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ABSTRACT

Let G be a simple connected graph of order n. Let D(G, i) be the family of connected total dominating sets in G

with cardinality i. The polynomial

n
Dct (G! X) = . z

de (G, i) X' is called the connected total domination

polynomial of G. In this paper, we obtain a recursive formula for d ( Prf, i). Using this recursive formula, we construct

the connected total domination polynomial D ( Prf, X) =

n _
> da( P2, i) x', where de (P?, i) is the number of
n-3

2

connected total dominating sets of P: of cardinality i and some properties of this polynomial have been studied.
Keywords: Square of Path, connected total dominating set, connected total domination number, connected total

domination polynomial.

1. Introduction

Let G =(V, E) be a simple graph of order n. For any
vertex veV, the open neighbourhood of v is the set
N(v) = {ueV/uveE} and the closed neighbourhood of v is
the set N[v] = N(v) u {v}. For a set S c V, the open
neighbourhood of S is N(S) = |J N(v) and the closed

veS
neighbourhood of S is N[S] = N(S) U S. The maximum
degree of the graph G is denoted by A(G) and the
minimum degree is denoted by 3(G).

A set S of vertices in a graph G is said to be a total
dominating set if every vertex veV is adjacent to an
element of S.

A total dominating set S of G is called a connected
total dominating set if the induced subgraph ( S ) is
connected.

The minimum cardinality of a connected total
dominating set of G is called the connected total
domination number of G and is denoted by v (G).

A connected total dominating set with carnality y¢ (G)
is called y, - set  We use the notation [ x ] for the
smallest integer greater than or equal to x and | x  for the
largest integer less than or equal to x. Also, we denote the
set {1, 2, .. .., n} by [n], throughout this paper.

2. CONNECTED TOTAL DOMINATING SETS OF
SQUARE OF PATHS

In this section, we state the connected total
domination number of the square of path and some of its
properties.

Definition 2.1

Let G be a graph of order n with no isolated vertices.
Let D¢ (G, i) be the family of connected total dominating
sets of G with cardinality i and let dc«(G,i)=|D(G,i)|.
Then the connected total domination polynomial D¢(G,x)

n _
of Gis defined as D.(G,x) = > det(G,i) x".
Lemma 2.2

Let Prf be the square of the path P, with n vertices,
then its connected total domination number is

(P?) = n-3
Vet nl = 5 .
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Lemma 2.3
Let P?, n>6 be the square of path with |V(P?) | =n.
2 . ie . n_3 .
Then de(P; , i) = 0ifi < T or i>n and
2 . . n_3 .
de( P, i) > 0if — <i<n.

Proof

n-3
Ifi< IVT—I or i > n, then there is no connected

total dominating set of cardinality i. Therefore,
de( P2, i) = .
By Lemma 2.2, the cardinality of the minimum

n-3
connected total dominating set is IVT—I Therefore,

du(P2 i) >0ifi> |VT“ and i < n. Hence, we have

n-3
dct(Prf,i):Oifi<{T—Iori>nanddm(|3§,i)>0

n-3
if <i<n.
=

Lemma 2.4
Let P?, n> 6 be the square of path with [V(P? )| =n.
Then
1. Da(P?,i)=¢ifi<ya(P?)ori>n.
2. Dy (P?

n !

X) has no constant term and first degree
terms.
3. Dg( Pf , X) is a strictly increasing function on [0,00).
Lemma 2.5
Let P2, n> 6 be the square of path with [V(P? )| = n.

1. 1fDu (P2, ,i-1)=¢and De (P2, ,i-1) = ¢, then
D (P2, ,i-1)=9¢.

2. 1f D (P2, ,i-1)#¢and Dy (P2, ,i-1) # ¢, then
Dt (P2, ,i-1) # 0.

3. If D (P2,,i-1) = ¢, Do (P2,, i -1) = ¢ and
Dot (P2, ,i-1) = ¢, then Det (PZ, i) = ¢.

Proof

1. Since De (P2, ,i-1) = ¢ and Dee (P2, , i 1) = ¢,

n-4
by Lemma 2.3, i-1 >n-1ori —1<’7 > —I and

i-1>n-3ori —1<’7 —I Therefore, i-1 >n -1

_ n-6 .
or i-1< > . Hence i-1 > n - 2 or

n->5
i—1< holds.

Therefore, De: ( Pj_Z ,i-1) = ¢.
2. Suppose that Dy (P? ,, i -1) = ¢, so by Lemma 2.3,

n-2"1

n->5
we have i -1 >n -2 or i -1 < > CIf

i-1 > n — 2, then i-1 > n - 3. Therefore,
Du(PZ,,i-1) = ¢, a contradiction. If,

n-5 n-4
i-1<| —— |,then i -1< .

Therefore, D¢ ( Pj_l , i =1) = ¢, a contradiction.
Therefore our assumption is wrong.
Therefore, D¢ ( Pj_z ,i=1) = o.
n-4
3. By hypothesis, i —1< T ori-1>n-1and

n-5 n-6
i-1<| —— |ori-1>n-2andi-1<| —
2 2

n-6
or i -1 > n — 3. Therefore, i -1< T or

i =1 > n — 1. Therefore, i < {T—‘ ori >n.
Therefore Do (P2 | i) = ¢.

Lemma 2.6
Let P, n > 6 be the square of path with [V(P?)|=n.

Suppose that Dg( Prf , 1) # ¢, then we have

1. Dg(P?,i-1)=¢and Dy (P?,,i-1)=¢ifand only

ifn=2k+1andi=k-1 for some k > 4.

2. Dy (PZ,, i -1) = ¢, D (PZ,, i -1) = ¢ and
Dee (P2, ,i-1) = ¢ifand onlyif i=n.

3. Da (PZ,,i-1)# ¢ Do (P?,,i-1) # ¢ and
De (P2 ,,i-1)=¢ifand only if i=n-1.
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4. D (PZ,, i -1) = ¢ D (P2,, i -1) # ¢ and
Dee (P2 ,,i-1)# ¢ ifand onlyif n=2k+ 1 and

i =k-1 for some k > 4.

5. D (Pr,, i -1) # ¢ Du (P, ,, i -1) # ¢ and
Dec (P2 ,,i-1)# ¢ ifand only if
n-4
— |+1<ign-2.
2
Proof

1. Assume D¢ (P2, i-1) = ¢ and Dy (P2, , i -1) = ¢.
n-3
Then by Lemma 2.3, i—-1>n ori—-1< T

. . n-4
andi—-1>n-1or i-1c< T . Suppose

i-1>n-1,then i>n.
Therefore, D ( Pj, i ) = ¢, which is a contradiction.

n-4
So, i < IVT—I + 1 and since Dg (PZ, i) = ¢, we

n-3 n-4
have | —— [ i< +1
R

If n = 2k+1, then we obtain an inequality of the form
s <i <s, which is not possible. When n = 2k+1, (1) holds
and in this case i = k — 1.

Conversely, assume n = 2k +1 and i = k — 1. Therefore
n-1=2kandi-1=Kk-2.
n-3
k-2<k-1= ——.
2
n-3 n-3
Therefore, k =2 < | —— |. Thatisi-1<| —— |.
2 2
Therefore, Dq; ( Pﬁ, i-1) = o.
Also, i-1 = k-2
n-1
=—-2
2
n —

T

Therefore, Dg (P2, ,i-1)=¢.

2. Assume D¢ ( Pj_Z ,i—1)=¢,and Dct(Pj_3 ,i-1)=¢.
Then by Lemma 2.3, we have, i — 1 >n — 2 or

n-5
i—1<{7—‘ andi—-1>n-3

) n-6
ori-1<| ——
2
n-5 n-4
fi-1<| — |, theni-1<| — |.
2 2

Therefore by Lemma 2.3, D (P2 i —=1) = ¢, which is a

n-1"
contradiction.
Sowehavei—-1>n-2thatisi>n-1. Thereforei >n.

Also, since D ( Pﬁ, i) # ¢, i <n.Combining these we get

Convelrs;elr;/.if i=n,
D (P2, ,i-1) =D (P?,,n-1)=4¢,
Do (P2,,i-1 ) = Do (P2,, n-1 ) = ¢ and
Do (P2, ,i-1) =D (P2, n-1) # ¢.
3. Assume Do (P2, i-1)# ¢, Dot (P2, ,i-1) # ¢ and

Du (P2 ,,i-1) = 0.
Since D¢, (P? ., i -1) = ¢, then by Lemma 2.3,

n-3?

_ _ {n—G]
i-1l>n-3ori—-1<|——|...... Q)

Since D¢ ( P?

N4 i cne )
—_— (1 -1=NnN-<Z .......
2

n
Suppose i -1 < {T —‘ then (2) does not hold.

i —1) # ¢, we have ,

Therefore our assumption is wrong.
Therefore i =1 > n -3.

Also, since Dg; ( Pj_z Li-1) = ¢,

Ll P 3)
<l1-1n-Z.......
2

Buti-1>n-3.
Thereforei -1 >n -2.
From (3) and (4) we get
i-1=n-2.
Therefore i = n —1.
Conversely, suppose i =n —1.

Then Do P2 | i -1) = Da(PZ,, n-2) # ¢,
Du(P?,,i-1) =Du (P?,, n-2) # ¢ and
Da(P?,,i-1)=De (P, ., n—-2)=¢,

since n —2 > n -3.
That is De (P2, , i-1) = ¢.
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4.Assume D (P?,,i-1) = ¢, Dot (P2, i-1) # ¢, and Dy (P2,, i = 1) = Dx (P, ,. k = 2 ) = ¢,
D (P, . i-1) # ¢. - [2k-2-3 2k -5
: 2 , since| ——— | = | —— |[=k-2.
Since, D (P, , i-1) = ¢, by Lemma 2.3, i -1 >n -1 2 2
i1 n-4 5) Assume D (Pj_l, i-1) # ¢, Det (Pj_z, i-1) = ¢, and
orl—-1< | ——|.
2 Du (P2, i-1) # ¢
If i -1 > n -1, then i-1>n-2andi-1>n -3. ThenbyLemma 2.3, we have

Therefore Do (P2 ,, i-1) = ¢, and Do (PZ,, i-1) = ¢, n-4 ) n-5
> <i-1<n-1,

which is a contradiction. 2 —I <i-1<n-2 and

n-4
Thereforei—1<{——l e (D {H—G—‘ )
2 — | <i-1<n-3
2
. 2 . n_5 .
Since D¢ (P;_,, i-1) # ¢, we have <i-1<n-=2 . , n-3 )
" 2 AIso,smceDct(Pn,|)¢¢,Wehave T <i<n.
......... 2) 3
. 2 i n—
and since D¢ (P, _, ,i-1) # ¢, we have Therefore, { —‘ l<il<n-1
UL PR 3 ?
T <i-1<n-3. ... 3) n_4

Therefore, ’7——| +1<i <n-2.
. 2 . n_3 . 2
Since Dci (P, i) # ¢, we have T <i <n-1. n_4
Conversely , suppose {——l +1<i <n-2.
Theref LU B 4 ?
-1<1-1<n-2  .......
erefore, > <i-1<n 4) n_4

Therefore, ’7 —Ig i-1<n-3

By combining all the above inequalities, we have,

2
n-3 n-4
: n-5 n-6
-l=<i-1< S (®) and | —— [ <i-1<n-2,| —— | <i-1<n-3and
2 2 2 2

When n = 2k+1, we get an inequality of the form
s <i -1 <s, which is not possible. When n = 2k+1, we n-4 <i-l<n-1
have s <i -1 <s + 1. Therefore (5) holds hood. In this 2 | B '
case i=k-1. . , .
Conversely, assume n = 2k + L and i =k — 1. From these, we obtain D (P, i-1) # ¢,
Therefore, n— 1 = 2k and i— 1 = k- 2. Therefore Dat (PZ,, i-1) # ¢ and Dt (P2 ,, i-1) # ¢
n-1 n-3
K= and k1= —° i_1=Kk-2 Theorem 2.7
2 2 - 5 and n-3
oreveryn>6andi>| — |,
= n__l -2 2
. Da(PZ.,,n-1)={{3,579, ... 1
n-5 n-4 2 _ ;. _
= > < T 2. If Dy (P, ,,i-1)=4¢ D (P ,, i-1)=¢ and
Da (P?,, i = 1) # ¢, then D (P?, i) = Dee (P?,n)
Therefore, Do (P, ,i—1)=¢. ={{1,2,3,........ . n}}.
Also, Dy (P2, i-1) =Dy (P2, k=2)#¢,since 3. If Do (P2, i-1) = ¢, Du (P, i-1) = ¢ and
2k -1-3 2k -4 De (P, i-1) = ¢ then
| =| —— |[=k-=-2and 2
2 2 Dei (P, n-1) = {[n] - {x}| xe [n]}
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4. IfD(P?,,i-1) #¢ Du(P’,,i—1)#¢then
D (P?, i) ={{Xu{n}ifn-1eX}u
{Xu{n-1}ifn-2e X}u
{Xu{n-2}ifn-3e X}u
{Yu{n}ifn-2eY} U
Yu{n-1)ifn-3eY}}
where X € D (P? |, i-1)and Y e Do (P?,,i-1).
Proof
1. Foreveryn>6,

Do (P2, n—-1)={{35 79 .., (2n + 1) - 6,
(2n+1)-4,(2n+1)-2}}

2. Since Dy (P?,,i-1)=¢, Do (P’ ,,i-1) = ¢and
D (P?,,i—1)# ¢, by Lemma2.6(2),i=n.
Therefore, D¢, (P2, i) = Dee (PZ, n) = {[n]}.

3. If Do (P?,, i-1) #¢, Do (P?,, i-1) # ¢ and
D (P?,,i-1) = ¢, then by Lemma 2.5,i=n -1,
Therefore, Dg; (P2, i) = Dot (P?, n-1) =

{[n] - {x}I xe[n]}.
i) from Do (P? |, i-1)

-2

4. The Construction of Dg(P?,
and D, (P ,, i-1) is as follows:
Let X be a connected total dominating set of Pnz_l

with cardinality i-1. All the elements of D (Pnz_l, i-1)

end with n=1 or n-2 or n-3. Therefore, when n-1 eX,
adjoin n with X and when n —2 € X adjoin n -1 with X
and when n =3 € X adjoin n-2 with X. Hence every X of

De (P?_,, i-1) belongs to D¢ (P?, i) by adjoining {n} or
{n-1} or {n-2} only.

Now let us consider D¢ (Pnz_z, i—1). Here all the

elements of D ( PHZ_Z, i—1) end with n—2 or n-3. Let Y be

the connected total dominating set of P’ with

cardinality i—1. Therefore, when n-2 €Y, adjoin n with Y
and when n-3 € Y, adjoin n—1 with Y. Hence, every Y of

Du (P2 ,, i-1) belongs to D, (P?,i) by adjoining {n} or
{n-1} only. Hence, we cover all the elements of
De (P?, i) by means of the elements of Do (P? . i-1)
and Do (P?_,, i-1).

Conversely, suppose Z € Dy (Pnz, i). Here all the

elements of D¢ ( Pﬂ2 ,i)endwithnorn-1orn-2.

Suppose n € Z, then Z = X u {n}, where

X € Dy (P?,, i — 1) and X ends with n — 1 or
Z =Y U {n}, where Y € Dy (P?,, i - 1) and Y ends
with n - 2.

Suppose n — 1 € Z, then Z = X U {n - 1}, where
X e Dy (P?,, i - 1) and X ends with n — 2 or
Z=Y u{n-1} where Y € Dy (P’ ,,i-1)and Y ends
with n - 3.

Suppose n — 2 € Z, then Z = X U {n - 2}, where
X € D (P?,, i-1) and X ends with n - 3.

Theorem 2.8
If D¢ (Prf, i) is the family of the connected total

dominating sets of P’  with

n-3
where i> {T—‘,then

dete (PZ,i) = det (P, i-1) + dee (P?,,i-2)
Proof

cardinality i,

From theorem 2.7, we consider all the three cases

n-3
as given below, wherei > T .

i) IfDe (P2, i-1) = ¢ and De (P? ,, i-1) = ¢, then
De (P2, i) = 0.
ii) 1f Dy (P?,,i-1)# ¢ and D (P ,, i-1) = ¢, then
Dot (P2, i) = {{n} U X| X € Dot (P?,,i-1)}
iii) If Dot (P”,,i-1) # ¢ and Dee (P ,, i-1) # ¢, then
{ Xu{n} -1
{Xu{n-1} if n-2
{Xu{n-2} if n-3
{Yu{n} if n-2
{Yu{n-1} if n-3 €Y

Where X e D¢ (P?,,i-1) and Y e Do (P?,, i-1).
From the above construction in each case, we obtain
that, de (P2, i) = de( P? |, i-1) + de (P?,, i-1)

X
X

e X} U
e X} u
Dot (P2, i) = eé%u
€ U
e Y} u

3. Connected Total Domination Polynomial of square
of paths
Definition 3.1

Let D (Pnz, i) be the family of connected total
dominating sets of Prf with cardinality i and let
dee (P?, i) = | D (P?, i) |. Then the connected total
domination Ploynomial D¢, (PZ, x) of P? is defined as,

n
Dut (P2, x) = >

) dee (P2, i) X\
i =vc(P)

ISSN: 2231-5373

http://www.ijmttjournal.org

Page 60




International Journal of Mathematics Trends and Technology — Volume 11 Number 1 —Jul 2014

Theorem 3.2 Sde( PZ, i) X' = 2de( P? |, i-1) X' +2de (P7, , i-1) X
For every n > 8, P? i) yi P - P -
Dt ( P:, X) = X [Det ( Pil . X) + Det ( Piz 9] Zdei( zn Jd)x' = Xcht(2 n-1°* i-1) X" + i(zdct( n-21 i—1)x"
with initial values De( Py, ) =X Dt P, ) + X Det (P, 1 X)
DCI( Pz! X) = Xz! DCI( Pj! X) =X [ DCI( Pnz_]_! X) + Dct ( Pnz_z ’ X)]
De: ( pz, X) = X3 + 3x4, with the initial values,

Da (P?, x) =2,
Do (PZ, %) =x* + 3%,
Do (P7, x) =x* + 4x% + 5x2

Do (P?, x) =x° + 5x* + 8 x* + 5x*

Do (P2, x) = x* + 4x% + 5%
Da (P?, x) =x° +5x* + 8 x* + 5x2
Dot (P7, %) = x® + 6x° + 12x* + 10x® + 3%

Da (P7, %) = x" + 7x% + 17 x° + 18x* + 8x° + x2.

Proof Dt (P?, x) =x° + 6x° + 12x* + 10x° + 3x?
We have, Dot (P7, %) =x" + 7x% + 17 x° + 18x* + 8x% + X2
det (P2, i) =dee (P?,, i-1) + dee (P?_, , i-1).
Therefore, We obtain de ( Pnz, i), for 2 <n <15 as shown in Table 1.

de( P2, i) X' =de (P?,, i-1) X' + det (P7,, i-1) X

Table 1
det( Ps, i), the number of connected total dominating sets of Pf with cardinality i.

i 2 3 4 5 6 7 8 9 10 11 12 13 14 15
n

2 1

3 3

4 5 4 1

5 5 8 5

6 3 10 12 6 1

7 1 8 18 17 7 1

8 0 4 18 30 23 8 1

9 0 1 12 36 47 30 9 1

10 0 0 5 30 66 70 38 10 1

11 0 0 1 17 66 | 113 | 100 | 47 11 1

12 0 0 0 6 47 | 132 | 183 | 138 | 57 12 1

13 0 0 0 1 23 | 113 | 116 | 283 | 185 68 13 1

14 0 0 0 0 7 70 | 245 | 299 | 421 | 242 | 80 14 1

15 0 0 0 0 1 30 | 183 | 256 | 582 | 606 | 310 | 93 15 1

In the following theorem, we obtain some
properties of de( P2, i).
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Theorem 3.3
The following Properties hold for the coefficients

of Da( PZ, ).
1. du(PZ,n) =1, foreveryn>2.
2. da(P%, n—1)=n, foreveryn>3.

1
3. du(P?,n-2)= 3 [n?- 3 n+6], for everyn > 4.

1
4. do(P2,n-3)= g[n3—9n2+38n—60], for

every n > 5.
5. da(P . ,n—1)=1,foreveryn>3.
6. du(P2 ,n-1)=n, for everyn > 3.
Proof

1.Since D¢ ( Pﬁ, n) = { [n] }, we have the result.
2.Since Dot (P2, n-1) = { [n] - {x} / xe [n]},
we havedct(Pj, n-1)=n.
1
3.To prove, dq( Pﬁ, n-2)= E [ n*=3n + 6], for every

n >4, we apply induction on n.
When n = 4,

L. H. S=dy (P>, 4-2)=dy (P, 2) =5 (from the
table) and

1 2 1 2
R.H.S= E [n“-3n+6]= E [4°-3x4+6]=5
Therefore, the results is true for n = 4.
Now, suppose that the result is true for all numbers less

than 'n" and we prove it for n.
By theorem 3.2, we have,

dee (P2, n=2) =dee (P?, ,n=3) +d (P?,, n-23).

1
= E [(n-1)%> - 3(n - 1) + 6] + n—2.

1
:E[n2—2n+1—3n+3+6+2n—4].

. [n? 1
= — [n“-3n+6].
2
Hence the result is true for all n.
, 1
4.To prove, du(P:, n-3) = E [n® - 9n® + 38n — 60], for

every n > 5, we apply induction onn.
When n =5, L.H.S = d( P52 ,2) =5 (from the table) and

1
RHS=— [5°-9x5%+38x5-60]=5.

Therefore the result is true for n = 5.

Now, suppose that the result is true for all numbers less
than ‘n’ and we prove it for n.

By Theorem 3.2, we have,

da(PZ,n=3)=d(P? , ,n—-4)+do(P2 , ,n-4).

n-1"

1

oy [(n-1)°-9(n-1)°+38(n-1)-60]
1
+E[(n- 2)?-3(n-2) + 6].

1

:E [(P-3n%3n-1)-9 (n?~2n+1) +38n - 38-60]
1
+E [(n*-4n+4-3n+6+6].

1
= E [("°-3n%3n-1-9n*+18n— 9 +38n—-38-60
+3n%-21n + 48].
1
= E [n®= 9n? +38n - 60].
Hence, the result is true for all n.
5)Since Do P/, ., n-1) ={357,9, ..., (2n +1) -6,
(2n+1) -4, (2n + 1) — 2}, we
have, de (PZ, ., n-1) = 1.
6)To prove, dg (Pjn ,n—=1) =n, for every n >3, we
apply induction on n.

When n = 3,
L.H.S =dg (P?, 2) = 3 (from the table) and
R.HS=n=3.

Therefore, the result is true for n = 3.
Now, suppose that the result is true for all numbers less
than 'n' and we prove it for n. By Theorem 3.2, we
have,

de( P2 ,n=1) = de(P?, |,
=1+n-1=n

Therefore, the result is true for all n > 3.

n—2)+dg(P’

2n-2"1

n-2)

5. Conclusion

In this paper, the connected total domination
polynomials of square of paths has been derived by
identifying its connected total dominating sets. It also
helps us to characterize the connected total dominating
sets and to find the number of connected total
dominating sets of cardinality i. We can generalize this
study to any power of the path and some interesting
properties can be obtained via the roots of the

connected total domination polynomial of P: .
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