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Abstract— The Enestrom-Kakeya Theorem states that if p(z) = Zajzj is a polynomial satisfying 0<a, <a, <..<a,, then p(z) does

j=0
not vanish in |z|>1. In this paper we present related results by considering polynomials with complex coefficients and by putting
restrictions on the arguments and moduli of the coefficients.
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. INTRODUCTION

The following result is well known in the theory of the distribution of zeros of polynomials.

Theorem A (Enestrom-Kakeya). If
a,za, ,za,,=..2a =a,>0,

then for [z|>1, Y a;z’ 0.
=0

In the literature there already exists ([2], [3], [4]) some extensions of the Enestrom-Kakeya Theorem. Govil and Rahman [3,
Theorem 2, 4] generalized Theorem A to polynomials with complex coefficients by considering the moduli of the coefficients
to be monotonically increasing. More precisely they proved the following:

Theorem B. Let p(z) = Zaj 7' be a polynomial with complex coefficients such that
j=0
T .
|argaj -Bl<La s? j=01...,n,

for some real g, and
la, [2a, 2. 28 | >]a],
then p(z) has all its zeros on or inside the circle

a1

. 2sing &
|z|=cosa+sina +

a,| =

In this paper we significantly weaken the condition of montonicity on the moduli of the coefficients and obtain the following
results:

Theorem 1. If p(z) = Zajzj is a polynomial of degree n with complex coefficients, such that for some k >1,
j=0

k|an|2|an—1|22|a1|2|a0|1

and for some real S, |argaj -8 Sasz j=0,1,...,n, then all the zeros of p(z) lie in

5"
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1 A i . n-1
|z+k-1]< ﬁ kla,|(cosa+sina)—|a,|(cosa +sma—1)+25|naZ|aj |
a, j=0

For k =1, Theorem 1 improves upon Theorem B.

For o = B =0 our result reduces to a result due to Aziz and Zargar [1] and in addition to the above condition if k =1 then it
reduces to a result due to Joyal, Labelle and Rahman [4].

If we apply Theorem 1 to the polynomial p(tz), we get the following result.

Corollary 1. If p(z) = Z a, z' is a polynomial of degree n with complex coefficients such that for some k >1,
j=0

kt"|a, |>t""|a, ,|>..> tla | >]g], t>0,
and for some real B, |arga; —ﬁ|<a<— i =0,1,...,n then all the zeros of p(z) liein

|| SEET

nJl

|z+kt—t]<

j= 0

Theorem 2. Let p(z) = Zajzj be a polynomial of degree n with complex coefficients such that
j=0

la, |2 ]a, |22 18 [ <]a | <..<|a|<|a]

0<r<n-1,and for somereal g, |arga, —ﬁ|<a<— j=0,1,...,n. Then all the zeros of p(z) liein

n-2
+&—1‘s ﬁ@am |(cosa +sina)—-2]a, |cosa+|a, |(c05a—sina+1)+25inaZ|aj .
an an i=0

For r =0, we obtained the following result which improves the bound obtain in Theorem B, as well as the bound obtained in
Theorem 1 (for k =1),

Corollary 2. Let p(z) = Zaj z' be a polynomial of degree n with complex coefficients such that
j=0

la,|>a,,|>...2]a |>]a,l,

and for some real 8, |arga; — 8| gasz, j=0,1,...,n. Then all the zeros of p(z) liein

2

+£ ]_‘<| 1 |{|ah L |(cosa+sina)-|a, |(cosa +sina 1)+25|naZ|a |
a a, j=0

n

By applying Theorem 2 to the polynomial p(tz) we get the following:

Corollary 3. Let p(z) = Zaj z' be a polynomial of degree n with complex coefficients such that
j=0

t"la, |>2t"" e, |>..>2t"a | <ta|<..<tla|<|a,l, t>0

0<r<n-1,and for somereal g, |arga; - f]| Sas%, j=0,1,..,n. Then all the zeros of p(z) liein

2Iarl

1 |a,
=) Cosa +tnT

<—| |(c03a+sma)—
a, { e

n-2 [ g
|(COSa —sina +1) +2sin azt|n—j—1

i=0

NS}
a

n
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As remarked earlier Corollary 2, gives better result than Theorem B and Theorem 1 for k =1, we illustrate this by the
following example.

Example.
p(z):z3+(l+l)zz+(i+L)z+(i+L).
4 4 16 16 32 32

If we take o :%, B =0 then by Theorem B all the zeros of p(z) are contained in the region | z| < 2.1015, the region

containing all the zeros of p(z) due to Theorem 1 (for k =1) is | z| <1.99, while Corollary 2 gives that p(z) has all the zeros
in the region | z—(0.75-0.25i) | <0.6692093 .

Next we obtain a result in which real parts of the alternate coefficients of a polynomial are monotonically increasing and not
necessarily positive. More precisely, we prove the following:

Theorem 3. Let p(z) :Zajzj be a polynomial of degree n with complex coefficients where a;, =«;,;3;, j=0,1...,n and
j=0

Oza,2a, ,2..2a,20a, and a

n-2 — n-1 = *n-3 =

2a, ,2..2a,>a, if n isodd, or
=

Oza,20a, ,2..2a,20, and a, , 2q, 2o, 2

if n is even. Then all the zeros of p(z) liein

Sé{(mo |—00)+ (o | —ay) + (et s + | By ) + (0, +] By |)+2nz|ﬂj '}'
j=0

If ﬂj =0, j=01...,n, ¢, >0 and ¢, >0, then Theorem 3 reduces to a result due to Aziz Zargar [1].

Z+£
a

n

Finally, we present the following result.

Theorem 4. Let p(z):Zajzj be a polynomial of degree n with complex coefficients. If Rea, =ca; and Ima; =
j=0

j=0,1,..,n, and either
Oiﬁn 2ﬁn—z 22ﬂ3 Zﬁl and ﬁnfl 2ﬁn73 ZZﬂZ Zﬁo if nis Odd,

j

or
0=B,2B,,2..28,2p8,and B, , 28 ,2..28,2p
if n is even. Then all the zeros of p(z) liein

sEll{q ,Bo |_ﬁo)+(| ﬁl | _ﬁ1)+(| Ony | +ﬁn—1)+(| a, |+ﬁ”)+2n§:|a] |}
j=0

Z+£
a

n

Il. LEMMAS
Lemma. If p(z) :Zajzj is a polynomial of degree n such that for some real g, |arga; - f|<a < % j=0,1,..,n, then
j=0
for some t >0
Ita, —a,, | <|t|a;[-]a;, ,|lcosa+(t|a;|+]a;,|)sina.
This lemma follows from inequality (6) in [3].

I11. PROCESS OF THE THEOREMS
Proof of Theorem 1. Consider

F(2)=(-2)p(z)=-a,z2"" +(a,—a,,)2" +..+(a, —a,)z+a,
Then for |z | >1, we have
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|F(z)|=]-a,z2"" +a,2" -Ka,z" +(Ka, -a, ,)z"+(a,, -8, ,)2" " +..+(a, —a,)z+a, |

a_, —a -a a
>|a,||z|" |[z+K=-1]|-|z[ {|kan—an1|+| ”*1| |”*2|+...+|{|711 |n71°|+: ‘]nl}
z z z

>la, | [z["|z+k=1[-|z[ {|ka, —a, [ +]&,  ~&,, |+ +]& —|+|a, [}

By applying Lemma to the above inequality, we get
IF@I=1z["lla, || z+K-1|{(K|a,|-]a, )cosa+(K|a,|+|a,, )sina+(a,|-|a,,[)cosa
+H(la, |+la, , sina+..+(la | -[a [)cosa+(|a [+]a, )sina+|a [}

j=0

n-1
=|z| {| a,|lz+K —1|—{K |a, | (cosa +sina) —|a, | (cosa +sina—1)+25inaZ|aj |H

This shows that if | z| >1, then | F(z)| >0 if

n-1
|z+k-1]|> | ! {k|an | (cosa +sina) —| a, |(005a+sina—1)+25ina2|aj @
a

n | j=0

Hence all the zeros of F(z) with |z|>1 liein
n-1
|z+k-1|< {k |a, |(cosa +sina) —|a, | (cosa +sina —1) + 2sin aZ| a; @ 3.1)
j=0
But those zeros of F(z) with |z|<1 already satisfy inequality (3.1). Since all the zeros of p(z) are also the zeros of F(z),
therefore, it follows that all the zeros of p(z) lie in the circle defined by (3.1) and this completes the proof of Theorem 1.

Proof of Theorem 2. Consider
F(z)=1-2)p(2)
=-a,"+(a,-a,,)2"+...+(a, —a,)z+a,
Let |z|>1. Thenfor 0<r<n-1, we have
|F(2)|>]a,2"" —(a, —-a,,)2"|-|(a,_,—a,,)2" " +..+(a, —a,)z" +a, |

>|z"| |a,z+a,,—a,|{la,,-a._|lzI"" +|la,,-a .| |z["*+.|a ,—a ||z

r+1

+la -a |zl +la_-a, | |27 +.+la-a || z]+|a, [}

:|Z|n |anz+an71_an |_ |an—1_an—2| |an72 _Zan—3 |+|ar+1_a1r |+|ar_ar—1|+|ar71_arl—2|
|z] |z] |z ™" |z [z

+Iaz—ne}|+|«'=11—n«'=110|@H
|z] |z |z]
By applying lemma to the above inequality, we get
IF(2)|>|2[ [la,z+a,, -2, [{(2,,|-|a,, Dcosa+(a,, | +|a,,sina+.
+(| ar+1|_|ar |)COSa+(| ar+1|+| a |)Sina+(| ar—ll_lar |)C03a+(| a, |+|ar—1 |)Sina
+(a,_,|-la_cosa+(la_|+la,_,)sina+..+(a|—|al)cosa+(a|+]al)sina+|a,[}]
n-2
=|z| {| a,z+a,,—a, |—{|anl |(cosa +sina) —2|a, |cosa+|a, | (cosa —sina +1)+22|aj |sinaH
j=0

>0

k_l

" |8, |

Z+

1 . . = .
> —{| a,,|(cosa+sina) —2|a, |cosa+]a, | (cosa—sina +1)+ZZ| a; [sina
j=0

This shows that all the zeros of F(z) with |z|>1 lie in

n-2
z+£—1 si@ a,,|(cosa+sina) —2|a, |cosa+]a, | (cosa—sina +1)+ZZ| a; [sin a} 3.2)

n | n| j=0

ISSN: 2231-5373 http://www.ijmttjournal.org Page 54




International Journal of Mathematics Trends and Technology — Volume 11 Number 1 — Jul 2014

But those zeros of F(z) with | z| <1 already satisfy (3.2). Hence we conclude that all the zeros of F(z) and therefore those of
p(z) lie in the circle defined by (3.2) and this completes the proof of Theorem 2.

Proof of Theorem 3. Consider
F(2)=@1-2%)p(2)

n+2 n+l

=-a,"*-a ,2"+(a,-a,,)2"+(@,, -3, ;)2 +..+(a,—a)* +(a, —a,)2° +a,z +4a,.
Then for |z | >1, we have

a ., —a 1 1 a
F@)|> 2] {|z| a2t |-|(@-a,,)+ =t ey L@ ety ‘?1+—S}
|z| z z z z
. N la,-a | |a,-3 |, lal  a H
>|z"||z] |a,z+ |—{| -a,, |+ +..+ ——+ ——t— gt —
{ Tl T 271zl 2l [z

>lz['[|z| la,z+a, | {la,-a, ,|+]a,,—a, ;[ +.+|a,—a, [+]a,[+]a,[}]
>z laz+a, . [ (o, =, )+ (1 By | +] Boa D+ (@ =0 o) +( B [+ Bs D+ (e, — 2, y)
(B [+ Bra D+t (e [+ B D)+ (g [+ B, D]
=|z[" |:|an +ay |_{(|ao | =)+ (e | — ) +(ay +| By )+ (@, +] B, |)+2n_2|ﬂj |}:|
j=0

This show that for |z|>1, |F(z)| >0, if

la,z+a,,| >{(|Oﬂ0 |—ap)+ (o |— o) +(ay i+ By N+ (an+] By |)+2i|ﬂj |}
j=0

Hence those zeros of F(z) with |z|>1 liein

Z+£
a

n

|, |
Also those zeros of F(z) with |z| <1 already lie in the circle (3.3). Therefore we conclude that all the zeros of F(z) and
hence those of p(z) lie in the circle (3.3). Hence Theorem 3 is proved.

si{q @y = @)+ (|- ) + @+ By D+ (@4 B, D+231 B |}. (33)

Proof of Theorem 4. The proof of the Theorem 4 follows on the same lines as that of Theorem 3. We omit the details.
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