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Abstract— The Eneström-Kakeya Theorem states that if 
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  is a polynomial satisfying 0 10 ... na a a    , then ( )p z  does 

not vanish in | | 1z  . In this paper we present related results by considering polynomials with complex coefficients and by putting 
restrictions on the arguments and moduli of the coefficients. 
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I. INTRODUCTION 
 
The following result is well known in the theory of the distribution of zeros of polynomials. 
 

Theorem A (Eneström-Kakeya).  If  
 1 2 1 0... 0n n na a a a a       , 

then for | | 1z  , 
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In the literature there already exists ([2], [3], [4]) some extensions of the Eneström-Kakeya Theorem. Govil and Rahman [3, 

Theorem 2, 4] generalized Theorem A to polynomials with complex coefficients by considering the moduli of the coefficients 
to be monotonically increasing. More precisely they proved the following: 

Theorem B. Let 
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  be a polynomial with complex coefficients such that  

 | arg | , 0,1,..., ,
2ja j n

      

for some real  , and  
 1 1 0| | | | ... | | | |,n na a a a     
then ( )p z  has all its zeros on or inside the circle  
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In this paper we significantly weaken the condition of montonicity on the moduli of the coefficients and obtain the following 

results: 

Theorem 1. If 
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  is a polynomial of degree n  with complex coefficients, such that for some 1k  ,  

 1 1 0| | | | ... | | | |,n nk a a a a     

and for some real  , | arg |
2ja 

    , 0,1,...,j n , then all the zeros of ( )p z  lie in  
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For 1k  , Theorem 1 improves upon Theorem B. 
 
For 0    our result reduces to a result due to Aziz and Zargar [1] and in addition to the above condition if 1k   then it 

reduces to a result due to Joyal, Labelle and Rahman [4]. 
 
If we apply Theorem 1 to the polynomial ( )p tz , we get the following result. 

 

Corollary 1. If 
0
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  is a polynomial of degree n  with complex coefficients such that for some 1k  ,  

 1
1 1 0| | | | ... | | | |, 0n n

n nkt a t a t a a t
     , 

and for some real  , | arg |
2ja     , 0,1,...,j n  then all the zeros of ( )p z  lie in  
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Theorem 2. Let 
0
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  be a polynomial of degree n  with complex coefficients such that  

 1 1 1 0| | | | ... | | | | ... | | | |n n r ra a a a a a         

0 1r n   , and for some real  , | arg |
2ja     , 0,1,...,j n . Then all the zeros of ( )p z  lie in  
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For 0r  , we obtained the following result which improves the bound obtain in Theorem B, as well as the bound obtained in 

Theorem 1 (for 1k  ), 
 

Corollary 2. Let 
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  be a polynomial of degree n with complex coefficients such that  

 1 0| | | | ... | | | |,n n ra a a a     

and for some real  , | arg |
2ja     , 0,1,...,j n . Then all the zeros of ( )p z  lie in  
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By applying Theorem 2 to the polynomial ( )p tz  we get the following: 
 

Corollary 3. Let 
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  be a polynomial of degree n  with complex coefficients such that  
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0 1r n   , and for some real  , | arg |
2ja 
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As remarked earlier Corollary 2, gives better result than Theorem B and Theorem 1 for 1k  , we illustrate this by the 
following example. 

 
Example.  

 3 2 1 11( )
16 16 32 324 4

i iip z z z z                  
. 

If we take 
4


  , 0   then by Theorem B all the zeros of ( )p z  are contained in the region | | 2.1015z  , the region 

containing all the zeros of ( )p z  due to Theorem 1 (for 1k  ) is | | 1.99z  , while Corollary 2 gives that ( )p z  has all the zeros 
in the region | (0.75 0.25 ) | 0.6692093z i   . 

 
Next we obtain a result in which real parts of the alternate coefficients of a polynomial are monotonically increasing and not 

necessarily positive. More precisely, we prove the following: 
 

Theorem 3. Let 
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 be a polynomial of degree n  with complex coefficients where j j i ja   , 0,1,....,j n  and 

2 3 10 ...n n         and 1 3 2 0...n n         if n  is odd, or  

2 2 00 ...n n         and 1 3 3 1...n n         
if n  is even. Then all the zeros of ( )p z  lie in  
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      If 0j  , 0,1,....,j n , 1 0   and 0 0  , then Theorem 3 reduces to a result due to Aziz Zargar [1]. 
 
 Finally, we present the following result. 
 

Theorem 4. Let 
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 be a polynomial of degree n  with complex coefficients. If Re i ja   and Im j ja  , 

0,1,...,j n , and either  

2 3 10 ...n n         and 1 3 2 0...n n         if n  is odd,  
or  

2 2 00 ...n n         and 1 3 3 1...n n         
if n  is even. Then all the zeros of ( )p z  lie in  
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II. LEMMAS 

Lemma.  If 
0

( )
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j

j
p z a z



  is a polynomial of degree n  such that for some real  , | arg |
2ja 

    , 0,1,...,j n , then 

for some 0t   
 1 1 1| | | | | | || cos ( | | | |)sinj j j j j jta a t a a t a a        .  

This lemma follows from inequality (6) in [3]. 

III. PROCESS OF THE THEOREMS 
 

Proof of Theorem 1. Consider  
 1

1 1 0 0( ) (1 ) ( ) ( ) ... ( )n n
n n nF z z p z a z a a z a a z a

           
Then for | | 1z  , we have  
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By applying Lemma to the above inequality, we get  
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This shows that if | | 1z  , then | ( ) | 0F z   if  

 
1

0
0

1 | | (cos sin ) | | (cos sin 1) 2sin | || 1 |
| |

n

n j
jn

k a a az k
a

    




 
        

 
  

Hence all the zeros of ( )F z  with | | 1z   lie in  
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               (3.1) 

But those zeros of ( )F z  with | | 1z   already satisfy inequality (3.1). Since all the zeros of ( )p z  are also the zeros of ( )F z , 
therefore, it follows that all the zeros of ( )p z  lie in the circle defined by (3.1) and this completes the proof of Theorem 1. 
 
Proof of Theorem 2. Consider  
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By applying lemma to the above inequality, we get  
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This shows that all the zeros of ( )F z  with | | 1z   lie in  
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But those zeros of ( )F z  with | | 1z   already satisfy (3.2). Hence we conclude that all the zeros of ( )F z  and therefore those of 
( )p z  lie in the circle defined by (3.2) and this completes the proof of Theorem 2. 

 
Proof of Theorem 3. Consider  
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This show that for | | 1z  , | ( ) | 0F z  , if  
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Hence those zeros of ( )F z  with | | 1z   lie in  
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 .             (3.3) 

Also those zeros of ( )F z  with | | 1z   already lie in the circle (3.3). Therefore we conclude that all the zeros of ( )F z  and 
hence those of ( )p z  lie in the circle (3.3). Hence Theorem 3 is proved. 
 
Proof of Theorem 4. The proof of the Theorem 4 follows on the same lines as that of Theorem 3. We omit the details. 
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