectively and 퐷(> 0	) is a constant. 훽 
is (Pal et. al. [21]) the elasticity of the demand rate 
with respect to the inventory level. In other words, it is 
called the stock-elasticity of the demand and is thus 
equal to the ratio of the percentage change in the 
quantity demanded to the percentage change in the 
stock-level.  

(iii)  퐴 is the internal replenishment cost per cycle. 

(iv)  The rate of replenishment is infinite, i.e., 
replenishment is instantaneous. 

(v)  Lead time is taken to be zero for the sake of simplicity. 
(vi)  The internal and external inflation rates are denoted by 

푖 	and	푖   respectively. 
(vii) 	푟 is the discount rate representing the time-value of 

money. 
(viii)  퐶 	and	퐶  are respectively the internal and external 

holding costs per unit item per unit time at time 푡 = 0;  
퐶 	and	퐶  are respectively the internal and external 
shortage costs per unit item per unit time . 

(ix) 	푝	is the unit purchase cost of the item. 
(x)  휃  (0 < 휃 < 1) is a constant fraction of the on-hand 

inventory that deteriorates per unit of time. 
 

The time-horizon 퐻  is divided into 푛  equal parts, each of 
length 푇, so that  푇 =  . 
The reorder times over the time-horizon 퐻 are 
(퐾 + 푗 − 1)푇		(푗 = 1,2, … . , 푛).   The initial and final 
inventories are both zero in each cycle within the planning 
horizon. We assume that the period for which there is no 
shortage in each interval [푗푇, (푗 + 1)푇]  is a fraction of the 
scheduling period and is equal to (1 − 퐾)푇	(0 < 퐾 < 1) . 
Shortages occur at times 	푗푇	(푗 = 0,1,2, … , 푛 − 1) . In this 
inventory policy, shortages occur in every cycle for a period 
	퐾푇, 0 < 퐾 < 1.	  A pictorial description of the inventory 
policy is given in Figure 1. 

 
 
IV. THE PROBLEM  AND THE SOLUTION PROCEDURE 
  
Problem: 
The instantaneous state of the on-hand inventory 푖(푡) in the 
present model is described by the following differential 
equations: 

= −퐷, (푗 − 1)푇 ≤ 푡 ≤ (퐾 + 푗 − 1)푇, 푗 = 1,2, … … . , 푛   
                                            (1)                                     

with the initial conditions  푖{(푗 − 1)푇} = 0, 푗 = 1,2, … . ,푛                 
(2)    
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and    + 휃푖 = −훼푖 , (퐾 + 푗 − 1)푇 ≤ 푡 ≤ 푗푇,															 
																																																푗 = 1,2, … … . ,푛.                          (3) 

with the terminal conditions   푖{푗푇} = 0, 푗 = 1,2, … . , 푛.								                                  
(4)                                                                      

The solution of (1) using (2) is obtained as 
푖(푡) = 퐷{(푗 − 1)푇 − 푡}, (푗 − 1)푇 ≤ 푡 ≤ (퐾 + 푗 − 1)푇, 
	푗 = 1,2, … . . ,푛 − 1                                                           (5) 

Again, the solution of (3) using (4) is 

푖(푡) = 푒 ( )( ) − 1 , (퐾 + 푗 − 1)푇 ≤ 푡 ≤ 푗푇,	 
	푗 = 1,2, … … . , 푛                                                                (6)       

 
The costs involved in the system are: 
(i) Holding cost: The present worth of the total holding cost 

during the entire time horizon 퐻  is given by (see 
Appendix I ) 

퐶 = 퐻 = 퐼 																																					(7) 

(ii) Shortage cost: The total shortage cost during the entire 
time horizon is given by (see Appendix II )        

퐶 = 퐺 = 퐽 																																					(8) 

(iii) Purchase cost: The present worth of the total purchase  
cost is (see Appendix III)       

퐶 = 푃 																																																																				(9) 

(iv)  Replenishment cost: The total replenishment cost is  (see 
Appendix IV)  

                                                                                  
         퐶 =                                            (10)                                       

(v)  Deterioration cost: The total cost of deterioration in the 
entire time horizon 퐻 is (see  Appendix V) 

퐶 = 푝 퐷 																																																																	(11) 

 
Thus, the total cost of the inventory system over the entire 
time horizon 퐻 is given by  
We will now determine the optimum values of  푛 and 퐾 that 
minimize the total cost 퐶 of the inventory system. 
 
Solution Procedure: 

The cost function 퐶(푛,퐾)  is a function of two variables 푛 
(dicrete) and 퐾  (continuous). This function 퐶(푛,퐾)  being 
complicated, it’s not possible to prove its convexity 
analytically. However, using the parameter values of the 
numerical example, we see that 퐶(푛,퐾)  is a strict convex 
function of 퐾  (see Figure 2) for any given value of 푛 . 
Therefore, the optimum value of 퐾 for 퐶  to be minimum is 
obtained by setting the derivative of 퐶 at zero i.e., = 0. By 
applying the rule of differentiation under the sign of 
integration, = 0  leads to the equation 

푇퐶
훼
휃 푒 ( )( ) − 1 푒 푑푡

−
퐷퐶 푇
푅

(1 − 푒 ) 

−∑ 푇푝 푒 ( ) 퐷 − 푒 ( )( ) − 1       

+∑ 푝푅 푇푒 ( ) 퐷퐾푇 +

∫ 푒 ( )( ) − 1 푑푡 	+

( ) − 푇푝 푒 ( )( ) − 1 = 0,                                                
(13) 

where 푙 = (퐾 + 푗 − 1)푇. 
 

퐶(푛,퐾) 	= 	퐶 + 퐶 + 퐶 + 	퐶 	+ 퐶                           (12) 
 

 
We solve the non-linear equation (13) (using Newton-
Raphson method) for 푛 = 1,2, …  to get the corresponding 
values of 퐾, when the other parameter values are prescribed. 
Again the corresponding values of 퐶 would be obtained in this 
process from (12). The minimum of these values of 퐶 would 
be the optimum value of 퐶 and the values of	푛	and 퐾 obtained 
for this minimum 퐶 are then the optimum values of 푛 and 퐾 

respectively. Simpson’s one-third rule is applied while solving 
(13) in order to obtain the value of the integrals that appear in 
the equation. 
 
A particular case: 
 
The present inventory policy will reduce to a policy without 
any deterioration if the limiting value of the deteriorating 
fraction, 휃	becomes zero. Thus, by taking this limit  
(휃 → 0),	the system cost in (12) reduces to  (see  Appendix VI)    
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퐶 ′(푛,퐾) = 퐶 훼(1− 훽) (푡 − 푙) (푗푇

− 푡) 푒 푑푡 

	+
퐷퐶
푅 푒 ( ) 	{푒 + 푅 퐾푇 − 1} 				

+ 푝푒 ( ) 퐷퐾푇

+ {훼(1− 훽)(푗푇 − 푙)}

+
퐴푒 (1− 푒 )

(1 − 푒 ) 		 

(14) 
Thus, for a fixed value of 	푛, the necessary condition for the 
cost 퐶 ′		to be minimum is obtained by taking  휃 → 0 in 
equation (13) (see  Appendix VI)   

푇퐶 훼(1 −훽) (푗푇 − 푡) 푒 푑푡

−
퐷퐶 푇
푅

(1 − 푒 )  

− 푇푝 푒 ( ) 퐷 − 훼(1 − 훽) (푗푇 − 푙)  

+∑ 푝푅 푇푒 ( ) 퐷퐾푇 + {훼(1 − 훽)(푗푇 − 푙)} +
( ) = 0,     (15) 

where 푙 = (퐾 + 푗 − 1)푇 and 푅 = 푟 − 푖 ,				푚 = 1,2.    

We solve this non-linear equation as before for 푛 = 1,2, … …. 
to get the corresponding values of 퐾 for which the cost  퐶′ is  
minimum. A list of values of 퐶 ′  is obtained for different 
values of n from (14) and minimum cost in this list is the 
optimal cost when there is no deterioration. 

V.  NUMERICAL EXAMPLE 
 

Case – I: Shortages in all cycles 
 
Here we consider the same numerical example of Ray and 
Chaudhuri [22] so that a clear-cut comparison can be made. 
With the help of this numerical example, we will illustrate the 
advantage of allowing shortages in all cycles. The parameter 
values as considered by Ray and Chaudhuri [22] are as 
follows: 
 
		퐴 = 80, 	푖 = 0.08, 	푖 = 0.14, 푟 = 0.2, 	퐶 = 0.2, 			퐶 =
		0.4, 	퐶 = 0.8, 	퐶 = 0.6, 훼 = 20,  훽 = 0.1, 푝 = 5,					퐻 =
	10	푎푛푑	퐷 = 23.92		푖푛	푎푝푝푟표푝푟푖푎푡푒	푢푛푖푡푠. 
In the present model, we have incorporated the factor of 
deterioration of goods over time; let us take 휃 = 0.01. 

Equation (13) is solved for 퐾	(0 < 퐾 < 1) for different values 
of 푛 and the corresponding values of the cost 퐶 are obtained 
from (12) by substituting these values of 	푛 and 퐾. The results 
for the case  of  shortages in all cycles with the deterioration 
factor are shown in Table-I. 
 
We  see from this table that for 푛 = 4, the system cost 퐶 is 
minimum. Thus, the optimum values of 푛  and 퐾  are 
respectively 푛∗ = 4	 and 퐾∗ = .5530820  and the minimum 
value of cost 퐶  becomes  퐶∗(푛∗,퐾∗) = 1197.8146.	Again 
푇∗ = ∗ = 2.50. 
 
 
Case – II:  No Shortages  
 
 If   no shortage  in  inventory  is  allowed  in  any  cycle,  the  
length  of   the  stock-out   interval  [(푗 − 1)푇, (퐾 + 푗 − 1)푇] 
should be zero. Thus, 퐾푇 = 0. this implies that 퐾 = 0 for all 
cycles. Therefore, by putting 퐾 = 0 in (12), the model reduces 
to the case of no-shortage. Using the same parameter values as 
in Case-I and putting 퐾 = 0, we obtain the total cost from 
(12) for different values of 푛 and then find the minimum cost. 
This is shown in Table II. We see that in the case of no-
shortage (퐾 = 0), the optimal results are 푛∗ = 6, 푇∗ = 1.667 
and 	퐶∗ = 1405.4302. 
 
 

 

TABLE I 
OPTIMAL SOLUTION FOR A DETERIORATING ITEM WITH 

SHORTAGES IN ALL CYCLES 

                                                                              
                                                  
                                                                                                                                            

                                                                            
 
 
 
 
 

 
 

 
 
 
 
 
 
 
 

 

 

풏 푲 푻 푪(풏,푲) 
 

2 
3 
4* 

5 
6 
7 
8 
9 
10 
11 
12 
13 
14 
15 

 
.5257308 
.5413294 
.5530820* 

.5615760 

.5672284 

.5705195 

.5718800 

.5716591 

.5701382 

.5675393 

.5640440 

.5597932 

.5549052 

.5494726 

 
5.000 
3.333 

 2.500* 

2.000 
1.667 
1.429 
1.250 
1.111 
1.000 
0.909 
0.833 
0.769 
0.714 
0.667 

 
1254.3388 
1202.7837 

 1197.8146* 

1211.9988 
1236.0625 
1265.9126 
1299.4748 
1335.5577 
1373.4378 
1412.6351 
1452.8412 
1493.8200 
1535.4181 
1577.5075 
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TABLE II 
OPTIMAL SOLUTION FOR DETERIORATING ITEMS WITHOUT ANY 

SHORTAGES (퐾 = 0) 

                                                                   
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
The table shows that the total cost 퐶 becomes minimum for 
푛 = 4, 퐾 = 0.5637721. 
Hence, the optimal values of 푛,				퐾  and 퐶		 become 
respectivel 푛∗ = 4, 		퐾∗ = 0.5637721, 					퐶∗ = 1204.9451.  
Again,  푇∗ = ∗ = 2.500. 
The   corresponding   optimal values  obtained  by  Ray  and  
Chaudhuri [22]  are  
 

 
푛∗ = 5, 		퐾∗ = 0.365518, 		푇∗ = 2.000,			퐶∗ = 1278.523,	 in 
case of  shortages in all cycles except the last one and for a 
non-deteriorating item. 
Now comparing the two results, we find that the system cost 
as obtained by  Ray  and  Chaudhuri [22]  has reduced by  
5.76 %. 
 
 
 

TABLE III 
OPTIMAL SOLUTION WITH SHORTAGES IN ALL CYCLES AND NO 

DETERIORATION [휃 → 0] 

 
 
 
 
 

On comparing the results of the shortage and no-shortage 
case, we see that the system cost and the reorder number 푛 
increase whereas the scheduling period 푇 decreases in the case 
of no shortage. 
 
Particular  case: 
Now we will consider the  particular case of our model when 
there is no physical deterioration of goods with time  i.e. 	휃 
converges to zero (휃 → 0). The optimal solution in this case is 
obtained from (14) and (15) and is prescribed in Table III. 
Thus, a considerable cost-savings is achieved by allowing  
shortages in all cycles. 
 
 
 
 
 

 
 
Again on comparing the results of Table I and Table III, we 
see that the optimal system cost decreases by 0.59% on 
incorporating the deterioration factor. 
Thus, deterioration has little effect on the system cost. 
 

VI.  SENSITIVITY ANALYSIS 
 

We will now study the sensitivity of the optimal solution of 
our model (with shortages in all cycles and deterioration) to 
changes in the values of the different parameters associated 
with the system. The results using the same numerical 
example are listed in Table-IV. 

 
 

 
 

 
 

 
 
 
 
 
 
 
 
 
 
 
 

풏 푻 푪(풏,푲) 
 

2 
3 
4 

5 
 6* 

7 
8 
9 

10 
11 
12 
13 
14 
15 

 
5.000 
3.333 
2.500 

2.000 
 1.667* 

1.429 
1.250 
1.111 
1.000 
0.909 
0.833 
0.769 
0.714 
0.667 

 
1652.0600 
1492.7625 
1430.2870 
1407.6149 
1405.4302* 

1415.2606 
1432.8569 
1455.7800 
1482.5527 
1512.1889 
1544.0589 
1577.6684 
1612.7012 
1648.8846 

풏 푲 푻 푪(풏,푲) 
 
2 
3 

 4* 

5 
6 
7 
8 
9 

10 
11 
12 
13 
14 
15 

 
0.5404212 
0.5533100 

 0.5637721* 
0.5712970 
0.5762013 
0.5788907 
0.5797691 
0.5791687 
0.5773283 
0.5744778 
0.5704700 
0.5663487 
0.5613226 
0.5557745 

 
5.000 
3.333 

 2.500* 

2.000 
1.667 
1.429 
1.250 
1.111 
1.000 
0.909 
0.833 
0.769 
0.714 
0.667 

 
1262.0606 
1210.1967 

 1204.9451* 

1218.9032 
1242.7828 
1272.4958 
1305.9526 
1341.9620 
1379.7863 
1418.9549 
1459.1419 
1500.1223 
1541.7317 
1583.8471 
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TABLE IV 
SENSITIVITY ANALYSIS 

 
Para- 

meters 
% 

change 
풏 푲 푻 푪(풏,푲) Para- 

meters 
% 

change 
풏 푲 푻 푪(풏,푲) 

 
푨 

 

 
 +50 
 +20 
  -20 
 -50 

 
3 
3 
4 
5 

 
.5575085 
.5478240 
.5447758 
.5365731 

 
3.333 
3.333 
2.500 
2.000 

 
1268.8011 
1229.2471 
1162.0807 
1099.3004 

 
푪ퟐퟐ 

 

 
+50 
+20 
 -20 
 -50 

 
4 
4 
4 
3 

 
.4889393 
.5255921 
.5834027 
.6255476 

 
2.500 
2.500 
2.500 
3.333 

 
1223.7616 
1208.9179 
1185.5850 
1160.2549 

            
풊ퟏ 
 
 
 
 
풊ퟐ 
 
 
 
 
풓 
 
 
 
 

푪ퟏퟏ 
 
 
 
 

푪ퟏퟐ 
 
 
 
 

푪ퟐퟏ 
 
 
 

 

+50 
+20 
 -20 
-50 

 
+50 
+20 
 -20 
 -50 

 
+50 
+20 
 -20 
 -50 

 
+50 
+20 
 -20 
 -50 

 
+50 
+20 
 -20 
 -50 

 
+50 
+20 
 -20 
 -50 

3 
4 
4 
4 
 

4 
4 
3 
3 
 

3 
4 
4 
4 
 

4 
4 
4 
4 
 

4 
4 
4 
4 
 

4 
4 
4 
3 
 

.5337797 

.5499034 

.5559704 

.5598488 
 

.4991489 

.5365097 

.5544415 

.5657104 
 

.5869061 

.5754718 

.5198663 

.4422919 
 

.5639450 

.5575042 

.5485521 

.5415464 
 

.5810203 

.5647634 

.5406451 

.5302951 
 

.4730717 

.5182701 

.5923334 

.6507168 

3.333 
2.500 
2.500 
2.500 

 
2.500 
2.500 
3.333 
3.333 

 
3.333 
2.500 
2.500 
2.500 

 
2.500 
2.500 
2.500 
2.500 

 
2.500 
2.500 
2.500 
2.500 

 
2.500 
2.500 
2.500 
3.333 

1240.2283 
1214.1149 
1182.9275 
1162.9449 

 
1592.9476 
1335.7841 
1081.6519 
 934.3526 

 
  781.5716 
1002.2714 
1445.2853 
1943.2798 

 
1199.5840 
1198.5349 
1197.0766 
1195.9350 

 
1202.4370 
1199.7499 
1195.7494 
1192.3753 

 
1226.9779 
1210.3473 
1183.9476 
1154.1417 

 

휽 
 
 
 
 
휶 
 
 
 
 
휷 
 
 
 
 
풑 
 
 
 
 
푯 
 
 
 
 
푫 
 
 

 

  +50 
  +20 
   -20 
   -50 
 
  +50 
  +20 
   -20 
   -50 
 
  +50 
  +20 
   -20 
   -50 
 
  +50 
  +20 
   -20 
   -50 
 
  +50 
  +20    
   -20 
   -50 
 

    +50               +20
   -20 
   -50 
 

4 
4 
4 
4 
 
5 
4 
3 
3 
 
4 
4 
4 
3 
 
4 
4 
4 
3 
 
6 
5 
3 
2 
 
5 
4 
4 
3 

.5475834 

.5509014 

.5552409 

.5584599 
 

.5914344 

.5645987 

.5303698 

.5156198 
 

.6210305 

.5810555 

.5244330 

.4672716 
 

.6443865 

.5922353 

.5102616 

.4274699 
 

.5028996 

.5340573 

.5718835 

.6028562 
 

.1070023 

.3769398 

.7528545 

.9668432 

2.500 
2.500 
2.500 
2.500 
 
2.000 
2.500 
3.333 
3.333 
 
2.500 
2.500 
2.500 
2.500 
 
2.500 
2.500 
2.500 
3.333 
 
1.667 
2.000 
3.333 
5.000 
 
2.000 
2.500 
2.500 
3.333 

1198.1102 
1197.9078 
1197.7678 
1197.8435 

 
1727.0230 
1409.8926 
 981.4049 
 653.6931 

 
1298.8876 
1237.1151 
1160.1231 
1100.0447 

 
1633.3269 
1373.2175 
1020.4208 
 747.3073 

 
1556.1704 
1355.8585 
1018.1159 
  703.0042 

 
1399.5156 
1311.2037 
1037.0362 
  712.4741 

 
A careful study of Table IV reveals the following: 
 
(i) It is seen that the reorder number 푛 and the scheduling 

period  푇 are both almost insensitive to changes in any of 
the parameters. 

 
(ii) 퐾 is highly sensitive to changes in the values of 푝 and	퐷. 

퐾 increases (decreases) with increase (decrease) of 푝. On 
the other hand, 퐾  decreases (increases) with increase 
(decrease) of  퐷.  퐾 is moderately sensitive to changes in   

 

푟, 푖 ,퐶 ,퐶 ,훼,훽		and	퐻;  and is almost insensitive to 
changes in the parameters 휃, 푖 ,퐶 ,퐶 	and	퐴. 

 
(iii) 	The system cost 퐶∗  is almost insensitive to changes in 

퐶 ,퐶  and 휃 ; it is moderately sensitive to changes in 

푖 , 	퐶 ,퐶 , 훽		and	퐴  whereas it is highly sensitive to 
changes in 푖 , 푟,훼, 푝,퐻	and	퐷. 
 

VII. CONCLUSION 
 

In the present paper, we have considered an inventory model 
for a deteriorating item with stock-dependent demand rate and 
shortages in all cycles. The effects of inflation and time-
discounting of money have been incorporated into this model. 
The limiting case of this model when there is no deterioration 
is also studied. We have reconsidered the inventory model 
developed by Ray and Chaudhuri [22] for a non-deteriorating 
item with shortages in all cycles except the last one. On 
comparing the optimal result of this model with that of the 
limiting case of the present model (i.e. in the case of no 
deterioration), we see that the system cost reduces 
considerably. This proves that allowing shortages in all    
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cycles is advantageous. The present model also shows that the 
system cost decreases due to physical decay or deterioration  
of goods over time. Apparently, the system cost should 
increase for a deteriorating item if shortages are not allowed. 

Here the system cost decreases even after incorporating the 
deterioration factor because shortages are allowed in all 
cycles. Lastly, the sensitivity of the optimal solution to 
changes in different parameter values has been discussed. 

 
APPENDIX - I 

The holding cost over the period [(푗 − 1)푇, 푗푇], 
푗 = 1,2, … . . , 푛		is given by 퐻 = 퐼 + 퐼  

where  												퐼 = 퐶 ∫ {푡 − (퐾 + 푗 −( )

1)푇}훼푖 푒 푑푡 

= 퐶
훼
휃

( )
	 {푡 − 푙} 푒 ( )( ) − 1 푒 푑푡 

where 휃 ≠ 0, 푙 = (퐾 + 푗 − 1)푇	  
푎푛푑	푅 = 푟 − 푖 	(푚 = 1,2). 

 
 

APPENDIX - II 

The shortage cost during [(푗 − 1)푇, (K + 푗 − 1)푇], 
푗 = 1,2, … . . , 푛  is given by 퐺 = J + J  

where  											퐽 = 퐶 ∫ {(퐾 + 푗 − 1)푇 −( )
( )

	푡}퐷푒 푑푡 

=
퐷퐶
푅 푒 ( ) [푒 + R KT− 1],푚 = 1,2. 

During  shortage period, there are no items in the stock and 
therefore, the question of deterioration does not arise. 
 

APPENDIX - III 

The total cost of purchasing at time  t = 	 (K + 푗 − 1)푇  for the 
periods [(푗 − 1)푇, (K + 푗 − 1)푇]		and  [	(K + 푗 − 1)푇, j푇],	 
	푗 = 1,2, … . . ,푛    is given by 

푃 = 푝푒 ( ) 퐷

( )

( )

푑푡 + 훼푖
( )

푑푡  

=

푝푒 ( ) 퐷퐾푇 + ( ) + ∫ 푒 ( )( ) −( )

1 푑푡 	  where	θ ≠ 0. 

 
 
 

APPENDIX - IV 

There are  푛 replenishments in the entire time horizon 퐻 and 
hence the total replenishment cost  (with /without  
deterioration) is given by 

퐶 = 퐴 푒( )( )  

= 퐴푒 ( ) ∑ 푒 	 	푤ℎ푒푟푒	푅 = 푟 − 푖 . 
On summation and simplification, we get 

  				퐶 =  . 

APPENDIX - V 

The number of items deteriorated during the 푗  replenishment 
cycle is 

퐷 = 휃	푖(푡)
( )

푑푡, 푗 = 1,2, … . , 푛 

=
훼
휃 푒 ( )( ) − 1

( )
푑푡,

푤ℎ푒푟푒	휃 ≠ 0. 
 

APPENDIX - VI 

lim
→
퐶(푛,퐾) = 퐶 훼 (푡

− 푙)	 푒 lim
→

푒 ( )( ) − 1
휃

푑푡 

+
퐷퐶
푅 푒 ( ) {푒 + 푅 퐾푇 − 1} 

+ 푝 푒 ( ) 퐷퐾푇

+ 훼 lim
→

푒 ( )( ) − 1
휃 푑푡

+
퐴푒 (1− 푒 )

(1 − 푒 )  

= 퐶 훼(1 − 훽) (푡

− 푙)푒 (푗푇 − 푡) 푑푡 

+
퐷퐶
푅 푒 ( ) {푒 + 푅 퐾푇 − 1} 

+ 푝 푒 ( ) 퐷퐾푇

+ 훼(1− 훽) (푗푇 − 푡) 푑푡

+
퐴푒 (1− 푒 )

(1 − 푒 )  
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where, lim
→

푒 ( )( ) − 1
휃

= lim
→

(1− 훽)(푗푇 − t)푒 ( )( )

1
= (1 − 훽)(푗푇 − 푡) 

																																[by	applying	퐿 퐻표푠푝푖푡푎푙 푠		푅푢푙푒] 
Again taking the limit, 휃 → 0 on both sides of equation (13), 
we obtain the necessary condition for the system cost 퐶 to be 
minimum when there is no deterioration, as follows: 

푇 퐶 훼 lim
→

푒 ( )( ) − 1
휃

푒 푑푡

− lim
→

퐷퐶 푇
푅

(1 − 푒 ) 

− 푇푝푒 ( ) lim
→
퐷

− 훼 lim
→

푒 ( )( ) − 1
휃  

+ 푝푅 푇푒 ( ) lim
→
퐷퐾푇

+ 훼 lim
→

푒 ( )( ) − 1
휃 푑푡  

+ lim
→

퐴푅 푇푒 (1 − 푒 )
(1 − 푒 )

− 푇푝훼 lim
→

푒 ( )( ) − 1 휃
휃 = 0. 

i.e.,   ∑ ∑ 푇퐶 훼(1 − 훽) ∫ (푗푇 −

푡) 푒 푑푡 − (1 − 푒 )  
 

− 푇푝푒 ( ) 퐷 − 훼(1− 훽) (푗푇 − 푡)

+ 푝푅 푇푒 ( ) 퐷퐾푇

+ {훼(1− 훽)(푗푇 − 푙)}

+
퐴푅 푇푒 (1− 푒 )

(1− 푒 ) = 0 

since,			 푙푖푚휃 → 0
( )( )

= (1 − 훽)(푗푇 − 푡)  and the last 

term vanishes as 0 < 훽 < 1. 
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