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Abstract

The root system of plant uptake water and nutrient
from the soil. The present paper explain systematic
description of mathematical expression for water
profile surrounding the root surface in porous soil,
in root surface, i.e, in cortex tissues, and in stem,
i.e., in xylem tune while root uptake water from
the soil. We use basic principles of physics and
fluid-dynamics of water flow. Tiny xylem tubes as
water transport channel in the stem, root surface
work as semipermeable membrane and soil is consid-
ered as porous medium. We resolve mathematical
model of water profile using variety of boundary
conditions by analytically. As new approach, we
obtain water profile surrounding the root surface
by using constant internal pressure in the root as
boundary condition and we solve radial diffusion
equation by using Goodman integral transformation
and separation of variables.
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1 Introduction

The primary physiological function of root is uptak-
ing the water as well as nutrients and transport to
leaves for photosynthesis. Investigations and obser-
vation of the uptake of water and nutrient in plant
root and stem can be traced back to many years ago,
it possesses importance in point of view of agricul-
tural production and economical development. Plant
uptake water and nutrient simultaneously. In tra-
ditional farming like planting and agricultural the
mechanism of water and nutrients is invaluable for
utilizing water and fertilizer for increasing produc-
tion. Now a new trend of planting inedible plant
emerge on industrial basis. The view of planting
inedible plant are prevent the salinization, deserti-
fication of soil, to clean pollution of heavy metals,
radioelement and plant’s mining. To collect the valu-
able metals, like gold, in soil by planting some plants
whose roots possess a special capability of absorb-
ing the valuable metals. The plant of genus Bauhina
have many species out of which Bauhinia variegata
plant extract is analysed and found it contain micro-
particles of gold [18]. Since ancient times Bauhinia
racemosa Lam. family: Caesalpinaceae has been an
integral part of life in India. Leaves of Bauhinia race-
mosa are traditionally used on occasion of Dashera
festival as symbol of gold in India [5]. Recently proved
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that Bauhina racemosa extract also contain micro
particles of gold.
Water enters into root through root surface from the
soil.Then it flow through micro-tube of xylem in the
stem to rich leaves and being vaporized into air from
the pores on leaves. The transport of water in plant
can affect the water flow in soil, and vice versa. Then
study of Mathematical model for plant water uptake
divides into the parts: (1) the flow of water in the
porous soil (2) water flow into root through root sur-
face (3) flow of water through micro-tube of xylem
(4) vaporization of water through leaves.
In recent years, a number of researchers from various
fields, such as physics, applied mathematics and plant
physiology, paid more attention to develop mathe-
matical model for water and nutrient uptake. The
outstanding work in this field is done by T.Roose and
proposed a mathematical model for uptake of water
and nutrient. Roose work is development of Nye, Tin-
ker and Barber model for water and nutrient uptake
assuming that the root is an infinitely long cylinder
[4][13]. Before this model many root water uptake
model like, a linear root water uptake model ( Prasad,
Rama 1988 ) [11], CERES ( Ritche, 1985) [12] and
SWAP (Van Dam et al, 1997) [17] was developed. In
point of view of above discussion it important to de-
velop mathematical model of water profile in porous
soil, in root surface and in xylem for further study of
ability for survival of plant in different soils. Also it
is important to obtain solutions for differential model
of water profile in different situation.

2 Flow of water in porous soil

In 1856 Henry Darcy make experiment and concluded
that, rate of flow ( i.e. volume of water per unit time),
Q is (a) proportional to the cross-sectional area A, (b)
proportional to (h1 − h2), the lengths h1 and h2 are
measured with respect to some arbitrary datum level
and (c) inversely proportional to the the length L [1].

Q = K
A(h1 − h2)

L
. (1)

Where K is a coefficient of proportionality which is
known as soil hydraulic conductivity. Equation (2.1)
is known as Darcy formula. Specific discharge, u as
the volume of water flowing per unit time through
a unit cross-sectional area normal to the direction of

flow, i.e., u = Q
A , we obtain

u = KJ. (2)

Where J = (h1−h2)
L in one dimension. In three di-

mension the generalization of equation (2.2) is given
by

u = KJ = −Kgrand φ = −∇φ. (3)

The average areal porosity is equal to the volumetric
porosity n, the portion of the area A available to flow
is nA. The average velocity V of flow is given by

V =
Q

nA
=

u

n
. (4)

Another form of Darcy formula is in term of specific
discharge, i.e., Darcy flux is written as

u = −k
µ

(grand p− ρg). (5)

Where K = kρg
µ , µ is dynamic viscosity of fluid, ρ = γ

g
is the density of the fluid, γ is specific weight of water
and g is gravitation, k is the medium’s permeability
and g = −glz is the vector gravity acceleration di-
rected downward. If fluid is not compressible then
the ∇u = 0.
The equation for the conservation of water in the soil
with no water sink is given by [13],

∂φl
∂t

+∇.u = 0. (6)

Where u is given by,

u = −k
µ

[∇p− ρgk̂]. (7)

The k soil permeability is just differ from hydraulic
conductivity K by scaling factor which is given by,

K =
kρg

µ
(8)

Where ρg present the density of water and gravity. If
soil is saturated then we have ρgk̂ = 0 therefore the
Darcy flux is given by u = − k

µ [∇p]. However, the
conductivity of unsaturated soil is determined from
experiments in terms of effective water saturation,
where effective water saturation S is defined as

S =
φl − φl,r
φl,s − φl,r

(9)
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Where φl is the moisture content of the soil, φl,r is
the residual (minimum) moisture content of the soil
and φl,s is the saturated moisture content of the soil,
i.e. the soil porosity. Van Genuchten drive a formula
for the soil hydraulic conductivity as a function of soil
moisture content and porosity which is given by [10]

K = KsS
1/2[1− (1−S1/m)m]2 for 0 < m < 1. (10)

Where Ks is the hydraulic conductivity of fully
saturated soil. In addition to deriving the soil hy-
draulic conductivity formula (2.10), he also presents
a formula for the suction characteristic. He uses the
pressure head h suction −p > 0 can be written in
terms of pressure head, .i.e., −p = −ρgh. Hence we
have
S = [ 1

1+(α|h|)n ]m = [ 1
1+[ α

ρg
(−p)]n ]m, m = 1− 1

n ,

0 < m < 1. (11)

Where α is a fitting parameter that can be inversely
linked to the bubbling pressure.
We write equation (2.6) of conservation of water in
the soil in terms of relative moisture content S us-
ing the full van Genuchten formulas, then we get the
following nonlinear diffusion-convection equation

(φl,s − φl,r)
∂S

∂t
= ∇.(D(S)∇S)− ρg

µ

dk

dS

∂S

∂z
. (12)

Where D(S) is called the soil water diffusivity and it
is defined as
D(S) = k(S)

µ |
∂p
∂S | =

ksρg
µ ×

(1−m)
αm S1/2−1/m

[(1− S1/m)−m + (1− S1/m)m − 2]. (13)

and
dk(S)
dS = ks[

1
2S
−1/2[1− (1− S1/m)m]2 + 2S(−1/2+1/m)

[1− (1− S1/m)m](1− S1/m)(m−1)]. (14)

Where ks is soil permittivity.
Range of validity
In the flow through conduits, the Reynolds number,
Re, which is dimensionless number expressing the ra-
tio of inertial to viscous forces acting on the fluid,
is used as a criterion to distinguish between laminar
flow occurring at low velocities and turbulent flow oc-
curring at higher velocities. By analogy, a Reynolds
number is defined also for flow through porous media
[1]

Re =
ud

v
(15)

Where d is some representative length of the porous
matrix and v is the kinematic viscosity of the fluid.
Practically all evidence indicates that Darcy’s law is
valid as long as the Reynolds number does not exceed
some value between 1 and 10. There the equation
(2.12) valued as long as Darcy’s law obeys, .i.e., for
Reynolds number value less than 1 flow will be at very
low pressure gradients through low-permeability sed-
iments, also for Reynolds number value greater than
10 there will be large flows through high permeability
gradients.

3 Water flow through root surface
inside the root

Water flow through root surface, then there will be
change in water pressure, which serve as boundary
condition in equation of water conservation in the
root. The root surface membrane work as semiper-
meable membrane represents the water movement
path across the cortex to the xylem. The rate of
water uptake by plant roots per unit surface area
Jw[cm3cm−2s−1] is given by [9][13]

Jw = kr(∇P − σ∆Π). (16)

Where kr is the speed of water flow through the root
surface membrane per unit difference in water pres-
sure on either side of the membrane, ∇P is the hy-
draulic water pressure across the membrane, σ is the
reflection which give relation between osmotic pres-
sure to hydrostatic and ∆Π is the osmotic pressure
difference across the membrane.
Neglecting the osmotic pressure effects on water up-
take by plant roots and D is the water diffusivity
in cortical tissues, then for a root surface membrane
with the inner boundary at ax and an outer boundary
at the root surface a, the water pressure distribution
inside this membrane is given by a solution to the
equation

∂pm
∂t

=
D

r

∂

∂r
(r
∂pm
∂r

). (17)

With boundary conditions given for example by pm =
p on r = a and pm = pr at r = ax , where pm is the
water pressure in the root cortex tissues, p is the wa-
ter pressure at the root surface and pr is the water
pressure in the xylem.
Non-dimensionalising the above equation with typi-
cal timescale [t] and root radius a, we find that the
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dimensionless problem becomes

a2

D[t]

∂pm
∂t

=
1

r

∂

∂r
(r
∂pm
∂r

). (18)

With

pm = p on r = 1 and pm = pr at r = ax/a = rx.
(19)

For small order radius, water pressure distribution
profile is at pseudo steady state, i.e., the time deriva-
tive term in the equation (3.3) is small, and the steady
state solution is given by [7]

pm =
p− pr
−ln(rx)

ln(r) + p (20)

≈ p− pr
1− rx

(r − 1) + p for rx < r < 1.

Hence, in dimensional terms the flux of water through
the unit of root surface area is given approximately
by

D
∂pm
∂r
|r=a =

D

a− ax
(p− pr) (21)

Where kr = D/(a − ax) is generally known as a
root surface membrane hydraulic conductivity. Using
boundary condition equation (3.6) at the root surface,
we can be written as

k(S)

µ

∂p

∂r
= kr(p− pr), at r = a. (22)

Where k(S) is the soil water permeability, kr is the
radial conductivity of root surface membrane, p is the
water pressure in the soil, pr is the water pressure in
the root xylem and a is the radius of the root.

4 Flow of water in stem from root
to leaves through the xylem lon-
gitudinally upwards direction

Interior parts of root is made of macro tubes of xylem
with average radius rm. Assume that the number of
the micro-tubes is N . The total area cross-section
of the micro tubes can be written as Nπr2m = πR2.
We assume that the water path effectively by a single
tiny circular tube with the radius R. Water motion
in the interior of root is described by one dimensional
Poiseuille flow along the pipe with variable cross sec-
tion area of radius r [2][13].

µ∇2u = ∇p− ρgk̂. (23)

Where u is water velocity profile with non-slip bound-
ary condition which is given by

u(r, z) =
r2 −R2

4µ
[
∂pr
∂z
− ρg]. (24)

The total flux of water passing upwards through the
cross section at the level z is given by

q = −πR
4

8µ
[
∂pr
∂z
− ρg]. (25)

Let kx = πR4

8µ , then equation (4.3) becomes

q = −kx[
∂pr
∂z
− ρg]. (26)

Where kx is xylem conductivity.

5 Model for conservation of water
inside of the root xylem

We consider a unit length of the root and assume that
there is balance between water flow through the root
surface membrane and upward in the xylem tubes.
Then mass conservation law yields [2][8][13],

2πakr(p− pr) =
∂q

∂z
. (27)

Where a is the radius of the root and q is the longi-
tudinal flux of water. Substituting the value of (4.4)
in equation (5.1), then we get an ordinary differential
equation for pr as a function of z, i.e.,

2πakr(p− pr) = −kx
∂2pr
∂z2

. (28)

Which we can solve, subject to boundary conditions

pr = T at z = 0, and
∂pr
∂z

= 0 at z = L. (29)

Where T is the average pressure at the top of the root,
i.e, at the root-shoot boundary and L is the length of
the root.

6 Model for conservation of water
inside of the root xylem if sur-
rounding soil water pressure is
constant

Suppose the root surrounded by water in porous
medium are at constant pressure, i.e., p=P, then wa-
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ter pressure equation in the root system is

2πakr(P − pr) = −kx
∂2pr
∂z2

. (30)

Non-dimensionalise the equation (6.1) with

z = Lz∗ and pr = Tp∗r . (31)

Where z∗ and p∗r are the dimensionless length and
pressure respectively. The dimensionless equation
(6.2) becomes with dropping ∗ becomes

κ2(P0 − pr) = −∂
2pr
∂z2

. (32)

With dimensionless boundary condition (5.3) be-
comes

pr = 1 at z = o and
∂pr
∂z

= 0 at z = 1. (33)

Where P0 = P
T and κ2 = 2πakrL2

kx
are the dimension-

less water uptake coefficients. Solution of equation
(6.3) with boundary conditions (6.4) is given by
pr = P0 + 1

2 [(P0 − 1)]tanh(κ)− P0 + 1]eκz

+
1

2
[−(P0 − 1)tanh(κ)− P0 + 1]e−κz. (34)

7 Model for water flow in the
surrounding of the root in the
soil considering constant root in-
ternal pressure as root surface
boundary condition

Water flow in soil given by equation (2.12) can be
written in cylindrical radial co-ordinates form with
boundary condition (3.7) is given by [14]

(φl,s − φl,r)
∂S

∂t
=

1

r

∂

∂r
(D(S)r

∂S

∂r
). (35)

With boundary condition

S = S∞, a ≤ r ≤ r∞, t = 0,

D(S)
∂S

∂r
= kr[p(S)− Pr] at r = a, t > 0,

S → S∞, r → r∞, t > 0. (36)

Where Pr is the constant pressure inside the root and
D(S) = ksρg

µ ×
(1−m)
αm S1/2−1/m[(1− S1/m)−m

+(1− S1/m)m − 2]. (37)

p(S) = −ρg
α

(S−1/m − 1)1/n. (38)

We non-dimensionalise this model with choice of
time, radius and pressure in new scales as follows

t = [t]t∗ =
(φl,s − φl,r)αma2µ

(1−m)ksρg
t∗, r = ar∗, p =

ρg

α
p∗.

(39)
And the dimensionless model with boundary condi-
tion becomes by dropping ∗

∂S

∂t
=

1

r

∂

∂r
(D(S)r

∂S

∂r
). (40)

S = S∞, 1 ≤ r ≤ r∞/a, t = 0,

D(S)
∂S

∂r
= λw[p(S)− Pr] at r = 1, t > 0,

S → S∞, r →
r∞
a
, t > 0. (41)

Where
D(S) = S1/2−1/m[(1− S1/m)−m + (1− S1/m)m − 2],

p(S) = −(S−1/m − 1)1/n. (42)

And dimensionless parameters are

λw =
krρgma

(1−m)Ks
with Ks =

ksρg

µ
and pr =

Prα

ρg
.

(43)
We solve the equation (7.6) with boundary condition
(7.7) by using Goodman integral transformation and
obtain the solution in term of Bessel’s function, use
integral transform as follows [16]

ψ =

∫ S∞

S
D(S)dS. (44)

Then the above equation (7.6) with boundary condi-
tion is transform as

1

D(S)

∂ψ

∂t
=

1

r

∂

∂r
(r
∂ψ

∂r
). (45)

ψ = 0, 1 ≤ r ≤ r∞/a, t = 0,

∂ψ

∂r
= λw[p(S)− Pr] at r = 1, t > 0,

ψ = o; at r =
r∞
a
, t > 0. (46)

Solution of the equation (7.11) is of the form

ψ(r, t) = ψ1(r) + ψ2(r, t). (47)
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Where
ψ1(r) = c1logr + c2. (48)

Differentiating equation (7.14) we have

∂ψ

∂r
=
c1
r
. (49)

Substitute the boundary conditions of system (7.12)
into (7.15) and rearranging, yields, then we have

c1 = λw[p(S)− pr]. (50)

c2 = −λw[p(S)− pr]
logr∞
a

. (51)

Then the solution (7.14) is written as

ψ1 = λw[p(S)− pr]logr − λw[p(S)− pr]
logr∞
a

. (52)

ψ1 = λw[p(S)− pr]log
r

r∞/a
. (53)

Assume that;
ψ2 = R(r)r(t). (54)

Substitute equation (7.20) into equation (7.11) and
using the method of separation of variables, then re-
arranging yields [3];

R(r) = c1J0(λr) + c2Y0(λr). (55)

r(t) = c3e
λ2D(S)t. (56)

Substitute value (7.19), (7.21) and (7.22) into equa-
tion (7.13) yields;
ψ(r, t) = [λw[p(S)− pr]log r

r∞/a
]

+[c1J0(λr) + c2Y0(λr)]c3e
λ2D(S)t. (57)

To estimate the value of (λ), substitute the boundary
condition of system (7.12) into equation (7.23) and
rearranging yields;
c2 = −c1 J0(λr∞/a)Y0(λr∞/a

),
J0(λ)
Y0(λ)

= J0(λr∞/a)
Y0(λr∞/a)

⇒ J0(λ)
J0(λr∞/a)

= Y0(λ)
Y0(λr∞/a)

= σ,

J0(λn)Y0(λnr∞/a)− J0(λnrλ/a)Y0(λn) = 0. (58)

The values of (λn) represent the roots of equation
(7.24), where (n = 1, 2, 3, ...,∞). Assume

U0(λnr) = J0(λnr)Y0(λnr∞/a)−J0(λnr∞/a)Y0(λnr).
(59)

Substitute the initial conduction of system equation
(7.12) into equation (7.23) and use equation (7.25),

then rearranging, yields;
c1c2U0(λnr) = Y0(λnr∞/a)[−λw[p(S)− pr]log r

r∞/a
],

f(r) = Y0(λnr∞/a)[−λw[p(S)− pr]log r
r∞/a

].
Hence
f(r) = c1U0(λ1r) + c2U0(λ2r) + c3U0(λ3r) + ...

=
∞∑
n=1

cnU0(λnr). (60)

Multiply equation (7.26) by [rU0(λmr)] and integrate
the result over the integral [1, r∞/a] with the assump-
tion that the integral of the infinite sum is equivalent
to the sum of the integration we have∫ r∞/a
1 rf(r)U0(λmr)dr

=
∞∑
n=1

∫ r∞/a

1
rU0(λmr)U0(λnr)dr. (61)

All the terms on the right hand side of equation (7.27)
equals zero, except when (m=n), hence;

cn =

∫ r∞/a
1 rf(r)U0(λnr)dr∫ r∞/a

1 rU2
0 (λnr)dr

. (62)

The denominator of equation (7.28) is estimated as
follows, [18]∫ r∞/a

1
rU2

0 (λnr)dr =
2[J2

0 (λn)− J2
0 (λnr∞/a)]

π2λn2J2
0 (λn)

.

(63)
To estimate the numerator of equation (7.28), the
following are used, [6]∫ r∞/a
1 rU0(λnr)dr = 2[J0(λn)−J0(λnr∞/a)]

πλ2nJ0(λn)
,∫ r∞/a

1 rln(r)U0(λnr)dr = 2[J0(λn)]ln(r∞/a)
π λ2nJ0(λn).

Hence∫ r∞/a
1 rf(r)U0(λnr)dr

=
2

πλ2n

[Y0(λnr∞/a)][−J0(λnr∞/a)]

J0(λn)
. (64)

Substituting equation (7.29) and (7.30) into (7.28)
yields:

cn =
π[Y0(λnr∞/a)][−J0(λnr∞/a)][J0(λn)]

[J2
0 (λn)− λ20(λnr∞/a)]

. (65)

Substitute equation (7.31) into (7.23) and rearranging
yields;
ψ(r, t) = [λw[p(S)− pr]log r

r∞/a
]

−
∞∑
n=1

π[J0(λnr∞/a)][Jo(λn)]

[J2
0 (λn)− J2

0 (λnr∞/a)]
U0(λnr)e

λ2D(S)t. (66)
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Hence solution of equation (7.6) is given by∫ S∞
S D(S)dS = [λw[p(S)− pr]log r

r∞/a
]

−
∞∑
n=1

π[J0(λnr∞/a)][Jo(λn)]

[J2
0 (λn)− J2

0 (λnr∞/a)]
U0(λnr)e

λ2D(S)t. (67)

Time independent form of equation (7.1) can also
written in term of relative water saturation in the
soil [15]. The equation for conservation of water in
the soil is thus

φ
∂S

∂t
+∇.u = −Fw. (68)

Where φ is the (constant) porosity of the soil, S is the
relative water saturation in the soil i.e., S = φl/φ,
where φl is the volumetric water fraction, u is the
volume flux of water, i.e., Darcy flux and Fw is the
uptake of water by plant roots. Consider value of u
given in equation (2.7) with equation (2.10). Also
the water pressure in the soil pores can be linked to
the relative water saturation via suction characteris-
tic [10],

pa − p = pcf(S), f(S) = (S−1/m − 1)1−m. (69)

Where pa is atmospheric pressure, and pc is a charac-
teristic suction pressure. It is common to take pa = 0.
Then the Darcy-Richards equation in terms of rela-
tive water saturation only, it is written as

φ
∂S

∂t
= ∇.[DoD(S)∇S −KsK(S)k̂− Fw]. (70)

Where the water diffusivity in the soil is D0D(S) =
k
µ
∂p
∂S , D0 = pcks

µ (1−mm ) and

D(S) = S1/2−1/m[(1− S1/m)−m + (1− S1/m)m − 2].
(71)

Also equation (2.8) can be written as follows

Ks =
ρgks
µ

. (72)

Equation (7.36) are studied with boundary condi-
tion at soil surface and at the base of soil layer. If
amount of water is flowing due to rainfall, then we
take boundary

−D0D(S)
∂S

∂z
= qs, at z = 0. (73)

Where qs is the volume flux of water per unit soil
surface area per unit time. If surface pounding occur,

then the boundary condition will be S = 1 at z = 0.
The boundary condition at base of soil layer is written
as

−D0D(S)
∂S

∂z
+KsK(S) = 0, at z = lw. (74)

The model for water uptake of a single cylindrical
root in cylindrical radial co-ordinates is written as

φ
∂S

∂r
=

1

r

∂

∂r
(D0D(S)r

∂S

∂r
). (75)

With boundary conditions

D0D(S)
∂S

∂r
= kr[p(S)− pr] at r = a,

∂S

∂r
= 0 at r = aint. (76)

Where
p(S) = −pc(S−1/m − 1)1−m, (77)

a is the radius of the root, aint is a measure of inter
branch distance, kr is root radial conductivity and pr
is the root internal pressure, P ≤ pr ≤ p(S) .
We take the far-field soil water content, i.e., effective
water saturation is S∞ which is constant. Then the
far-field boundary condition is given by
S →∞ as r →∞.
Non-dimensionalizing this model with r = a, t =
φa2/D0 and pr = |P |,

∂S

∂t
=

1

r

∂

∂r
[rD(S)

∂S

∂r
]. (78)

With boundary conditions

D(S)
∂S

∂r
= λ[−ε0f(S)− pr] at r = 1,

∂S

∂r
= 0 at r = aint. (79)

Where λ = kra|P |/D0 and ε = pc/|P |.
The far-filed boundary condition is still
S →∞ as r →∞.
Solution of equation (7.44) is given by [13] for outer
region far away from the root

S = S∞ + s = S∞ +BE1(
r2

4tD(S∞)
). (80)

Where S(r, t) = S∞ + s(r, t). For inner region near
the root solution is given by

S = S∞ + s1 +
λw[p(S∞ − pr)]

D(S∞)
lnr. (81)
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Where s1 = −λw[p(S∞−pr)]
2D(S∞) ln[4e−γD(S∞)t+ 1].

Also we have the dimensional expression for water up-
take by root from soil given in equation (7.34) which
is written as [7],

Fw = 2φaldkr[−pcf(S)− pr]. (82)

Where ld is the root length density.

8 Discussion

Henry Darcy studied the flow of water in porous
soil experimentally. For water flow in unsaturated
soil, the effective water saturation is defined in terms
of saturation soil contempt. Van Genuchten write
conductivity, in terms of effective water saturation.
Minimal moisture contempt is considerable if soil is
unsaturated and if saturation reaches in short time,
then problem is studied as time dependent initial and
boundary value problem. If soil is nearly about sat-
urated then the saturation soil contempt is nearly
equal to porosity. Then the effective water saturation
is equivalent to relative water saturation and problem
is studied as time independent boundary value prob-
lem. Formula of effective water saturation reduces
to relative water saturation just taking φl,r ≈ o. The
boundary condition for water flow, from soil to xylem
is the water pressure in the root surface which contain
cortex tissues, which work as semipermeable mem-
brane having inner and outer radius. Therefore the
water pressure at the inner radius of cylindrical root
is the water pressure for flow of water from root to
leaves through the stem.The equation of water flow
through the stem is same as Poiseuille flow. We con-
sidered root as cylinder and calculated conservation
of water in the root by flow of water through root
surface considering water pressure in the soil is con-
stant. Also we derived the water profile surrounding
root surface in porous soil considering root having
constant internal pressure as boundary condition.
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