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ABSTRACT 
 Let G be a simple connected graph of order n. Let Dct(G, i) be the family of connected total dominating sets in G 

with cardinality i. The polynomial  Dct (G, x) = 
n

i  (G)ct 
 dct (G, i) xi is called the connected total domination 

polynomial of G. In this paper, we obtain a recursive formula for dct (
2
nP , i). Using this recursive formula, we construct 

the connected total domination polynomial  Dct (
2
nP , x) = 

n

i  
n 3

2



 

 
  

dct(
2
nP , i) xi , where dct (

2
nP , i) is the number of 

connected  total dominating sets of 2
nP  of cardinality i and some properties of this polynomial have been studied.  

Keywords: Square of Path, connected total dominating set, connected total domination number, connected total  
domination polynomial. 
 
1. Introduction 
 Let  G = (V, E) be a simple graph of order n. For any 
vertex vV, the open neighbourhood of v is the set           
N(v) = {uV/uvE} and the closed neighbourhood of v is 
the set N[v] = N(v)  {v}. For a set  S  V, the open 
neighbourhood of S is  N(S) = 

v S
  N(v) and the closed 

neighbourhood of S is N[S] = N(S)  S. The maximum 
degree of the graph G is denoted by (G) and the 
minimum degree is denoted by (G).  
 
 A set S of vertices in a graph G is said to be a total 
dominating set if every vertex vV is adjacent to an 
element of S. 
 A total dominating set S of G is called a connected 
total dominating set if the induced subgraph   S  is 
connected. 
 The minimum cardinality of a connected total 
dominating set of G is called the connected total 
domination number of G and is denoted by ct (G). 
 A connected total dominating set with carnality ct (G) 
is called ct -  set  . We use the notation  x   for the 
smallest integer greater than or equal to x and  x  for the 
largest integer less than or equal to x. Also, we denote the 
set {1, 2, . .  . ., n} by [n], throughout this paper. 

2. CONNECTED TOTAL DOMINATING SETS OF 
SQUARE OF PATHS 
 

 In this section, we state the connected total 
domination number of the square of path and some of its 
properties. 
 
Definition 2.1 
 
 Let G be a graph of order n with no isolated vertices. 
Let Dct (G, i) be the family of connected total dominating 
sets of G with cardinality i and let dct(G,i)=|Dct(G,i)|. 
Then the connected total domination polynomial Dct(G,x) 

of G is defined as  Dct(G,x)  =
n

i  (G)ct 
  dct(G,i) xi. 

Lemma  2.2 
 
 Let 2

nP  be the square of the path Pn with n vertices, 
then its connected total domination number is                      

ct (
2
nP ) = 

n 3
2
 

 
 

. 
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Lemma 2.3 
 Let 2

nP , n  6 be the square of path with |V( 2
nP ) | = n. 

Then dct(
2
nP  , i) = 0 if i  

n 3
2
 

 
 

   or   i  n and             

dct(
2
nP  , i)  0 if 

n 3
2
 

 
 

   i  n. 

Proof 

 If i  
n 3

2
 

 
 

 or i  n, then there is no connected 

total dominating set of cardinality i. Therefore,                
dct(

2
nP  , i) = . 

 By Lemma 2.2, the cardinality of the minimum 

connected total dominating set is 
n 3

2
 

 
 

. Therefore, 

dct(
2
nP  , i)  0 if i  

n 3
2
 

 
 

 and i  n. Hence, we have                             

dct(
2
nP  , i) = 0 if i  

n 3
2
 

 
 

 or i  n and dct(
2
nP  , i)  0 

if 
n 3

2
 

 
 

 i  n. 

Lemma 2.4 
 Let 2

nP , n  6 be the square of path with |V( 2
nP  )| = n. 

Then  
1. Dct (

2
nP  , i) =  if i  ct(

2
nP  ) or i  n. 

2. Dct ( 2
nP  , x) has no constant term and first degree 

terms. 
3. Dct (

2
nP  , x) is a strictly increasing function on [0,).  

Lemma  2.5 
 Let 2

nP , n  6 be the square of path with |V( 2
nP  )| = n. 

1. If Dct (
2
n  1 P  , i  1 ) =  and Dct (

2
n  3 P   , i 1) = , then 

Dct (
2
n  2 P  , i 1) = . 

2. If Dct (
2
n  1 P  , i 1)   and Dct (

2
n  3 P  , i 1)  , then 

Dct (
2
n  2 P  , i 1)  . 

3. If Dct ( 2
n  1 P  , i 1) = , Dct ( 2

n  2 P  , i 1) =  and             

Dct (
2
n  3 P  , i1) = , then Dct (

2
nP  , i ) = . 

Proof 
1. Since Dct ( 2

n  1 P   , i 1) =  and Dct (
2
n  3 P  , i 1) = , 

by Lemma 2.3, i1  n – 1 or i 1
n 4

2
 

 
 

 and           

i1  n – 3 or i 1
n 6

2
 

 
 

. Therefore, i1  n – 1 

or i1
n 6

2
 

 
 

. Hence  i1  n – 2 or                          

i 1
n 5

2
 

 
 

 holds.            

 Therefore, Dct (
2
n  2 P  , i 1) = .  

2.  Suppose that Dct (
2
n  2 P  , i 1) = , so by Lemma 2.3, 

we have i 1  n  2  or  i 1 
n 5

2
 

 
 

. If                  

i1  n  2, then i1  n – 3. Therefore,                     
Dct(

2
n  3 P  ,i1) = , a contradiction. If,                     

i1 
n 5

2
 

 
 

 , then  i 1 
n 4

2
 

 
 

. 

 Therefore,  Dct (
2
n  1 P  , i 1) = , a contradiction.  

 Therefore our assumption is wrong.  
 Therefore,  Dct (

2
n  2 P  , i 1)  . 

3. By hypothesis, i1 
n 4

2
 

 
 

 or i 1  n – 1 and             

i 1  
n 5

2
 

 
 

 or i 1  n – 2 and i 1  
n 6

2
 

 
 

 

or i 1  n – 3. Therefore, i 1 
n 6

2
 

 
 

 or              

i 1  n – 1. Therefore,  i  
n 3

2
 

 
 

 or i   n. 

Therefore Dct (
2
n  P  , i) = . 

 
Lemma  2.6 
 Let 2

nP , n  6 be the square of path with |V( 2
nP )|= n. 

Suppose that   Dct(
2
nP  , i )  , then we have  

1. Dct (
2
nP  , i 1) =  and Dct (

2
n  1 P  , i 1) =  if and only 

if n = 2k + 1 and i = k – 1 for some k  4.  
2. Dct ( 2

n  2 P  , i 1) = , Dct ( 2
n  3P  , i 1) =  and                 

Dct (
2
n  1 P  , i 1)   if and only if   i = n. 

3. Dct ( 2
n  1 P  , i 1)  , Dct ( 2

n  2 P  , i 1)    and                

Dct (
2
n  3P  , i 1) =  if and only if   i = n 1. 
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4. Dct ( 2
n  1 P  , i 1) = , Dct ( 2

n  2 P  , i 1)   and                  

Dct (
2
n  3P  , i 1)     if and only if  n = 2k + 1 and  

i = k – 1 for some k  4. 
5. Dct ( 2

n  1 P  , i 1)  , Dct ( 2
n  2 P  , i 1)   and                

Dct (
2
n  3P  , i 1)     if and only if             

   
n 4

2
 

 
 

 + 1  i  n – 2. 

Proof 
1.  Assume Dct (

2
n P , i 1) =  and Dct (

2
n  1 P  , i 1) = . 

Then by Lemma 2.3, i – 1  n  or i – 1  
n 3

2
 

 
 

 

and i – 1  n – 1 or   i – 1  
n 4

2
 

 
 

. Suppose               

i 1  n – 1, then  i  n. 
 Therefore, Dct (

2
nP , i ) = , which is a contradiction. 

So, i  
n 4

2
 

 
 

 + 1 and since  Dct (
2
nP  , i )  , we 

have 
n 3

2
 

 
 

  i  
n 4

2
 

 
 

+ 1  . . . . . .(1) 

 If n  2k+1, then we obtain an inequality of the form             
s  i  s, which is not possible. When n = 2k+1, (1) holds 
and in this case i = k – 1. 
Conversely, assume n = 2k +1 and i = k  1. Therefore 
n1 = 2k and i 1 = k  2. 

 k  2  k  1 = 
n 3

2


.  

Therefore, k  2  
n 3

2
 

 
 

. That is i – 1  
n 3

2
 

 
 

. 

Therefore, Dct (
2
nP , i 1) = . 

   Also,    i 1  =  k – 2 

                = 
n 1

2


  2 

    = 
n 5

2
 

 
 

  
n 4

2
 

 
 

 

 Therefore,  Dct (
2
n  1 P  , i 1) = . 

2. Assume Dct (
2
n  2 P  , i 1) = , and Dct (

2
n  3 P  , i 1) = . 

 Then by Lemma 2.3, we have, i – 1  n  2 or                     

i  1  
n 5

2
 

 
 

  and i  1  n  3 

  or i – 1  
n 6

2
 

 
 

 

 If i – 1  
n 5

2
 

 
 

, then i – 1  
n 4

2
 

 
 

 .  

Therefore by Lemma 2.3, Dct (
2
n  1 P  , i 1) = , which is a 

contradiction. 
So we have i  1  n  2 that is i  n  1. Therefore i  n. 
Also, since Dct (

2
nP , i )  , i  n. Combining these we get 

i = n. 
Conversely if i = n, 
 Dct (

2
n  2 P  , i1 ) = Dct (

2
n  2 P  , n1 ) = , 

 Dct ( 2
n  3 P  ,i1 ) = Dct ( 2

n  3 P  , n1 ) =  and                      

Dct (
2
n  1 P  ,i1 ) = Dct (

2
n  1 P  , n1 )  . 

3.  Assume Dct (
2
n  1 P  , i 1)  , Dct (

2
n  2 P   , i 1)   and 

Dct (
2
n  3P  , i 1) = . 

 Since Dct (
2
n  3P  , i 1) = , then by Lemma 2.3, 

  i 1 n  3  or i 1  
n 6

2
 

 
 

.. . . . .(1) 

 Since Dct (
2
n  1P  , i 1)  , we have , 

   
n 4

2
 

 
 

  i 1  n 2.  . . . . . . .(2) 

 Suppose i 1  
n 6

2
 

 
 

, then (2) does not hold. 

 Therefore our assumption is wrong. 
 Therefore i 1  n 3. 
 Also, since Dct (

2
n  2P   , i 1)  ,  

    
n 5

2
 

 
 

 i 1  n 2. . . . . . . .(3) 

 But i 1  n 3. 
 Therefore i 1  n 2.  . . . . . . .(4) 
 From (3) and (4) we get  

      i 1 = n 2. 
 Therefore i = n 1. 
Conversely, suppose i = n 1.  
Then Dct(

2
n  1P  ,i 1) = Dct(

2
n  1P  , n2)  ,         

  Dct(
2
n  2P  , i 1) = Dct (

2
n  2P  , n2)   and  

Dct(
2
n  3 P  , i 1) = Dct (

2
n  3 P   , n 2) = , 

 since n 2  n 3. 
 That is Dct (

2
n  3 P  , i1) = . 
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4. Assume Dct ( 2
n  1P  , i1) = , Dct ( 2

n  2P  , i1)  , and  

Dct (
2
n  3 P  , i1)  .  

 Since, Dct (
2
n  1P  , i1) = , by Lemma 2.3, i 1  n 1         

or i 1  
n 4

2
 

 
 

.  

If i 1  n 1, then     i 1  n 2 and i 1  n 3. 
Therefore Dct ( 2

n  2P  , i1) = , and Dct ( 2
n  3 P  , i1) = , 

which is a contradiction.  

 Therefore i 1  
n 4

2
 

 
 

 . . . . .. . . .(1) 

Since Dct (
2
n  2P  , i1)  , we have 

n 5
2
 

 
 

 i1  n 2 

                                            . . . . .. . . .(2) 
and since  Dct (

2
n  3 P  ,i1)  , we have             

  
n 6

2
 

 
 

  i 1  n 3.                        . . . . .. . . .(3) 

Since Dct (
2
nP i)  ,  we have 

n 3
2
 

 
 

  i   n 1. 

Therefore, 
n 3

2
 

 
 

 1  i 1  n 2      . . . . . . .(4) 

By combining all the above inequalities, we have,  
n 3

2
 

 
 

1  i 1 
n 4

2
 

 
 

.    . . . . . . .(5) 

 When n  2k+1, we get an inequality of the form           
s  i 1  s, which is not possible. When n = 2k+1, we 
have s  i 1  s + 1. Therefore (5) holds hood. In this 
case  i = k 1. 
 Conversely, assume n = 2k + 1 and i = k – 1. 
Therefore, n 1 = 2k and i 1 = k 2. Therefore                

k = 
n 1

2


 and  k 1 = 
n 3

2


   i – 1 = k  2 

   =  
n 1

2


  2  

   =  
n 5

2


  
n 4

2
 

 
 

 

Therefore,  Dct (
2
n  1 P  , i – 1 ) = 

Also, Dct ( 2
n  2P  , i – 1 ) = Dct ( 2

2k  1P  , k – 2 )  since 

2k 1 3 2k 4
 = 

2 2
     

   
   

= k – 2 and 

Dct ( 2
n  3P  , i – 1) = Dct ( 2

2k  2P  , k – 2 )   

since
2k 2 3 2k 5

 = 
2 2
     

   
   

= k – 2 . 

5) Assume Dct ( 2
n  1 P  , i1)  , Dct ( 2

n  2P  , i1)  , and 

Dct (
2
n  3P  , i1)  . 

Then by Lemma 2.3, we have  
n 4

2
 

 
 

  i 1  n  1,  
n 5

2
 

 
 

  i 1  n 2,  and 

n 6
2
 

 
 

  i 1  n 3. 

Also, since Dct (
2
nP  , i)  , we have 

n 3
2
 

 
 

  i  n.                                                  

Therefore,  
n 3

2
 

 
 

 1  i 1  n 1. 

Therefore, 
n 4

2
 

 
 

 1  i   n 2 . 

Conversely , suppose 
n 4

2
 

 
 

 1  i   n 2 . 

Therefore, 
n 4

2
 

 
 

 i 1  n 3  

and 
n 5

2
 

 
 

  i 1  n 2, 
n 6

2
 

 
 

   i 1  n 3 and 

n 4
2
 

 
 

 i 1  n 1 . 

From these, we obtain  Dct (
2
n  1P  , i1)  ,                              

 Dct (
2
n  2P  , i1)   and Dct (

2
n  3P  , i1)  . 

Theorem 2.7 

 For every n  6 and i > 
n 3

2
 

 
 

, 

1.  Dct (
2
2n  1P  , n1) = {{ 3, 5, 7, 9, ……. }} 

2.  If Dct ( 2
n  2P  , i – 1)= , Dct ( 2

n  3P  , i – 1) = and         

Dct ( 2
n  1P  , i – 1)  ,  then Dct ( 2

n P , i) = Dct ( 2
n P ,n)      

= {{1,2,3,…….., n}}. 
3. If Dct ( 2

n  1P  , i1)  ,  Dct ( 2
n  2P  , i1)   and                 

Dct (
2

n  3P  , i1) =  then  

 Dct (
2
nP , n1) = {[n]  {x}| x [n]} 
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4.  If Dct (
2

n  1P  , i 1)     , Dct (
2

n  2P  , i  1)   then  

 Dct (
2

n P , i) = {{ X  {n} if n 1  X}   
   { X  { n1} if n – 2  X}  
   { X  { n2} if n 3  X}   
   { Y  {n} if n  2  Y}    
   Y  { n  1) if n3  Y }}, 
 where X  Dct (

2
n  1P  , i1) and  Y  Dct (

2
n  2P  , i  1). 

Proof 
1.  For every n  6, 
 Dct ( 2

2n  1P  , n  1) = {{ 3,5, 7,9, …., (2n + 1) – 6,             
(2n + 1) – 4, (2n + 1) – 2}} 

2.  Since Dct (
2

n  2P  , i  1) = , Dct (
2

n  3P  , i  1) =  and 

Dct (
2

n  1P  , i  1)  , by   Lemma 2.6 (2), i = n. 

 Therefore, Dct (
2
nP , i) = Dct (

2
nP , n) = {[n]}. 

3.  If Dct ( 2
n  1P  , i1) , Dct ( 2

n  2P  , i1)   and               

Dct (
2

n  3P  , i1) = , then by  Lemma 2.5, i = n 1. 

 Therefore, Dct (
2
nP , i) = Dct (

2
nP , n1)  = 

                  {[n] – {x}| x[n]}. 
4.  The Construction of  Dct(

2
nP , i) from Dct ( 2

n  1P  , i1) 

and D t (
2

n  2P  , i1) is as follows: 

 Let X be a connected total dominating set of 2
n  1P   

with cardinality i1. All the elements of Dct ( 2
n  1P  , i1) 

end with n1 or n2 or n3. Therefore, when n1 X, 
adjoin n with X and when n 2  X adjoin n 1 with X 
and when n 3  X adjoin n2 with X. Hence every X of 
Dct (

2
n  1P  , i1) belongs to Dct (

2
n P , i) by adjoining {n} or 

{n1} or {n2} only. 
 Now let us consider Dct ( 2

n  2P  , i1). Here all the 

elements of Dct (
2

n  2P  , i1) end with n2 or n3. Let Y be 

the connected total dominating set of 2
n  2P   with 

cardinality i1. Therefore, when n2 Y, adjoin n with Y 
and when n-3  Y, adjoin n1 with Y. Hence, every Y of 
Dct (

2
n  2P  , i1) belongs to Dct (

2
n P ,i) by adjoining {n} or 

{n-1} only. Hence, we cover all the elements of                   
Dct ( 2

n P , i) by means of the elements of Dct ( 2
n  1P  , i1) 

and Dct (
2

n  2P  , i1). 

 Conversely, suppose Z  Dct ( 2
n P , i). Here all the 

elements of  Dct (
2

n P , i) end with n or n – 1 or n – 2.  
 Suppose n   Z, then Z = X  {n}, where                  
X  Dct ( 2

n -1 P , i – 1) and X ends with n – 1 or                        

Z = Y  {n}, where Y  Dct ( 2
n  2P  , i – 1) and Y ends 

with n – 2.  

 Suppose n – 1   Z, then Z = X  {n – 1}, where            
X  Dct ( 2

n -1 P , i – 1) and X ends with n – 2 or                    

Z = Y  {n – 1}, where Y  Dct (
2

n  2P  , i – 1) and Y ends 
with n – 3.  
 Suppose n – 2   Z, then Z = X  {n – 2}, where             
X  Dct (

2
n -1 P , i – 1) and X ends with n – 3.  

  
Theorem 2.8 
 If Dct ( 2

nP , i) is the family of the connected total 

dominating sets of 2
nP  with cardinality i,                  

where   i  
n 3

2
 

 
 

, then  

 dct (
2
nP ,i) = dct (

2
n  1P  , i1) +  dct (

2
n  2P  , i1) 

Proof 
 From theorem 2.7, we consider all the three cases 

as given below,  where i  
n 3

2
 

 
 

. 

i)  If Dct (
2

n  1P  , i1) =  and Dct (
2

n  2P  , i1)  =  then 

Dct (
2
nP , i) = . 

ii) If Dct (
2

n  1P  , i1)   and Dct (
2

n  2P  , i1) = , then  

 Dct (
2
nP , i) = {{n} U X| X  Dct (

2
n  1P  , i1)} 

iii) If Dct (
2

n  1P  , i1)   and Dct (
2

n  2P  , i1)    then 

Dct (
2
nP , i) = 

{ X {n}       if   n 1  X}  
{ X {n 1}  if   n 2  X}  
{ X {n 2}  if   n 3  X}  
{ Y {n}       if   n 2  Y}  
{ Y {n 1}  if   n 3  Y}  

   
         
   
    

   

 Where X  Dct (
2

n  1P  , i1) and Y  Dct (
2

n  2P  , i1). 
 From the above construction in each case, we obtain 
that, dct (

2
nP , i) = dct(

2
n  1P  , i1) + dct (

2
n  2P  , i1) 

 
3. Connected Total Domination Polynomial of square 
of paths 
Definition 3.1 
 Let Dct ( 2

nP , i) be the family of connected total 

dominating sets of 2
nP  with cardinality i and let                      

dct ( 2
nP , i) = | Dct ( 2

nP , i) |. Then the connected total 

domination Ploynomial Dct (
2
nP , x) of 2

nP  is defined as, 

  Dct (
2
nP , x) =  

2
n

n

i  (P )ct 
 dct (

2
nP , i) xi.  
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Theorem 3.2 
 For every  n  8,  
  Dct (

2
nP , x) = x [Dct (

2
n  - 1 P , x) + Dct (

2
n  - 2 P , x)] 

with initial values 
Dct (

2
2P , x) = x2, 

Dct (
2

3P , x) = x3 + 3x2, 

Dct (
2

4P , x) = x4 + 4x3 + 5x2 

Dct (
2

5P , x) = x5 + 5x4 + 8 x3 + 5x2 

Dct (
2

6P , x) = x6 + 6x5 + 12x4 + 10x3 + 3x2 

Dct (
2

7P , x) = x7 + 7x6 + 17 x5 + 18x4 + 8x3 + x2. 
Proof  
 We have, 
 dct (

2
nP , i) = dct (

2
n  1P  , i1) + dct (

2
n  2P  , i1). 

Therefore,  
dct(

2
nP , i) xi  = dct (

2
n  1P  , i1) xi + dct (

2
n  2P  , i1) xi  

dct(
2
nP , i) xi = dct(

2
n  1P  , i1) xi +dct (

2
n  2P  , i1) xi  

dct(
2
nP ,i) xi = xdct(

2
n  1P  , i1) xi-1 + xdct (

2
n  2P  , i1)xi-1. 

Dct(
2
nP , x) = x Dct(

2
n  1P  , x) + x Dct (

2
n  2P  , x) 

Dct(
2
nP , x) = x [ Dct(

2
n  1P  , x) + Dct (

2
n  2P  , x)]. 

with the initial values, 
Dct (

2
2P , x) = x2, 

Dct (
2

3P , x) = x3 + 3x2, 

Dct (
2

4P , x) = x4 + 4x3 + 5x2 

Dct (
2

5P , x) = x5 + 5x4 + 8 x3 + 5x2 

Dct (
2

6P , x) = x6 + 6x5 + 12x4 + 10x3 + 3x2 

Dct (
2

7P , x) = x7 + 7x6 + 17 x5 + 18x4 + 8x3 + x2. 
 
We obtain dct (

2
nP , i), for 2  n  15 as shown in Table 1.  

 
 
 

 
Table 1 

dct( 2
nP , i),  the number of connected total dominating sets of 2

nP  with cardinality i. 

i 
n 

2 3 4 5 6 7 8 9 10 11 12 13 14 15 

2 1              

3 3 1             

4 5 4 1            

5 5 8 5 1           

6 3 10 12 6 1          

7 1 8 18 17 7 1         

8 0 4 18 30 23 8 1        

9 0 1 12 36 47 30 9 1       

10 0 0 5 30 66 70 38 10 1      

11 0 0 1 17 66 113 100 47 11 1     

12 0 0 0 6 47 132 183 138 57 12 1    

13 0 0 0 1 23 113 116 283 185 68 13 1   

14 0 0 0 0 7 70 245 299 421 242 80 14 1  

15 0 0 0 0 1 30 183 256 582 606 310 93 15 1 
 

  
 In the following theorem, we obtain some 
properties of dct(

2
nP , i). 
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Theorem 3.3 
 The following Properties hold for the coefficients 
of Dct(

2
nP , x). 

1. dct(
2
nP , n) = 1, for every n  2. 

2. dct(
2
nP , n  1) = n, for every n  3. 

3. dct(
2
nP , n  2) = 

1
2

[n2  3 n+6],  for every n  4. 

4. dct(
2
nP , n  3) = 

1
6

[n3  9n2 + 38n – 60],  for  

       every n  5. 
5. dct(

2
2 n + 1P , n  1) =1, for every n  3. 

6. dct(
2

2 nP , n1) = n, for every n  3. 
Proof  
1. Since Dct (

2
nP , n) = { [n] }, we have the result.  

2. Since Dct (
2
nP , n1) = { [n]  {x} / x [n]}, 

          we have dct (
2
nP , n  1) = n. 

3. To prove, dct(
2
nP , n2) = 

1
2

[ n2  3n + 6], for every 

n  4, we apply induction  on n. 
 When n = 4, 
L. H. S = dct (

2
4P , 4 – 2 ) = dct (

2
4P , 2) = 5 (from the 

table) and  

R. H. S = 
1
2

 [ n2 – 3n + 6] = 
1
2

 [ 42  3  4 + 6] = 5 

 Therefore, the results is true for n = 4.  
Now, suppose that the result is true for all numbers less 
than 'n' and we prove it for n. 
 By theorem 3.2, we have,  
dct (

2
nP , n – 2) = dct (

2
n  1 P  , n – 3) + dct (

2
n  2 P  , n – 3). 

            = 
1
2

 [(n1)2 – 3(n – 1) + 6] + n2. 

            = 
1
2

 [n2 – 2n + 1 – 3n + 3 + 6 + 2n – 4]. 

           = 
1
2

 [n2 – 3n + 6].  

  Hence the result is true for all n.  

4. To prove, dct(
2
nP , n 3) = 

1
6

 [n3 – 9n2 + 38n – 60], for 

every n  5, we apply induction   on n. 
When n = 5, L.H.S = dct(

2
5P , 2) = 5 (from the table) and  

R.H.S = 
1
6

 [53 – 9 52 + 38 5 – 60 ] = 5. 

Therefore the result is true for n = 5. 
Now, suppose that the result is true for all numbers less 
than ‘n’ and we prove it for n. 
By Theorem 3.2, we have,  
dct(

2
nP , n 3) = dct(

2
n   1 P  , n 4)+ dct(

2
n   2 P  , n 4). 

 = 
1
6

 [(n – 1)3 – 9 (n – 1)2+ 38(n – 1) – 60 ]  

    + 
1
2

 [(n- 2)2 – 3(n – 2) + 6]. 

= 
1
6

 [(n3 – 3n 2+ 3n – 1) – 9 (n2 – 2 n + 1) + 38n – 38 – 60]  

   + 
1
2

 [ (n2 – 4 n + 4 – 3n + 6 + 6]. 

= 
1
6

 [(n3 – 3n 2+ 3n – 1– 9n2 + 18 n   9 + 38n – 38 – 60  

   + 3n2 – 21n + 48].  

= 
1
6

 [ n3   9n2 + 38n – 60]. 

Hence, the result is true for all n. 
5) Since Dct(

2
2 n   1 P  , n – 1) = {3,5,7,9, . . ., (2n + 1) – 6 , 

(2n + 1) – 4, (2n + 1)  2}, we 
 have, dct (

2
2 n   1 P  , n – 1)  = 1. 

6) To prove, dct (
2

2 n  P , n – 1) = n, for every n   3, we 
apply induction on n. 

 When n = 3, 
 L.H.S = dct (

2
6  P , 2) = 3 (from the table) and  

 R.H.S = n = 3. 
 Therefore, the result is true for n = 3.  
Now, suppose that the result is true for all numbers less 
than 'n' and we prove it for n. By Theorem 3.2, we 
have,  
dct(

2
2 n  P , n – 1)  =  dct(

2
2 n   1 P  , n – 2) + dct(

2
2 n   2 P  , n – 2) 

              = 1+ n – 1 = n 
 Therefore, the result is true for all n  3. 
 
5. Conclusion 

 
 In this paper, the connected total domination 
polynomials of square of paths has been derived by 
identifying its connected total dominating sets. It also 
helps us to characterize the connected total dominating 
sets and to find the number of connected total 
dominating sets of cardinality i. We can generalize this 
study to any power of the path and some interesting 
properties can be obtained via the roots of the 
connected total domination polynomial of k

n   P . 
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