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Abstract 

The present paper is concerned with the reflection and transmission of elastic waves from a plane surface separating liquid half 
space and fluid saturated incompressible porous half space when longitudinal wave (P-wave) or transverse wave (SV-wave) 
impinge obliquely at the interface. Amplitude ratios of various reflected and transmitted waves are obtained. These amplitude 
ratios have been computed numerically for a specific model and results obtained are depicted graphically with angle of incidence 
of incident wave.  It is found that these amplitude ratios depend on angle of incidence of the incident wave and material 
properties. A particular case of reflection at free surface of fluid saturated porous half space has been deduced and discussed. A 
special case in which fluid saturated porous half space reduced to empty porous solid is obtained and discussed from the present 
investigation.   

Keywords: Porous solid, reflection, refraction, longitudinal wave, transverse wave, amplitude ratios.  

1. Introduction 

Based on the work of Fillunger model (1913), Bowen (1980) and de Boer and Ehlers 
(1990a, 1990b) developed an interesting theory for porous medium having all constituents to be 
incompressible. There are sufficient reasons for considering the fluid saturated porous 
constituents as incompressible. For example, consider the composition of soil in which the solid 
constituents as well as liquid constituents which are generally water or oils are incompressible. 
Therefore, the assumption  of incompressible  constituents meet the properties  appearing the in 
many branches  of engineering. 

Based on this theory, many researchers like de Boer and Liu (1994, 1995), de Boer and 
Liu (1996), Liu (1999), Yan et.al. (1999), de Boer and Didwania (2004), Tajuddin and Hussaini 
(2006), Kumar and Hundal (2007), Kumar et.al. (2011) etc. studied some problems of wave 
propagation in fluid saturated porous media.  

In the present paper, using the theory of de Boer and Ehlers (1990b) for fluid saturated 
porous medium, the reflection and transmission phenomenon of plane waves at an interface 
between liquid half space and fluid saturated porous half space is studied. Amplitude ratios of 
various reflected and transmitted waves have been obtained using suitable boundary conditions 
at the interface and computed numerically for a specific model. The results obtained are depicted 
graphically with the angle of incidence and discussed. Reflection at free surface of fluid 
saturated porous half space is also derived as a particular case of the problem. A special case in 
which fluid saturated porous half space reduced to empty porous solid is also obtained and 
discussed with the help of graphs from the present investigation.     
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2. Basic equations and their solutions 

2.1 For medium ۻ૚ (Fluid saturated incompressible porous medium) 

Following de Boer and Ehlers (1990b), the governing equations in a fluid-saturated 
incompressible porous medium are  

										div(ηୗ̇ܠୗ + η୊̇ܠ୊) = 0.																																																																																																																						(1) 

										div܁۳܂ − ηୗ	grad	p + ρୗ(܊ − (ୱܠ̈ − ۳۴۾

= 0,																																																																																	(2) 

										div۳۴܂ − η୊	grad	p + ρ୊(܊ − (୊ܠ̈ + ۳۴۾ = 0,																																																																																(3) 

where  ̇ܠ୧ and ̈ܠ୧  (i = S, F) denote the velocities and accelerations, respectively of solid (S) and fluid (F) 
phases of the porous aggregate and p is the effective pore pressure of the incompressible pore fluid. 	ρୗ 
and ρ୊are the densities of the solid and fluid phases respectively and b is  the body force per unit 
volume. ۳۴܂		and	܁۳܂	 		  are the  effective stress in the solid  and fluid phases  respectively, ۳۴۾  is the 
effective quantity of momentum supply and 	ηୗ and η୊ are the volume fractions satisfying 

 
											ηୗ + η୊ = 1.																																																																																																																																																								(4) 

If  ܝୗ and ܝ୊ are the displacement vectors for solid and fluid phases, then 

											ẋୗ = ୱܠ̈				,Sܝ̇ = sܝ̈ ୊ܠ̇				, = ୊ܠ̈					,Fܝ̇ =  (5)																																																																																														F.ܝ̈

The constitutive equations for linear isotropic, incompressible porous medium are given by de Boer, 
Ehlers and Liu (1993) as 

܁۳܂										 = 2µୗ۳ୗ + λୗ(Eୗ. ۷)۷,																																																																																																																																		(6) 

۳۴܂											 = 0,																																																																																																																																																	(7) 

۳۴۾										 = Fܝ̇)v܁− −  (8)																																																																																																																																								S),ܝ̇

where λୗ  and µୗ are the macroscopic Lame’s parameters of the porous solid and  ۳ୗ  is the linearized 
Langrangian strain tensor defined as  

										۳ୗ =
1
2
൫grad	ܝୗ

+ grad୘ܝୗ൯,																																																																																																																										(9) 

In the case of isotropic permeability, the tensor ܁୴ describing the coupled interaction between the solid 
and fluid is given by de Boer and Ehlers (1990b) as 

୴܁										 =
൫η୊൯ଶγ୊ୖ

K୊ ۷,																																																																																																																																															(10) 
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where  γ୊ୖ is the specific weight of the fluid  and K୊ is the Darcy’s permeability coefficient of the porous 
medium. 

Making the use of (5) in equations (1)-(3), and with the help of (6)-(9), we obtain 

										div(ηୗ̇ܝୗ + η୊̇ܝ୊) = 0,																																																																																																																			(11) 

										൫λୗ + µୗ൯grad	div	ܝୗ + µୗdiv	grad	ܝୗ − ηୗgrad	p + ρୗ(܊− (ୱܝ̈ + S୴(̇ܝ୊ − (ୗܝ̇ = 0,																(12) 

								−	η୊grad	p + ρ୊(܊ − (୊ܝ̈ − S୴(̇ܝ୊ − (ୗܝ̇ = 0.																																																																																										(13) 

For the two dimensional problem, we assume the displacement vector ܝ୧		(i = F, S) as  

୧ܝ										 = ൫u୧, 0, w୧൯     where    	i = F, S.																																																																																																												(14)  

Equations (11) - (13) with the help of eq. (14) in the absence of body forces take the form  

										ηୗ ቈ
∂ଶuୗ

∂x∂t
+
∂ଶwୗ

∂z∂t
቉+ η୊ ቈ

∂ଶu୊

∂x∂t
+
∂ଶw୊

∂z ∂t
቉ = 0,																																																																																											(15) 

										η୊
∂p
∂x

+ ρ୊
∂ଶu୊

∂tଶ
+ S୴ ቈ

∂u୊

∂t
−
∂uୗ

∂t
቉ = 0,																																																																																																					(16) 

										η୊
∂p
∂z

+ ρ୊
∂ଶw୊

∂tଶ
+ S୴ ቈ

∂w୊

∂t
−
∂wୗ

∂t
቉ = 0,																																																																																																	(17) 

										൫λୗ + µୗ൯
∂θୗ

∂x
+ µୗ∇ଶuୗ − ηୗ

∂p
∂x

− ρୗ
∂ଶuୗ

∂tଶ
+ S୴ ቈ

∂u୊

∂t
−
∂uୗ

∂t
቉ = 0,																																																		(18) 

										൫λୗ + µୗ൯
∂θୗ

∂z
+ µୗ∇ଶwୗ − ηୗ

∂p
∂z

− ρୗ
∂ଶwୗ

∂tଶ
+ S୴ ቈ

∂w୊

∂t
−
∂wୗ

∂t
቉ = 0,																																													(19) 

where  

										θୗ =
∂൫uୗ൯
∂x

+
∂൫wୗ൯
∂z

,																																																																																																																																					(20) 

and 

										∇ଶ=
∂ଶ

∂xଶ
+
∂ଶ

∂zଶ
.																																																																																																																																																(21) 

Also,	t୸୸ୗ  and 	t୸୶ୗ  the normal and tangential stresses in the solid phase are as under 

										t୸୸ୗ = λୗ ቆ
∂uୗ

∂x
+
∂wୗ

∂z
ቇ+ 2µୗ

∂wୗ

∂z
,																																																																																																											(22) 

										t୸୶ୗ = µୗ ቆ
∂uୗ

∂z
+
∂wୗ

∂x
ቇ.																																																																																																																																(23) 
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The displacement components u୨	and w୨ are related to the dimensional potential ϕ୨ and ψ୨ as  

										u୨ =
∂ϕ୨

∂x
+
∂ψ୨

∂z
,			w୨ =

∂ϕ୨

∂z
−
∂ψ୨

∂x
,							j = S, F.																																																																																								(24) 

Using eq. (24) in equations (15)-(19), we obtain the following equations determining 
	ϕୗ,			ϕ୊, 		ψୗ	,			ψ୊	and		p		as: 

										∇ଶϕୗ −
1

Cଵଶ
∂ଶϕୗ

∂tଶ
−

S୴
(λୗ + 2µୗ)(η୊)ଶ

∂ϕୗ

∂t
= 0,																																																																																							(25) 

											ϕ୊ = −
ηୗ

η୊
ϕୗ,																																																																																																																																																		(26) 

										µୗ∇ଶψୗ − ρୗ
∂ଶψୗ

∂tଶ
+ S୴ ቈ

∂ψ୊

∂t
−
∂ψୗ

∂t
቉ = 0,																																																																																																(27) 

										ρ୊
∂ଶψ୊

∂tଶ
+ S୴ ቈ

∂ψ୊

∂t
−
∂ψୗ

∂t
቉ = 0,																																																																																																																			(28) 

										൫η୊൯
ଶ

p− ηୗρ୊
∂ଶϕୗ

∂tଶ
− S୴

∂ϕୗ

∂t
= 0,																																																																																																												(29) 

where 

 										Cଵ 	= ඨ
(஗ూ)మ൫஛౏ାଶஜ౏൯

(஗ూ)మ஡౏ା൫஗౏൯మ஡ూ
.																																																																																																																		(30)    

Assuming the solution of the system of equations (25) - (29) in the form 

										(ϕୗ,ϕ୊,ψୗ,ψ୊ , p) = ൫ϕଵୗ,ϕଵ୊,ψଵ
ୗ,ψଵ

୊, pଵ൯ exp(iωt),																																																								(31)  

where ω is the complex circular frequency. 

Making the use of (31) in equations (25)-(29), we obtain 

										ቈ∇ଶ +
ωଶ

C1
2 −

iωSv

൫λS + 2µS൯(η୊)ଶ
቉ϕଵୗ = 0,																																																																																						(32) 

										[µS∇ଶ + ρSωଶ − iωSv]ψଵ
ୗ = −iωSvψଵ

୊,																																																																																					(33) 

										[−ωଶρ୊ + iωSv]ψଵ
୊ − iωSvψଵ

ୗ = 0,																																																																																											(34) 

										(η୊)ଶpଵ + ηSρFωଶϕଵୗ − iωSvϕଵୗ = 0,																																																																																							(35) 

										ϕଵ୊ = −
ηୗ

η୊ϕଵ
ୗ.																																																																																																																															(36) 
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Equation (32) corresponds to longitudinal wave propagating with velocity	Vഥଵ, given by 

 											Vഥଵ
ଶ = ଵ

ୋభ
,																																																																																																																																										(37) 

where 

										Gଵ = ൤ ଵ
େభమ

− ୧ୗ౬
ன൫஛౏ାଶஜ౏൯(஗ూ)మ

൨ .																																																																																																										(38) 

From equation (33) and (34), we obtain 

										൥∇ଶ +
ωଶ

Vଶ
ଶ൩ψଵ

ୗ = 0,																																																																																																																									(39) 

Equation (39) corresponds to transverse wave propagating with velocityVഥଶ, given by Vഥଶ
ଶ = 1/Gଶ 

where 

 										Gଶ = ൜ρ
S

µS −
iSv

µSω−
Sv

2

µS൫−ρSω2+iωSv൯
ൠ ,																																																																																											(40) 

 

For medium ۻ૛ (Liquid half space) 

The equation of motion in terms of displacement potential ϕଵ  for liquid half space is given by  

										ப
మமభ

ப୶మ
+ பమமభ

ப୸మ
= ଵ

αభమ
பమமభ

ப୲మ
,																																																																																																																				(41)  

where ߙଵ = ටఒభ

ఘభ
  is the velocity of the liquid. 

The displacement components uଵଵ, uଷଵand pressure	pଵ are given by  

											uଵଵ =
∂ϕଵ

∂x ,			uଷଵ =
∂ϕଵ

∂z ,			pଵ = −ρଵ
∂ଶϕଵ

∂tଶ ,																																																																													(42) 

 

3. Formulation of the problem  

Consider a fluid saturated incompressible porous half space as medium Mଵ   and 
homogeneous inviscid liquid half space medium Mଶ in welded contact along a plane interface. 
Rectangular cartesian coordinate system (x,y,z) is taken in such a way that the plane interface  
z=0 separates both the medium and z-axis is pointing into the medium Mଵ. The medium Mଵ 
through which incident takes place occupies the region z>0 and the region z<0 is occupied by the 
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medium	Mଶ. The problem is two dimensional in the xz plane. The geometry of the problem is as 
shown in figure 1. 

 

Fig.1 Geometry of the problem. 

4. Reflection and transmission of the waves 

Consider a longitudinal wave (P-wave) or transverse wave (SV-wave) is propagating through the 
fluid saturated porous medium Mଵ	 and incident at the plane z=0 and making an angle θ଴ with 
normal to the surface. Corresponding to incident longitudinal or transverse wave, we get two 
reflected waves P-wave or SV-wave in medium Mଵ  and one refracted P-wave in the medium 
Mଶ.    

The potential function satisfying the equations (25)-(29) can be taken as  

												{ϕୗ ,ϕ୊ , p} = {1, mଵ, mଶ}[A଴ଵ	exp{ikଵ(x	sinθ଴– z	cosθ଴) + iωଵt}												 

																																																									+Aଵexp{ikଵ(x	sinθଵ + z	cosθଵ) + iωଵt}],																																		(43) 

										{ψୗ 	,ψ୊} = {1, mଷ}[B଴ଵ	exp{ikଶ(x	sinθ଴– z	cosθ଴) + iωଶt}			 

																																																						+Bଵexp{ikଶ(x	sinθଶ + z	cosθଶ) + iωଶt}],																																					(44) 

where 

										mଵ = −
ηୗ

η୊ ,				mଶ = − ቈ
ηୗωଵ

ଶρ୊ − iωଵS୴
(η୊)ଶ ቉ ,				mଷ =

iωଶS୴
iωଶS୴ − ωଶ

ଶρ୊
,																																(45) 

We assume the solution of the eq. (41) in the form 

											ϕଵ = Aഥଵ	exp൛ikതଵ൫xsinθതଵ − zcosθതଵ൯ + iωഥଵtൟ,																																																																											(46) 

where  A଴ଵ and B଴ଵ are amplitudes of the incident P-wave and SV-wave, respectively and  Aଵ, 
	Bଵ are amplitudes of the reflected P-wave and SV-wave respectively and  Aഥଵ	 is the amplitude of 
transmitted  P-wave. 
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 5. Boundary conditions 

The appropriate boundary conditions for the two dimensional motion, at the interface z=0 are the 
continuity of normal force stress, normal displacement and vanishing of the tangential force 
stress. Mathematically, these boundary conditions can be expressed as: 

											t୸୸ୗ − p = −pଵ,					t୸୶ୗ = 0,					uଷ = uଷଵ,																																																																																		(47) 

In order to satisfy the boundary conditions, the extension of the Snell’s law will be  

										
sinθ଴

V଴
=

sinθଵ
Vଵ

=
sinθଶ

Vଶ
=

sinθଵ
ଵߙ ,																																																																																																	(48) 

For P-wave , 

											V଴ = Vଵ,				θ଴ = θଵ,																																																																																																																									(49) 

For SV-wave, 

										V଴ = Vଶ,				θ଴ = θଶ,																																																																																																																										(50) 

Also, frequencies of all the waves must be equal at the interface z=0  for all positions and time. 

i.e 

										kଵVଵ = kଶVଶ = kതଵߙଵ = ω,  at ݖ = 0.																																																																																										(51) 

Making the use of potentials given by equations(43)-(44)  and (46) in equations(22)-(24)and (42) 
and then using the  boundary conditions given by (47) as well as  the equations (48)-(51), we get 
a system of three non homogeneous which can be written as  

										෍ a୧୨

ଷ

୨ୀଵ

Z୨ = Y୧,								(i = 1,2,3)																																																																																																							(52) 

where 

											Zଵ =
Aଵ

A∗ ,					Zଶ =
Bଵ

A∗ ,				Zଷ =
Aഥଵ
A∗ ,																																																																																																	(53) 

where  ܼଵ to Zଷ  are the amplitude ratios of reflected P- wave, reflected SV-wave and refracted 
P-wave, respectively. 

Also 

										aଵଵ = kଵ
ଶ(λୱ + 2µୱcosଶθଵ) + mଶ,				aଵଶ = −2kଶ

ଶµୱsinθଶcosθଶ,									aଵଷ = −ρଵωഥଵଶ,				   

										aଶଵ = 2kଵ
ଶµୱsinθଵcosθଵ, 																				aଶଶ 	= kଶ

ଶ(cosଶθଶ − sinଶθଶ),				aଶଷ = 0,				 
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										aଷଵ = kଵcosθଵ,																																					aଷଶ = −kଶsinθଶ,																													aଷଷ = kതଵcosθതଵ	.			(54) 

For incident longitudinal wave: 

										A∗ = A଴ଵ,			B଴ଵ = 0, 				Yଵ = −aଵଵ, 				Yଶ = aଶଵ, 					Yଷ = aଷଵ,																																															(55) 

For incident transverse wave: 

										A∗ = B଴ଵ, 					A଴ଵ = 0, 				Yଵ = aଵଶ, 				Yଶ = −aଶଶ, 					Yଷ = −aଷଶ,																																												(56) 

6. Particular cases 

CASE-1 

If pore is absent or gas is filled in the pores then  ρ୊ is very small as compared to ρୗ and can be 
neglected, so the relation (30) reduces to  

										C଴ 	= ඨ
λୗ + 2µୗ

ρୗ .																																																																																																																													(57) 

Then fluid saturated incompressible porous medium reduces to empty porous solid. 

CASE-2 

When upper half space is not present in the given formulation. 

Considering a fluid saturated incompressible porous half space with free surface 
boundary. A plane wave (P-wave or SV-wave) propagating through the fluid saturated 
incompressible porous half space making an angle θ଴  with z-axis. Corresponding to each 
incident wave we get two reflected waves. Boundary conditions for this case reduces to 

										t୸୸ୗ − p = 0,					t୸୶ୗ = 0,																																																																																																																(58) 

And hence we obtain a system of two non-homogeneous equations which can be written as  

										෍ a୧୨

ଶ

୨ୀଵ

Z୨ = Y୧,								(i = 1,2)																																																																																																											(59) 

where  aଵଵ,			aଵଶ,			aଶଵ ,			aଶଶ are given by equation (54) 

7. Numerical results and discussion 

The theoretical results obtained above indicate that the amplitude ratios Z୧			(i = 1,2,3) depend 
on the angle of incidence of incident wave and material properties of half spaces. In order to 
study in more detail the behaviour of various amplitude ratios, we have computed them 
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numerically for a particular model for which the  values of  relevant elastic parameters are as 
follow 

 In medium Mଵ, 

Following Ewing, Jardetzky and Press (1957), the parameters for inviscid liquid half space are 
taken as 

										ρଵ = 1.0	gm/cmଷ, 				λଵ = 2.14	dyne/cmଶ 

In mediumMଶ , the physical constants for fluid saturated incompressible porous medium are 
taken from de Boer, Ehlers and Liu (1993) as 

										ηୗ = 0.67,						η୊ = 0.33,					ρୗ = 1.34	Mg/mଷ,				ρ୊ = 0.33	Mg/mଷ,				 

											λୗ = 5.5833MN/mଶ,										K୊ = 0.01m/s,				 

										γ୊ୖ = 10.00KN/mଷ,											µୗ = 8.3750N/mଶ,							                                                           (60) 

With these values of constants, we have solved the system of equations given by (52) for 
different values of angle of incidence from 0 to 90 degrees.     

Figures (2)-(4) shows the variation of amplitude ratios of reflected P-wave reflected SV-
wave and refracted P-wave respectively when longitudinal wave (P-wave) is made incident. In 
these figures solid lines show the variations of amplitude ratios when medium-I is 
incompressible fluid saturated porous medium (FS) and medium-II is liquid half space whereas 
dotted lines show the variations of amplitude ratios when medium-I becomes empty porous solid 
(EPS). Figures (5)-(7) depicts the case of incident transverse wave (SV-wave) under similar 
situations.  

 Figures (8) and (9) describe the variation of amplitude ratios of reflected P-wave, 
reflected SV-wave from free surface boundary when longitudinal wave (P-wave) is made 
incident. In these figures solid lines show the variations of amplitude ratios when medium is 
incompressible fluid saturated porous medium (FS) whereas dotted lines show the variations of 
amplitude ratios when the medium becomes empty porous solid (EPS). Figures (10)-(11) depicts 
the case of incident transverse wave (SV-wave) under the same conditions of free surface. 

The effect of fluid filled in the pores of fluid saturated porous medium can be observed 
from figures (2)-(11). The figures (2)-(8) show that in case of incidence SV-wave, the magnitude 
values of amplitude ratios is maximum in comparison to incidence P-wave in both the situations 
either the medium-I is incompressible fluid saturated porous medium (FS)   or the medium-I is 
empty porous solid (EPS).Also in case of incidence P-wave or SV-wave, the amplitude ratios for 
reflected P-wave |ܼଵ|  and refracted P-wave  |ܼଷ|	  first increases with the increase in angle of 
incidence very sharply and  goes to a maximum value and there after they start decreasing 
uniformly to  approach to zero .Figure (6) shows that the  variation for reflected SV-wave is 
oscillatory in case of incidence SV-wave. 

Figures (8) and (9) show the effect of boundary. In case of incident P-wave, the 
magnitude values of amplitude rati os for reflected waves are more in case of free surface.    
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Figures (10) and (11) show that the behaviour of reflected P-wave and reflected SV-wave   
is oscillatory when SV-wave is incident. 

 

Fig.2 Variation of the amplitude ratio |Zଵ| with angle of incidence                                                
of the incident P-wave 

 

Fig 3 Variation of the amplitude ratio |Zଶ| with angle of incidence                                                
of the incident P-wave 



International Journal of Mathematics Trends and Technology – Volume 11  Number 1 – Jul  2014 

ISSN: 2231-5373                   http://www.ijmttjournal.org                              Page 34 
 

 

Fig.4 Variation of the amplitude ratio |Zଷ| with angle of incidence                                                
of the incident P-wave 

 

Fig.5 Variation of the amplitude ratio |Zଵ| with angle of incidence                                               
of the incident SV-wave 
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Fig.6 Variation of the amplitude ratio |Zଶ| with angle of incidence                                                
of the incident SV-wave 

 

Fig.7 Variation of the amplitude ratio |Zଷ| with angle of incidence                                                
of the incident SV-wave 
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Fig.8 Variation of the amplitude ratio |Zଵ| with angle of                                                     
incidence of the incident P-wave (free surface) 

 

Fig.9 Variation of the amplitude ratio |Zଵ| with angle of                                                     
incidence of the incident P-wave (free surface) 
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Fig.10 Variation of the amplitude ratio |Zଵ| with angle of                                                     
incidence of the incident SV-wave (free surface) 

 

Fig.11 Variation of the amplitude ratio |Zଵ| with angle of                                                     
incidence of the incident SV-wave (free surface) 

 

 



International Journal of Mathematics Trends and Technology – Volume 11  Number 1 – Jul  2014 

ISSN: 2231-5373                   http://www.ijmttjournal.org                              Page 38 
 

8. Conclusions 

In conclusion, a mathematical study of reflection and refraction coefficients at an 
interface separating liquid half space and fluid saturated incompressible porous half space is 
made when longitudinal wave (P-wave) or transverse wave (SV –wave) is incident. It is 
observed that 

(i)  The amplitudes ratios of various reflected and refracted waves depend on the angle of   
incidence of the incident wave and material properties of half spaces. 

(ii) The effect of fluid filled in the pores of incompressible fluid saturated porous medium is 
significant on the amplitudes ratios. 

(iii) Significant difference in magnitude values of amplitudes ratios is observed in case of 
incident P-wave and SV-wave.   

(iv)  A significant difference in the values of amplitudes ratios corresponding to reflected waves 
is observed in both the cases (i) when upper half space is present (ii) when upper half 
space is not present. 

The model presented in this paper is one of the more realistic forms of the earth models. Such a 
model may be found in the earth’s crust, and the results of this problem can be applicable 
to the earth’s crust, to mantle-crust interface. It may also be of some use in engineering, 
seismology and geophysics etc.  
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