Some Extensions of the Eneström-Kakeya Theorem

K.K. Dewan ${ }^{\# 1}$, C.M. Upadhye ${ }^{* 2}$
\# Department of Mathematics, Faculty of Natural Sciences,
Jamia Milia Islamia (Central University)
New Delhi 110025 (India)
*Gargi College (University of Delhi), Siri Fort Raod,
New Delhi 110049 (India)

Abstract- The Eneström-Kakeya Theorem states that if $p(z)=\sum_{j=0}^{n} a_{j} z^{j}$ is a polynomial satisfying $0<a_{0} \leq a_{1} \leq \ldots \leq a_{n}$, then $p(z)$ does not vanish in $|z|>1$. In this paper we present related results by considering polynomials with complex coefficients and by putting restrictions on the arguments and moduli of the coefficients.

Keywords— Polynomials, Zeros, Eneström-Kakeya.
AMS Subject Classification (2000)—30A10, 30C15.

I. Introduction

The following result is well known in the theory of the distribution of zeros of polynomials.
Theorem A (Eneström-Kakeya). If

$$
a_{n} \geq a_{n-1} \geq a_{n-2} \geq \ldots \geq a_{1} \geq a_{0}>0
$$

then for $|z|>1, \sum_{j=0}^{n} a_{j} z^{j} \neq 0$.
In the literature there already exists ([2], [3], [4]) some extensions of the Eneström-Kakeya Theorem. Govil and Rahman [3, Theorem 2, 4] generalized Theorem A to polynomials with complex coefficients by considering the moduli of the coefficients to be monotonically increasing. More precisely they proved the following:
Theorem B. Let $p(z)=\sum_{j=0}^{n} a_{j} z^{j}$ be a polynomial with complex coefficients such that

$$
\left|\arg a_{j}-\beta\right| \leq \alpha \leq \frac{\pi}{2}, \quad j=0,1, \ldots, n
$$

for some real β, and

$$
\left|a_{n}\right| \geq\left|a_{n-1}\right| \geq \ldots \geq\left|a_{1}\right| \geq\left|a_{0}\right|
$$

then $p(z)$ has all its zeros on or inside the circle

$$
|z|=\cos \alpha+\sin \alpha+\frac{2 \sin \alpha}{\left|a_{n}\right|} \sum_{j=0}^{n-1}\left|a_{j}\right| .
$$

In this paper we significantly weaken the condition of montonicity on the moduli of the coefficients and obtain the following results:
Theorem 1. If $p(z)=\sum_{j=0}^{n} a_{j} z^{j}$ is a polynomial of degree n with complex coefficients, such that for some $k \geq 1$,

$$
k\left|a_{n}\right| \geq\left|a_{n-1}\right| \geq \ldots \geq\left|a_{1}\right| \geq\left|a_{0}\right|
$$

and for some real $\beta,\left|\arg a_{j}-\beta\right| \leq \alpha \leq \frac{\pi}{2}, j=0,1, \ldots, n$, then all the zeros of $p(z)$ lie in

$$
|z+k-1| \leq \frac{1}{\left|a_{n}\right|}\left[k\left|a_{n}\right|(\cos \alpha+\sin \alpha)-\left|a_{0}\right|(\cos \alpha+\sin \alpha-1)+2 \sin \alpha \sum_{j=0}^{n-1}\left|a_{j}\right|\right]
$$

For $k=1$, Theorem 1 improves upon Theorem B.
For $\alpha=\beta=0$ our result reduces to a result due to Aziz and Zargar [1] and in addition to the above condition if $k=1$ then it reduces to a result due to Joyal, Labelle and Rahman [4].

If we apply Theorem 1 to the polynomial $p(t z)$, we get the following result.
Corollary 1. If $p(z)=\sum_{j=0}^{n} a_{j} z^{j}$ is a polynomial of degree n with complex coefficients such that for some $k \geq 1$,

$$
k t^{n}\left|a_{n}\right| \geq t^{n-1}\left|a_{n-1}\right| \geq \ldots \geq t\left|a_{1}\right| \geq\left|a_{0}\right|, t>0
$$

and for some real $\beta,\left|\arg a_{j}-\beta\right| \leq \alpha \leq \frac{\pi}{2}, j=0,1, \ldots, n$ then all the zeros of $p(z)$ lie in

$$
|z+k t-t| \leq\left[k t(\cos \alpha+\sin \alpha)-\frac{\left|a_{0}\right|}{t^{n-1}}(\cos \alpha+\sin \alpha-1)+2 \sin \alpha \sum_{j=0}^{n-1} \frac{\left|a_{j}\right|}{t^{n-j-1}}\right]
$$

Theorem 2. Let $p(z)=\sum_{j=0}^{n} a_{j} z^{j}$ be a polynomial of degree n with complex coefficients such that

$$
\left|a_{n}\right| \geq\left|a_{n-1}\right| \geq \ldots \geq\left|a_{r}\right| \leq\left|a_{r-1}\right| \leq \ldots \leq\left|a_{1}\right| \leq\left|a_{0}\right|
$$

$0 \leq r \leq n-1$, and for some real $\beta,\left|\arg a_{j}-\beta\right| \leq \alpha \leq \frac{\pi}{2}, j=0,1, \ldots, n$. Then all the zeros of $p(z)$ lie in

$$
\left|z+\frac{a_{n-1}}{a_{n}}-1\right| \leq \frac{1}{\left|a_{n}\right|}\left[\left|a_{n-1}\right|(\cos \alpha+\sin \alpha)-2\left|a_{r}\right| \cos \alpha+\left|a_{0}\right|(\cos \alpha-\sin \alpha+1)+2 \sin \alpha \sum_{j=0}^{n-2}\left|a_{j}\right|\right] .
$$

For $r=0$, we obtained the following result which improves the bound obtain in Theorem B , as well as the bound obtained in Theorem 1 (for $k=1$),

Corollary 2. Let $p(z)=\sum_{j=0}^{n} a_{j} z^{j}$ be a polynomial of degree n with complex coefficients such that

$$
\left|a_{n}\right| \geq\left|a_{n-1}\right| \geq \ldots \geq\left|a_{r}\right| \geq\left|a_{0}\right|
$$

and for some real $\beta,\left|\arg a_{j}-\beta\right| \leq \alpha \leq \frac{\pi}{2}, j=0,1, \ldots, n$. Then all the zeros of $p(z)$ lie in

$$
\left|z+\frac{a_{n-1}}{a_{n}}-1\right| \leq \frac{1}{\left|a_{n}\right|}\left[\left|a_{n-1}\right|(\cos \alpha+\sin \alpha)-\left|a_{0}\right|(\cos \alpha+\sin \alpha-1)+2 \sin \alpha \sum_{j=0}^{n-2}\left|a_{j}\right|\right]
$$

By applying Theorem 2 to the polynomial $p(t z)$ we get the following:
Corollary 3. Let $p(z)=\sum_{j=0}^{n} a_{j} z^{j}$ be a polynomial of degree n with complex coefficients such that

$$
t^{n}\left|a_{n}\right| \geq t^{n-1}\left|a_{n-1}\right| \geq \ldots \geq t^{r}\left|a_{r}\right| \leq t^{r-1}\left|a_{r-1}\right| \leq \ldots \leq t\left|a_{1}\right| \leq\left|a_{0}\right|, t>0
$$

$0 \leq r \leq n-1$, and for some real $\beta,\left|\arg a_{j}-\beta\right| \leq \alpha \leq \frac{\pi}{2}, j=0,1, \ldots, n$. Then all the zeros of $p(z)$ lie in

$$
\left|z+\frac{a_{n-1}}{a_{n}}-t\right| \leq \frac{1}{\left|a_{n}\right|}\left[\left|a_{n-1}\right|(\cos \alpha+\sin \alpha)-\frac{2\left|a_{r}\right|}{t^{n-r-1}} \cos \alpha+\frac{\left|a_{0}\right|}{t^{n-1}}(\cos \alpha-\sin \alpha+1)+2 \sin \alpha \sum_{j=0}^{n-2} \frac{\left|a_{j}\right|}{t^{n-j-1}}\right]
$$

As remarked earlier Corollary 2, gives better result than Theorem B and Theorem 1 for $k=1$, we illustrate this by the following example.

Example.

$$
p(z)=z^{3}+\left(\frac{1}{4}+\frac{i}{4}\right) z^{2}+\left(\frac{1}{16}+\frac{i}{16}\right) z+\left(\frac{1}{32}+\frac{i}{32}\right)
$$

If we take $\alpha=\frac{\pi}{4}, \beta=0$ then by Theorem B all the zeros of $p(z)$ are contained in the region $|z| \leq 2.1015$, the region containing all the zeros of $p(z)$ due to Theorem 1 (for $k=1$) is $|z| \leq 1.99$, while Corollary 2 gives that $p(z)$ has all the zeros in the region $|z-(0.75-0.25 i)| \leq 0.6692093$.

Next we obtain a result in which real parts of the alternate coefficients of a polynomial are monotonically increasing and not necessarily positive. More precisely, we prove the following:

Theorem 3. Let $p(z)=\sum_{j=0}^{n} a_{j} z^{j}$ be a polynomial of degree n with complex coefficients where $a_{j}=\alpha_{j+i} \beta_{j}, j=0,1, \ldots, n$ and $0 \neq \alpha_{n} \geq \alpha_{n-2} \geq \ldots \geq \alpha_{3} \geq \alpha_{1}$ and $\alpha_{n-1} \geq \alpha_{n-3} \geq \ldots \geq \alpha_{2} \geq \alpha_{0}$ if n is odd, or $0 \neq \alpha_{n} \geq \alpha_{n-2} \geq \ldots \geq \alpha_{2} \geq \alpha_{0}$ and $\alpha_{n-1} \geq \alpha_{n-3} \geq \ldots \geq \alpha_{3} \geq \alpha_{1}$
if n is even. Then all the zeros of $p(z)$ lie in

$$
\left|z+\frac{a_{n-1}}{a_{n}}\right| \leq \frac{1}{\left|a_{n}\right|}\left\{\left(\left|\alpha_{0}\right|-\alpha_{0}\right)+\left(\left|\alpha_{1}\right|-\alpha_{1}\right)+\left(\alpha_{n-1}+\left|\beta_{n-1}\right|\right)+\left(\alpha_{n}+\left|\beta_{n}\right|\right)+2 \sum_{j=0}^{n-2}\left|\beta_{j}\right|\right\} .
$$

If $\beta_{j}=0, j=0,1, \ldots, n, \alpha_{1}>0$ and $\alpha_{0}>0$, then Theorem 3 reduces to a result due to Aziz Zargar [1].
Finally, we present the following result.
Theorem 4. Let $p(z)=\sum_{j=0}^{n} a_{j} z^{j}$ be a polynomial of degree n with complex coefficients. If $\operatorname{Re} a_{i}=\alpha_{j}$ and $\operatorname{Im} a_{j}=\beta_{j}$, $j=0,1, \ldots, n$, and either
$0 \neq \beta_{n} \geq \beta_{n-2} \geq \ldots \geq \beta_{3} \geq \beta_{1}$ and $\beta_{n-1} \geq \beta_{n-3} \geq \ldots \geq \beta_{2} \geq \beta_{0}$ if n is odd,
or

$$
0 \neq \beta_{n} \geq \beta_{n-2} \geq \ldots \geq \beta_{2} \geq \beta_{0} \text { and } \beta_{n-1} \geq \beta_{n-3} \geq \ldots \geq \beta_{3} \geq \beta_{1}
$$

if n is even. Then all the zeros of $p(z)$ lie in

$$
\left|z+\frac{a_{n-1}}{a_{n}}\right| \leq \frac{1}{\left|a_{n}\right|}\left\{\left(\left|\beta_{0}\right|-\beta_{0}\right)+\left(\left|\beta_{1}\right|-\beta_{1}\right)+\left(\left|\alpha_{n-1}\right|+\beta_{n-1}\right)+\left(\left|\alpha_{n}\right|+\beta_{n}\right)+2 \sum_{j=0}^{n-2}\left|\alpha_{j}\right|\right\} .
$$

II. LEMmAS

Lemma. If $p(z)=\sum_{j=0}^{n} a_{j} z^{j}$ is a polynomial of degree n such that for some real $\beta,\left|\arg a_{j}-\beta\right| \leq \alpha \leq \frac{\pi}{2}, j=0,1, \ldots, n$, then for some $t>0$

$$
\left|t a_{j}-a_{j-1}\right| \leq|t| a_{j}|-| a_{j-1} \| \cos \alpha+\left(t\left|a_{j}\right|+\left|a_{j-1}\right|\right) \sin \alpha
$$

This lemma follows from inequality (6) in [3].
III. Process of the Theorems

Proof of Theorem 1. Consider

$$
F(z)=(1-z) p(z)=-a_{n} z^{n+1}+\left(a_{n}-a_{n-1}\right) z^{n}+\ldots+\left(a_{1}-a_{0}\right) z+a_{0}
$$

Then for $|z|>1$, we have

$$
\begin{aligned}
|F(z)| & =\left|-a_{n} z^{n+1}+a_{n} z^{n}-K a_{n} z^{n}+\left(K a_{n}-a_{n-1}\right) z^{n}+\left(a_{n-1}-a_{n-2}\right) z^{n-1}+\ldots+\left(a_{1}-a_{0}\right) z+a_{0}\right| \\
& \geq\left|a_{n}\right||z|^{n}|z+K-1|-|z|^{n}\left\{\left|k a_{n}-a_{n-1}\right|+\frac{\left|a_{n-1}-a_{n-2}\right|}{|z|}+\ldots+\frac{\left|a_{1}-a_{0}\right|}{|z|^{n-1}}+\frac{\left|a_{0}\right|}{|z|^{n}}\right\} \\
& >\left|a_{n}\right||z|^{n}|z+k-1|-|z|^{n}\left\{\left|k a_{n}-a_{n-1}\right|+\left|a_{n-1}-a_{n-2}\right|+\ldots+\left|a_{1}-a_{0}\right|+\left|a_{0}\right|\right\}
\end{aligned}
$$

By applying Lemma to the above inequality, we get

$$
\begin{aligned}
|F(z)| \geq & |z|^{n}\left[\left|a_{n}\right||z+K-1|-\left\{\left(K\left|a_{n}\right|-\left|a_{n-1}\right|\right) \cos \alpha+\left(K\left|a_{n}\right|+\left|a_{n-1}\right|\right) \sin \alpha+\left(\left|a_{n-1}\right|-\left|a_{n-2}\right|\right) \cos \alpha\right.\right. \\
& \left.+\left(\left|a_{n-1}\right|+\left|a_{n-2}\right|\right) \sin \alpha+\ldots+\left(\left|a_{1}\right|-\left|a_{0}\right|\right) \cos \alpha+\left(\left|a_{1}\right|+\left|a_{0}\right|\right) \sin \alpha+\left|a_{0}\right|\right\} \\
= & |z|^{n}\left[\left|a_{n}\right||z+K-1|-\left\{K\left|a_{n}\right|(\cos \alpha+\sin \alpha)-\left|a_{0}\right|(\cos \alpha+\sin \alpha-1)+2 \sin \alpha \sum_{j=0}^{n-1}\left|a_{j}\right|\right\}\right] .
\end{aligned}
$$

This shows that if $|z|>1$, then $|F(z)|>0$ if

$$
|z+k-1|>\frac{1}{\left|a_{n}\right|}\left[k\left|a_{n}\right|(\cos \alpha+\sin \alpha)-\left|a_{0}\right|(\cos \alpha+\sin \alpha-1)+2 \sin \alpha \sum_{j=0}^{n-1}\left|a_{j}\right|\right]
$$

Hence all the zeros of $F(z)$ with $|z|>1$ lie in

$$
\begin{equation*}
|z+k-1| \leq\left[k\left|a_{n}\right|(\cos \alpha+\sin \alpha)-\left|a_{0}\right|(\cos \alpha+\sin \alpha-1)+2 \sin \alpha \sum_{j=0}^{n-1}\left|a_{j}\right|\right] \tag{3.1}
\end{equation*}
$$

But those zeros of $F(z)$ with $|z| \leq 1$ already satisfy inequality (3.1). Since all the zeros of $p(z)$ are also the zeros of $F(z)$, therefore, it follows that all the zeros of $p(z)$ lie in the circle defined by (3.1) and this completes the proof of Theorem 1.

Proof of Theorem 2. Consider

$$
\begin{aligned}
F(z) & =(1-z) p(z) \\
& =-a_{n} z^{n+1}+\left(a_{n}-a_{n-1}\right) z^{n}+\ldots+\left(a_{1}-a_{0}\right) z+a_{0}
\end{aligned}
$$

Let $|z|>1$. Then for $0 \leq r \leq n-1$, we have

$$
\begin{aligned}
|F(z)| \geq & \left|a_{n} z^{n+1}-\left(a_{n}-a_{n-1}\right) z^{n}\right|-\left|\left(a_{n-1}-a_{n-2}\right) z^{n-1}+\ldots+\left(a_{1}-a_{0}\right) z^{n}+a_{0}\right| \\
\geq & \geq\left|z^{n}\right|\left|a_{n} z+a_{n-1}-a_{n}\right|-\left\{\left|a_{n-1}-a_{n-2}\right||z|^{n-1}+\left|a_{n-2}-a_{n-3}\right||z|^{n-2}+\ldots\left|a_{r+1}-a_{r}\right||z|^{r+1}\right. \\
& \left.\quad+\left|a_{r}-a_{r-1}\right||z|^{r}+\left|a_{r-1}-a_{r-2}\right||z|^{r-1}+\ldots+\left|a_{1}-a_{0}\right||z|+\left|a_{0}\right|\right\} \\
= & |z|^{n}\left[\left|a_{n} z+a_{n-1}-a_{n}\right|-\left\{\frac{\left|a_{n-1}-a_{n-2}\right|}{|z|}+\frac{\left|a_{n-2}-a_{n-3}\right|}{|z|^{2}}+\frac{\left|a_{r+1}-a_{r}\right|}{|z|^{n-r-1}}+\frac{\left|a_{r}-a_{r-1}\right|}{|z|^{n-r}}+\frac{\left|a_{r-1}-a_{r-2}\right|}{|z|^{n-r+1}}+\ldots\right.\right. \\
& \quad+\frac{\left|a_{2}-a_{1}\right|}{|z|^{n-2}}+\frac{\left|a_{1}-a_{0}\right|\left|a_{0}\right|}{|z|^{n-1}} \frac{\left.|z|^{n}\right\}}{}
\end{aligned}
$$

By applying lemma to the above inequality, we get

$$
\begin{aligned}
|F(z)| \geq & |z|^{n}\left[| a _ { n } z + a _ { n - 1 } - a _ { n } | \left\{\left(\left|a_{n-1}\right|-\left|a_{n-2}\right|\right) \cos \alpha+\left(\left|a_{n-1}\right|+\left|a_{n-2}\right|\right) \sin \alpha+\ldots\right.\right. \\
& +\left(\left|a_{r+1}\right|-\left|a_{r}\right|\right) \cos \alpha+\left(\left|a_{r+1}\right|+\left|a_{r}\right|\right) \sin \alpha+\left(\left|a_{r-1}\right|-\left|a_{r}\right|\right) \cos \alpha+\left(\left|a_{r}\right|+\left|a_{r-1}\right|\right) \sin \alpha \\
& \left.\left.+\left(\left|a_{r-2}\right|-\left|a_{r-1}\right|\right) \cos \alpha+\left(\left|a_{r-1}\right|+\left|a_{r-2}\right|\right) \sin \alpha+\ldots+\left(\left|a_{0}\right|-\left|a_{1}\right|\right) \cos \alpha+\left(\left|a_{1}\right|+\left|a_{0}\right|\right) \sin \alpha+\left|a_{0}\right|\right\}\right] \\
= & |z|^{n}\left[\left|a_{n} z+a_{n-1}-a_{n}\right|-\left\{\left|a_{n-1}\right|(\cos \alpha+\sin \alpha)-2\left|a_{r}\right| \cos \alpha+\left|a_{0}\right|(\cos \alpha-\sin \alpha+1)+2 \sum_{j=0}^{n-2}\left|a_{j}\right| \sin \alpha\right\}\right] \\
& >0
\end{aligned}
$$

if

$$
\left|z+\frac{a_{n-1}}{a_{n}}-1\right|>\frac{1}{\left|a_{n}\right|}\left[\left|a_{n-1}\right|(\cos \alpha+\sin \alpha)-2\left|a_{r}\right| \cos \alpha+\left|a_{0}\right|(\cos \alpha-\sin \alpha+1)+2 \sum_{j=0}^{n-2}\left|a_{j}\right| \sin \alpha\right]
$$

This shows that all the zeros of $F(z)$ with $|z|>1$ lie in

$$
\begin{equation*}
\left|z+\frac{a_{n-1}}{a_{n}}-1\right| \leq \frac{1}{\left|a_{n}\right|}\left[\left|a_{n-1}\right|(\cos \alpha+\sin \alpha)-2\left|a_{r}\right| \cos \alpha+\left|a_{0}\right|(\cos \alpha-\sin \alpha+1)+2 \sum_{j=0}^{n-2}\left|a_{j}\right| \sin \alpha\right] \tag{3.2}
\end{equation*}
$$

But those zeros of $F(z)$ with $|z| \leq 1$ already satisfy (3.2). Hence we conclude that all the zeros of $F(z)$ and therefore those of $p(z)$ lie in the circle defined by (3.2) and this completes the proof of Theorem 2.

Proof of Theorem 3. Consider

$$
\begin{aligned}
F(z) & =\left(1-z^{2}\right) p(z) \\
& =-a_{n} z^{n+2}-a_{n-1} z^{n+1}+\left(a_{n}-a_{n-2}\right) z^{n}+\left(a_{n-1}-a_{n-3}\right) z^{n-1}+\ldots+\left(a_{3}-a_{1}\right) z^{3}+\left(a_{2}-a_{0}\right) z^{2}+a_{1} z+a_{0} .
\end{aligned}
$$

Then for $|z|>1$, we have

$$
\begin{aligned}
|F(z)| & \geq|z|^{n}\left\{|z|\left|a_{n} z+a_{n-1}\right|-\left|\left(a_{n}-a_{n-2}\right)+\frac{\left(a_{n-1}-a_{n-3}\right)}{|z|}+\ldots+\left(a_{3}-a_{1}\right) \frac{1}{z^{n-3}}+\left(a_{2}-a_{0}\right) \frac{1}{z^{n-2}}+\frac{a_{1}}{z^{n-1}}+\frac{a_{0} \mid}{z^{n}}\right|\right\} \\
& \geq|z|^{n}\left[|z|\left|a_{n} z+a_{n-1}\right|-\left\{\left|a_{n}-a_{n-2}\right|+\frac{\left|a_{n-1}-a_{n-3}\right|}{|z|}+\ldots+\frac{\left|a_{3}-a_{1}\right|}{|z|^{n-3}}+\frac{\left|a_{2}-a_{0}\right|}{|z|^{n-2}}+\frac{\left|a_{1}\right|}{|z|^{n-1}}+\frac{a_{0}}{|z|^{n}}\right\}\right] \\
& >|z|^{n}\left[|z|\left|a_{n} z+a_{n-1}\right|-\left\{\left|a_{n}-a_{n-2}\right|+\left|a_{n-1}-a_{n-3}\right|+\ldots+\left|a_{2}-a_{0}\right|+\left|a_{1}\right|+\left|a_{0}\right|\right\}\right] \\
& >|z|^{n}\left[\left|a_{n} z+a_{n-1}\right|-\left\{\left(\alpha_{n}-\alpha_{n-2}\right)+\left(\left|\beta_{n}\right|+\left|\beta_{n-2}\right|\right)+\left(\alpha_{n-1}-\alpha_{n-3}\right)+\left(\left|\beta_{n-1}\right|+\left|\beta_{n-3}\right|\right)+\left(\alpha_{n-2}-\alpha_{n-4}\right)\right.\right. \\
& \left.\quad+\left(\left|\beta_{n-2}\right|+\left|\beta_{n-4}\right|\right)+\ldots .+\left(\left|\alpha_{1}\right|+\left|\beta_{1}\right|\right)+\left(\left|\alpha_{0}\right|+\left|\beta_{0}\right|\right)\right] \\
= & |z|^{n}\left[\left|a_{n}+a_{n-1}\right|-\left\{\left(\left|\alpha_{0}\right|-\alpha_{0}\right)+\left(\left|\alpha_{1}\right|-\alpha_{1}\right)+\left(\alpha_{n-1}+\left|\beta_{n-1}\right|\right)+\left(\alpha_{n}+\left|\beta_{n}\right|\right)+2 \sum_{j=0}^{n-2}\left|\beta_{j}\right|\right\}\right]
\end{aligned}
$$

This show that for $|z|>1,|F(z)|>0$, if

$$
\left|a_{n} z+a_{n-1}\right|>\left\{\left(\left|\alpha_{0}\right|-\alpha_{0}\right)+\left(\left|\alpha_{1}\right|-\alpha_{1}\right)+\left(\alpha_{n-1}+\left|\beta_{n-1}\right|\right)+\left(\alpha_{n}+\left|\beta_{n}\right|\right)+2 \sum_{j=0}^{n-2}\left|\beta_{j}\right|\right\} .
$$

Hence those zeros of $F(z)$ with $|z|>1$ lie in

$$
\begin{equation*}
\left|z+\frac{a_{n-1}}{a_{n}}\right| \leq \frac{1}{\left|a_{n}\right|}\left\{\left(\left|\alpha_{0}\right|-\alpha_{0}\right)+\left(\left|\alpha_{1}\right|-\alpha_{1}\right)+\left(\alpha_{n-1}+\left|\beta_{n-1}\right|\right)+\left(\alpha_{n}+\left|\beta_{n}\right|\right)+2 \sum_{j=0}^{n-2}\left|\beta_{j}\right|\right\} . \tag{3.3}
\end{equation*}
$$

Also those zeros of $F(z)$ with $|z| \leq 1$ already lie in the circle (3.3). Therefore we conclude that all the zeros of $F(z)$ and hence those of $p(z)$ lie in the circle (3.3). Hence Theorem 3 is proved.

Proof of Theorem 4. The proof of the Theorem 4 follows on the same lines as that of Theorem 3. We omit the details.

References

[1] A. Aziz and B.A. Zargar, Some extensions of Enestörm-Kakeya Theorem, Glasnik Mate., 51 (1996), 239-244.
[2] G.T. Cargo and O. Shisha, Zeros of polynomials and fractional order differences of their coefficients, J. Math. Anal. Appl., 7 (1963), 176-182.
[3] N.K. Govil and Q.I. Rahman, On the Eneström-Kakeya theorem, Tôhoku. Math. J., 20 (1968), 126-136.
[4] A. Joyal, G. Labelle and Q.I. Rahman, On the location of zeros of polynomials, Canad. Math. Bull., 10 (1967), 53-63.

