Special $D\left(k^{2}+1\right)$ Dio-quadruple Involving Jacobsthal Lucas and Thabit-ibn-kurrah Numbers

M.A.Gopalan ${ }^{\# 1}$, G.Sumathi ${ }^{* 2}$ and S.Vidhyalakshmi ${ }^{\# 3}$
\#1 Professor, ${ }^{* 2}$ Assistant Professor, \#3 Principal
${ }^{1,2,3}$ Department of Mathematics,Bharathidasan University,SIGC,Trichy-2,Tamilnadu.

Abstract

We search for three distinct integers a,b,c such that product of any two from the set added with k-times their sum and increased by $k^{2}+1$ is a perfect square.Also, we show that the triple can be extended to the quadruple with property $\quad D\left(k^{2}+1\right)$

Mathematics Subject Classification:11D99
KEYWORDS: Diophantine m-tuples, Thabit-ibn-kurrah number,Kynea number
,Jacobsthal lucas number,Pellian equation

NOTATIONS

$$
\begin{aligned}
T K_{n} & : \text { Thabit-ibn-kurrah number of rank } n \\
j_{n} & : \text { Jacobsthal Lucas number of rank } n \\
K y_{n} & : \text { Kynea number of rank } n
\end{aligned}
$$

1. INTRODUCTION

Let n be an integer. A set of m positive integers $\left(a_{1}, a_{2}, a_{3}, \ldots . a_{m}\right)$ is said to have the property $D(n)$, if $a_{i} a_{j}+n$ is a perfect square for all $1 \leq i<j \leq m$. Such a set is called a diophantine m-tuple or P_{n} set of size m . The problem of construction of such set was studied by Diophantus

Many mathematicians considered the construction of different formulations of Diophantine triples,quadruple and quintuples with property $D(n)$ for any arbitrary integer n and also,for any linear polynomials in n. In this context,one may refer $[1-21]$ for an extensive review of various problems on Diophantine triples, quadruple and quintuples

This paper aims using at constructing special dio-quadruple where the product of any two members of the quadruple with the addition of k-times their sum and increased by $k^{2}+1$ satisfies the required property.

II. METHOD OF ANALYSIS

Let $a=3 j_{2 n}-4, b=T K_{2 n}+2$ be any two integers such that $a b+k a+k b+k^{2}+1$ is a perfect square.
Let $C_{S}(n)$ be any non-zero integer such that

$$
\begin{gather*}
\left(3 j_{2 n}-4+k\right) C_{s}(n)+\left(3 j_{2 n}-4\right) k+k^{2}+1=\alpha_{s}^{2} \tag{1}\\
\left(T K_{2 n}+k+2\right) C_{s}(n)+\left(T K_{2 n}+2\right)+k^{2}+1=\beta_{s}^{2} \tag{2}
\end{gather*}
$$

Eliminating $C_{S}(n)$ between (1) and (2), we get

$$
\begin{equation*}
\left(T K_{2 n}+k+2\right) \alpha_{s}^{2}-\left(3 j_{2 n}+k-4\right) \beta_{s}^{2}=2 \tag{3}
\end{equation*}
$$

Introducing the linear transformations

$$
\left.\begin{array}{rl}
\alpha_{s} & =X_{s}+\left(3 j_{2 n}+k-4\right) T_{s} \tag{4}\\
\beta_{s} & =X_{s}+\left(T K_{2 n}+k+2\right) T_{s}
\end{array}\right\}
$$

in (3), we get

$$
\begin{equation*}
X_{s}^{2}=\left(3 j_{2 n}+k-4\right)\left(T K_{2 n}+k+2\right) T_{s}^{2}+1 \tag{5}
\end{equation*}
$$

This is a well known pellian equation, whose general solution is given by

$$
\left.\begin{array}{l}
X_{s}=\frac{1}{2}\left\{\left[3\left(j_{2 n}-1\right)+k+\sqrt{D}\right]^{s+1}+\left[3\left(j_{2 n}-1\right)+k-\sqrt{D}\right]^{s+1}\right\} \\
T_{s}=\frac{1}{2 \sqrt{D}}\left\{\left[3\left(j_{2 n}-1\right)+k+\sqrt{D}\right]^{s+1}-\left[3\left(j_{2 n}-1\right)+k-\sqrt{D}\right]^{s+1}\right\} \tag{6}
\end{array}\right\}
$$

Taking $s=0$ in (6) and using (1), we get

$$
C_{0}(n)=12 j_{2 n}+3 k-12
$$

Note that $\left(a, b, C_{0}(n)\right)$ is the special Diophantine triple with property $D\left(k^{2}+1\right)$
Now, substituting $s=1$ in (6) we have

$$
\left.\begin{array}{l}
X_{1}=\left[3\left(j_{2 n}-1\right)+k\right]^{2}+D \tag{7}\\
T_{1}=2\left[3\left(j_{2 n}-1\right)+k\right]
\end{array}\right\}
$$

and using (1), we see that

$$
C_{1}(n)=16\left(T K_{2 n}+k+1\right)^{3}-12 j_{2 n}-5 k+12
$$

Thus,we obtain
$\left(3 j_{2 n}-4, T K_{2 n}+2,12 j_{2 n}+3 k-12,16\left(T K_{2 n}+k+1\right)^{3}-12 j_{2 n}-5 k+12\right)$ as a diophantine quadruple with the property $D\left(k^{2}+1\right)$

II. 1 :Properties:

1. $4\left[C_{1}(n)+C_{0}(n)+2 k\right]$ is a cubic integer
2. Each of the following is a nasty number
(a) $3\left[a(n)+b(n)+C_{0}(n)-3 k\right]$
(b) $6\left[4 b(n)-C_{0}(n)+3 k\right]$
3. $C_{0}(n)-4 b(n)-3 k \equiv 0(\bmod 4)$
4. $a(n)+b(n)+C_{1}(n)+6 j_{2 n}+5 k \equiv 0(\bmod 2)$
5. $a(n) b(n)+C_{0}(n)-9 K y_{2 n}+2 T k_{2 n}-3 k \equiv 0(\bmod 2)$

Again,taking $s=2,3 \mathrm{in}(6)$ and using (1), we get
$C_{2}(n)=64\left[\left(3\left(j_{2 n}-1\right)+k\right]^{5}-48\left[T k_{2 n}+k+1\right]^{3}+8\left[\left(3\left(j_{2 n}-1\right)+k\right]-k\right.\right.$
$C_{3}(n)=256\left[\left(3\left(j_{2 n}-1\right)+k\right]^{7}-320\left[T k_{2 n}+k+1\right]^{5}+112\left[\left(3\left(j_{2 n}-1\right)+k\right]^{3}-8\left[T k_{2 n}+k+1\right]-k\right.\right.$ It is seen that $\left[a, b, C_{1}(n), C_{2}(n)\right]$ represents special $D\left(k^{2}+1\right)$ dio-quadruple
Repeating the above process,it is observed that $\left[a, b, C_{m-1}(n), C_{m}(n)\right], m=1,2,3 \ldots \ldots$. represents special dioquadruple with the property $D\left(k^{2}+1\right)$.A few illustrations are given below:

(n, k)	$\left(a, b, C_{0}(n), C_{1}(n)\right)$	$\left(a, b, C_{1}(n), C_{2}(n)\right)$	$\left(a, b, C_{2}(n), C_{3}(n)\right)$
$(1,1)$	$(11,13,51,35099)$	$(11,13,35099,23657399)$	$(11,13,23657399,15945052551)$
$(1,2)$	$(11,13,54,43846)$	$(11,13,43846,34289106)$	$(11,13,34289106,26814060558)$
$(1,3)$	$(11,13,57,53937)$	$(11,13,53937,48438117)$	$(11,13,48438117,43497377877)$
$(2,2)$	$(47,49,198,1999798)$	$(47,49,1999798,19994000398)$	$(47,49,19994000398,199900013999598)$
$(2,3)$	$(47,49,201,2122209)$	$(47,49,2122209,22075249221)$	$(47,49,22075249221,229626740306037)$

3. CONCLUSION

In the construction of the special dio-quadruple we have assumed the product ab added with k -times their sum and increased by $k^{2}+1$ is a perfect square.One may search for special dio-quadruples consisting of other special numbers with suitable property.

ACKNOWLEDGEMENT

\#3 The financial support from the UGC, New Delhi(F-MRP-5123/14(SERO/UGC) dated March 2014) for a part of this work is gratefully acknowledged

REFERENCES

1. Brown E,sets in which $x y+k$ is always a square,Math,Comp.45,613-620,1985
2. Bashmakova I.G,(Ed),Diophantus of Alexandria,Arithmetics and the Book of polygonal numbers,Nauka,M oscow,1974
3. Bugeaud Y Dujella A and Mignotte,On the family of Diophantine triples, $\left(k-1, k+1,16 k^{3}-4 k\right)$ Glasgow Math.J.49 333-344,2007.
4. Dujella A,On Diophantine Quintuple,Acta Arith.81 69-79,1997.
5. Filipin $A, A n$ irregular $D(4)$ quadruple cannot be extended to a quintuple,Acta Arith.136, 167-176,2009
6. Filipin A Fujita Y,The number of Diophantine Quintuples II.Pupl.Math.Debrecen 82 293-308.2013.
7. Fujita Y,The number of Diophantine Quintuples,Glas.Mat.Ser.III 45 15-29,2010.
8.Gopalan M A Srividhya .G,Some non-extentable P_{-5} sets ,Diophantus J.Math Vol 1 issue1 19-22,2012.
8. Gopalan M A Srividhya G,Two special Diophatine Triples ,Diophantus J.Math Vol 1 issue 1 23-27,2012.
9. Gopalan M A and Pandichelvi V ,On the extendibility of the Diophantine triple involving Jacobsthal numbers
$\left(J_{2 n-1}, J_{2 n+1}-3,2 J_{2 n}+J_{2 n-1}+J_{2 n+1}-3\right)$, Indian Journal of Mathematical and Computing Applications vol 5issue $283-85,2013$.
11.Gopalan M A Sumathi G and Vidhyalakshmi S,Special Dio-quadruple involving jacobsthal and Jacobsthal lucas number with the Property
$D\left(k^{2}+1\right)$,International J.of .Math.Sci and Engg.Appls Vol 8 NoIII pp 221-225,2014.
10. Gopalan M AVidhyalakshmi.S Premalatha E and Presenna R,On the extendibility of 2 tuple to 4 tuple with property $D(4)$,Bulletin of Mathematical

Sciences and Applications Vol 3, No 2 pp 100-104,2014.
13.Gopalan M A Mallika S and Vidhyalakshmi S ,On the extendibility of the Gaussian Diophantine 2-tuple to Gaussian Diophantine Quadruple with property $D(1)$,International journal of Innovation in science and Mathematics, Vol 2, issue 3 pp 310-311,2014.
14. Jukic Matic Lj.,Non-existence of certain Diophantine Quadruples in rings of integers of pure cubic fields,Proc.Japan,Acad.Ser.A.Math.Sci.88 163-167, 2012.
15. Meena K Vidhyalakshmi S Gopalan M A Akila G and Presenna R ,Formation of Special Diophantine Quadruples with property $D(6 \mathrm{kpq})^{2}$,The International Journal of Science and Technoledge Vol 2,Issue 2 11-14, 2014.
16.Rich W,Regular Diophantine m-tuple and their extension,Phd Thesis,Central Michigan University, 2012.
17.Vidhyalakshmi S Gopalan M A and Lakshmi K,Gaussian Diophantine Quadruples with property $D(1)$,International organization of Scientific Research, Vol 10, issue 3 Ver II pp 12-14, (May-june2014).
18. web.math.pmf.unizg.hr/~duje/dtuples.html
19. Dujella A,On Diophantine quintuples,Acta Arith.81,69-79, 1997
20. Gopalan M A Sumathi G and Vidhyalakshmi S,Diophantine Quadruple involving Jacobsthal lucas number and Thabit-ibn-kurrah number with the Property
$D(1)$,International Journal of InnovativeResearch and Review,Vol 2(2),pp 47-50, (2014).
21. M A Gopalan Vidhyalakshmi S and A.Kavitha, Special Dio-Quadruples with the Property $D(2)$,International Journal of Science and Technology Vol.2,Issue 5,pp 51-52, (May2014).

