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Abstract: Let ),( EVG be a graph with p vertices and q edges. A ),( qp graph ),( EVG is said to be a square difference 

graph if there exists a bijection }1,...,2,1,0{)(:  pGVf such that the induced function NGEf )(:* ,  N  is  

a  natural number,  given by |)]([)]([|)(* 22 vfufuvf   for every  edges uv  in  G and are all distinct and the 
function  f  is a called Square difference labeling of the graph G. In this paper, we prove 

nm PP  , nm CP  , nm SP  , )( 1KCP nm  , nm PKP  )( 1 , nm CKP  )( 1 , nm SKP  )( 1 , nm LKP  )( 1

)()( 11 KPKP nm  , )()( 11 KCKP nm   and )()( 11 KLKP nm  are the  square difference graphs.  
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1. INTRODUCTION 

    All graphs in this paper are finite, simple and undirected  

graphs. Let ),( qp be a graph with |)(| GVp  vertices 

and |)(| GEq   edges. Graph labeling ,where the vertices 

and edges are assigned real values or subsets of a set are 

subject to certain conditions. A detailed survey of graph 

labeling can be found in [ 2]. Terms not defined here are 

used in the sense of Harary in [3].There are different kinds 

of labelings in the graph labeling such as Graceful, 

Harmonious, Cordial, Fibonacci, Square sum, etc. The 

concept of square difference labeling was first introduced in 

[1] and some results on square difference labeling of graphs 

are discussed in [1,4]. In this paper  we  investigate some 

more graphs for square difference labeling. We use the 

following definitions in the subsequent sections. 

Definition 1.1[1]:A graph G(p, q) is said to be a square 
difference graph if there exists a bijection  f : V(G) 
→{0,1,2,…, p-1} such that the induced function f*: E(G) → 
N given by f*(uv)=|[f(u)]2 –[f(v)]2| for every edges uv in G 

and are all distinct and the function f is a called Square 
difference labeling of the graph G. 

Definition 1.2[2]:  The corona  21 GG   of  two graphs G1 
and  G2 is defined as the graph G obtained by taking one 
copy of G1(which has  p points) and  p copies of G2 and then 
joining the ith point of G1 to every point in the ith copy of G2. 

Definition  1.3[2]: A complete bipartite graph  nK ,1  is 

called a star and it has 1n  vertices  and n  edges and also 
it is denoted as Sn. 

2. Main Results 

Theorem 2.1: The graph  nm PP   is a square difference 

graph. 

Proof: Let  mP  be the path graph with m  vertices and 

1m  edges. Let  nP be the path graph with n  vertices 

and 1n  edges. Let }1:{)( miuPV im  . 
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Let }1:{)( nivPV in  . Therefore 

}1:;1:{)( nivmiuPPV iinm  . 

 Let }11:{)( 1   miuuPE iim . 

 Let }11:{)( 1   nivvPE iin . 

Then 
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Then we have  nmPPV nm  |)(|   and   

2|)(|  nmPPE nm . 

Define a bijection from the vertices of  nm PP   

 to }1,...,2,1,0{  nm  as follows: 

miifiuf i  11)(  ; 

niifimvf i  11)( . 

Let f* be the induced edge labeling of f. 

The induced edge labels by  f*  as 

follows: 1112)(* 1  miifiuuf ii ; 

11212)(* 1  niifimvvf ii . 

Theorem 2.2: Any graph  nm CP   admits a square 

difference labeling. 

Proof: Let  mP  be the path graph with m  vertices and 

1m  edges. Let  nC be the cycle graph with n  vertices 

and n  edges. Let }1:{)( miuPV im  . 

Let }1:{)( nivCV in  . Therefore 

}1:;1:{)( nivmiuCPV iinm 
Let }11:{)( 1   miuuPE iim . 

 Let };11:{)( 11 niin vvnivvCE   . 

Therefore 













nii

ii
nm vvnivv

miuu
CPE

11

1

;11:
11:

)(  

Then we have  nmCPV nm  |)(|   and   

1|)(|  nmCPE nm . Define a bijection from 

the vertices of  nm CP   to }1,....,2,1,0{  nm  

 as follows: miifiuf i  11)(  ; 

niifimvf i  11)( . 

Let f* be the induced edge labeling of f.  

The induced edge labels by f* as follows: 

1112)(* 1  miifiuuf ii ; 

11212)(* 1  niifimvvf ii ; 

)12)(1()(* 1  nmnvvf n . 

Theorem 2.3: All the graph  nm SP   is a square 

difference graph. 

Proof: Let  mP  be the path graph with m  vertices and 

1m  edges. Let  nS be the star graph with 1n  

vertices and n  edges. Let }1:{)( miuPV im  . 

Let }11:{)(  nivSV in .Therefore  

}11:;1:{)(  nivmiuSPV iinm

Let }11:{)( 1   miuuPE iim .  

Let }1:{)( 1 nivvSE nin   .Therefore 

}1:;11:{)( 11 nivvmiuuSPE niiinm  

Then we have  1|)(|  nmSPV nm   and   

1|)(|  nmSPE nm . Define a bijection from 

the vertices of  nm SP   to },....,2,1,0{ nm   

 as follows: miifiuf i  11)(  ; 

111)(  niifimvf i . 

Let f* be the induced edge labeling of  f. The induced edge 
labels by f* as follows: 

1112)(* 1  miifiuuf ii  ; 

niifininmvvf ni  1)1)(12()(* 1
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Theorem 2.4: Every graph  )( 1KCP nm   is a square 

difference graph. 

Proof: Let  mP  be the path graph with m  vertices and 

1m  edges. Let  1KCn  be the crown graph with n2  

vertices and n2  edges.  

Let }1:{)( miuPV im  .  

Let }1:,{)( 1 niwvKCV iin  . 

Therefore 
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Then we have  nmKCPV nm 2|))((| 1    and   

12|))((| 1  nmKCPE nm . 

Define a bijection from the vertices of  )( 1KCP nm   

to }12,....,2,1,0{  nm  as follows: 

miifiuf i  11)(  ; 

niifimvf i  11)( ; 

niifinmwf i  11)( .  

Let f* be the induced edge labeling of f.  

The induced edge labels by f* as follows: 

1112)(* 1  miifiuuf ii  ; 

 11)212()(* 1  niifimvvf ii  ;  

 )12)(1()(* 1  nmnvvf n ; 

niifinmnwvf ii  1)222()(* . 

Example 2.5: A square difference labeling of 

)( 1107 KCP  is shown in the Figure 2.1. 

     

Figure 2.1 

Theorem 2.6: The graph  nm PKP  )( 1  is a square 

difference graph. 

Proof: Let 1KPm  be the comb graph with m2  vertices 

and 12 m  edges. Let  nP be the path graph with n  

vertices and 1n  edges.  

Let }1:,{)( 1 miwuKPV iim  .  

Let }1:{)( nivPV in  . Therefore  
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Let }11:{)( 1   nivvPE iin .Therefore   
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Then nmPKPV nm  2|))((| 1   and  

22|))((| 1  nmPKPE nm . 
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Define a bijection from the vertices of  nm PKP  )( 1  

to }12,....,2,1,0{  nm  as follows:  

miifiuf i  122)(   ; 

niifimvf i  1212)(  ; 

miifiwf i  112)( . 

 Let f* be the induced edge labeling of f.  

The induced edge labels by f* as follows: 

1148)(* 1  miifiuuf ii  ; 

miifiwuf ii  134)(* ;

11214)(* 1  niifimvvf ii . 

Theorem 2.7: Any graph  nm CKP  )( 1  admits a 

square difference labeling. 

Proof: Let 1KPm  be the comb graph with m2  vertices 

and 12 m  edges. Let  nC be the cycle graph with n  

vertices and n  edges. 

 Let }1:,{)( 1 miwuKPV iim  . 

Let }1:{)( nivCV in  . Therefore  
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Then nmCKPV nm  2|))((| 1  and  

12|))((| 1  nmCKPE nm . 

Define a bijection from the vertices of  nm CKP  )( 1  

to }12,....,2,1,0{  nm as follows: 

miifiuf i  122)(   ; 

niifimvf i  1212)(  ; 

miifiwf i  112)(  . 

 Let f* be the induced edge labeling of  f.  

The induced edge labels by f* as follows: 

1148)(* 1  miifiuuf ii  ; 

miifiwuf ii  134)(* ; 

11214)(* 1  niifimvvf ii  ; 

)14)(1()(* 1 nmnvvf n  . 

Theorem 2.8: The graph  nm SKP  )( 1  is a square 

difference graph. 

Proof: Let 1KPm  be the comb graph with m2  vertices 

and 12 m  edges. Let  nS be the star graph with 1n  

vertices and n  edges. 

Let }1:,{)( 1 miwuKPV iim  . 

Let }11:{)(  nivSV in .Therefore   
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Then 12|))((| 1  nmSKPV nm  and  

12|))((| 1  nmSKPE nm  . Define a 

bijection from the vertices of  nm SKP  )( 1  to 

}2,....,2,1,0{ nm   as follows: 

miifiuf i  122)(   ; 

11212)(  niifimvf i  ; 
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miifiwf i  112)(  . Let f* be the induced 

edge labeling of  f. The induced edge labels by f* as 

follows: 1148)(* 1  miifiuuf ii  ;  

miifiwuf ii  134)(*
niifininmvvf ni  1)1)(14()(* 1  

Example 2.9: A square difference labeling of  

1318 )( SKP   is shown in the Figure 2.2. 

 

Figure 2.2 

Theorem 2.10: The graph  )()( 11 KPKP nm   is a 

square difference graph. 

Proof: Let 1KPm  be a comb graph with m2  vertices 

and 12 m  edges. Let 1KPn  be another comb graph 

with n2  vertices and 12 n  edges. 

Let }1:,{))( 1 miwuKPV iim  . 

Let }1:,{))( 1 nizvKPV iin   

Therefore  
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Then nmKPKPV nm 22|))()((| 11   and  

222|))()((| 11  nmKPKPE nm . 

Define a bijection from the vertices of  

)()( 11 KPKP nm   to  

}122,....,2,1,0{  nm  as follows: 

miifiuf i  122)( ;  

niifimvf i  1222)(  ; 

miifiwf i  112)(  ;  

niifimzf i  1212)( . 

Let f* be the induced edge labeling of  f.  

The induced edge labels by f* as follows: 

1148)(* 1  miifiuuf ii  ; 

 miifiwuf ii  134)(* ; 

11)212(4)(* 1  niifimvvf ii ;  

niifimzvf ii  1434)(* . 

Example 2.11: A square difference labeling of  

)()( 11017 KPKP  is shown in the Figure 2.3. 

Figure 2.3 
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Theorem 2.12: The graph  )()( 11 KCKP nm   is a 

square difference graph. 

Proof: Let 1KPm  be a comb graph with m2  vertices 

and 12 m  edges. 

 Let  1KCn  be the crown graph with n2  vertices and 

n2  edges.  

Let }1:,{))( 1 miwuKPV iim  .  

Let }1:,{))( 1 nizvKCV iin  . 

Therefore  
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Then nmKCKPV nm 22|))()((| 11   and 

122|))()((| 11  nmKCKPE nm . 

Define a bijection from the vertices of  

)()( 11 KCKP nm   to 

}122,....,2,1,0{  nm  as follows: 

miifiuf i  122)(   ; 

niifimvf i  1212)(  ; 

miifiwf i  112)(    ; 

niifinmzf i  112)( . 

Let f* be the induced edge labeling of  f. 

 The induced edge labels by f* as follows: 

1148)(* 1  miifiuuf ii  ; 

miifiwuf ii  134)(* ; 

)14)(1()(* 1  nmnvvf n ; 

11214)(* 1  niifimvvf ii ; 

niifinmnzvf ii  1)224()(* . 

Theorem 2.13: The graph nm LKP  )( 1   is a square 

difference graph. 

Proof: Let 1KPm  be the comb graph with m2  vertices 

and 12 m  edges. Let nL  be the ladder with n2  

vertices and 23 n  edges. 

 Let  }1:,{)( 1 mizuKPV iim  . 

 Let  }1:,{)( niwvLV iin  . Therefore 









niwv

mizu
LKPV

ii

ii
nm 1:,

1:,
))(( 1  

Let  







 

mizu
miuu

KPE
ii

ii
m 1:

11:
)( 1

1  

Let  







 

niwv
niwwvv

LE
ii

iiii
n 1:

11:,
)( 11 . 

Therefore  






























niwv
niww
nivv
mizu
miuu

LKPE

ii

ii

ii

ii

ii

nm

1:
11:
11:

1:
11:

))((

1

1

1

1

 

Then nmLKPV nm 22|))((| 1    and  

332|))((| 1  nmLKPE nm . Define a 

bijection from the vertices of  nm LKP  )( 1  to 

}122,....,2,1,0{  nm  as follows: 

miifiuf i  122)(  ; 

miifizf i  112)( ; 

niifimvf i  112)(  ; 

niifinmwf i  122)( . 
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Let f* be the induced edge labeling of  f .The induced edge 
labels by f* as follows: 

1148)(* 1  miifiuuf ii  ; 

miifizuf ii  134)(* ; 

niifinvvf ii  1214)(* 1  ; 

niifinmwwf ii  12144)(* 1  ; 

niifinnmwvf ii  1)212)(124()(*
Theorem 2.14: Every graph )()( 11 KLKP nm    is 

a square difference graph. 

Proof: Let 1KPm  be the comb graph with m2  vertices 

and 12 m  edges. 

Let 1KLn  be the graph with n4  vertices and 25 n  

edges. 

 Let  }1:,{)( 1 mixuKPV iim  .Let  

}1:,,,{)( 1 nizywvKLV iiiin  .Then 
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Then nmKLKPV nm 42|))()((| 11    and   

352|))()((| 11  nmKLKPE nm .    

Define a bijection from the vertices of  

)()( 11 KLKP nm   to  

}142,....,2,1,0{  nm  as follows: 

miifiuf i  122)(  ;  

miifixf i  112)( ; 

niifimvf i  112)(  ;  

niifinmwf i  122)( ; 

niifinmyf i  1122)(  ; 

niifinmzf i  142)( .  

Let f* be the induced edge labeling of  f.The induced edge 
labels by f* as follows: 

1148)(* 1  miifiuuf ii ; 

miifixuf ii  134)(* ;

niifinvvf ii  1214)(* 1  ; 

niifinnwwf ii  12144)(* 1  ; 

niifinnmwvf ii  1)212)(124()(*
niifinmnyvf ii  1)12)(4()(* ; 

niifinmnzwf ii  1)32)(4()(* . 

Example 2.15: A square difference labeling of  

)()( 19110 KLKP  is shown in the Figure 2.4.                                                                 

Figure 2.4 

 



International Journal of Mathematics Trends and Technology – Volume 11  Number 2 – Jul  2014 

ISSN: 2231-5373                   http://www.ijmttjournal.org                              Page 88 

 

3.Conclusion 

 In this paper, we investigated  the square difference 
labeling  behavior of some union related graphs. We 
have planned to investigate  the square difference 
labeling  of some more special graphs in the next 
paper. 
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