International Journal of Mathematics Trends and Technology – Volume 11 Number 2 – Jul 2014

Some Results on Mean Cordial Graphs

A.Nellai Murugan¹ and G.Esther2

Department of Mathematics, V.O. Chidambaram College, Tuticorin, Tamilnadu (INDIA)

Abstract

Let G = (V, E) be a simple graph. G is said to be a mean cordial graph if $f: V(G) \rightarrow \{0, 1, 2\}$ such that for each edge uv the induced map f* defined by $f^*(uv) = \left[\frac{f(u) + f(v)}{2}\right]$ where $\lfloor x \rfloor$ denote the least integer which is $\leq x$ and $|e_f(0) - e_f(1)| \leq 1$ where $e_f(0)$ is no.of edges with zero label. $e_f(1)$ is no.of edges with one label.

The graph that admits a mean cordial labeling is called a mean cordial graph (MCG).

In this paper, we proved that $D_2[C_n]$, $D_2[K_{1,n}]$, $D_2[P_n + K_1]$, $D_2[P_n]$ are mean cordial graphs.

Key words : Mean cordial labeling , Mean cordial graph.

2000 Mathematics Subject Classification 05C78.

1.INTRODUCTION:

A graph G is a finite non-empty set of objects called vertices together with a set of unordered pairs of distinct vertices of G which is called edges. Each $e = \{uv\}$ of vertices in E is called an edge or a line of G. For graph theoretical Terminology we follow

2.PRELIMINARIES:

We define the concept of mean cordial labeling as follows.

Let G = (V, E) be a simple graph. G is said to be a mean cordial graph if $f : V(G) \rightarrow \{0,1,2\}$ such that for each edge uv the induced map f* defined by f*(uv)

 $= \left\lfloor \frac{f(u) + f(v)}{2} \right\rfloor \quad \text{where } \lfloor \mathbf{x} \rfloor \text{ denote the least integer which}$

is $\leq x$ and $|e_f(0) - e_f(1)| \leq 1$ where $e_f(0)$ is no.of edges with label 0. $e_f(1)$ is number of edges with label 1.

A graph that admits a mean cordial labeling is called a mean cordial graph. We proved that $D_2[C_n]$, $D_2[K_{1,n}]$, $D_2[P_n + K_1]$, $D_2[P_n]$ are mean cordial graphs.

DEFINITION 2.1 (SHADOW GRAPH)

Let G be a connected Graph. A Graph, constructed by taking two copies of G say G_1 and G_2 and joining each vertex

u in G₁ to the neighbours of the corresponding vertex v in G₂ ,that is for every vertex u in G₁ there exists v in G₂ such that N(u) = N(v). The resulting Graph is known as shadow Graph and it is denoted by D₂(G).

DEFINITION 2.2 (CYCLE)

A closed path is called a cycle and a cycle of length k is denoted by $C_k.$

DEFINITION 2.3(STAR)

Let $S_{m,n}$ (n > 2) is a *star* with n spokes in which each spoke is a path of length m.

DEFINITION 2.4(FAN)

The *join* $G_1 + G_2$ of G_1 and G_2 consists of $G_1 \cup G_2$ and all lines joining V_1 with V_2 as vertex set $V(G_1 \cup G_2) = V(G_1) \cup V(G_2)$ and edges $E(G_1 \cup G_2) = E(G_1) \cup E(G_2)$ [uv : $u \in V(G_1)$ and $v \in V(G_2)$]. The graph $P_n + K_1$ is called a *Fan* and $P_n + 2K_1$ is called the *Doublefan*.

DEFINITION 2.5(PATH)

If all the vertices in a walk are distinct, then it is called a *path* and a path of length k is denoted by P_{k+1} .

. MAIN RESULTS ON MEAN CORDIAL GRAPH	When n is even , $f^*(u_1 v_n)$	= 1
Theorem 3.1	f*(u ₁ v ₂)	= 1
$D_2(C_n)$ is a Mean Cordial Graph.	$f^*(v_1 u_n)$	= 0
Proof:	$f^{*}(v_{1} u_{2})$	= 0
Let $G = (V, E)$	When n is odd , $f^*(v_1 u_5)$	= 1
Let G be $[D_2(C_n)]$	$f^*(u_1 v_n)$	= 0
Let $V[D_2(C_n)] = \{u_i, v_i: l \le i \le n\}$	f*(v ₁ u ₂)	= 0
Let $E[D_2(C_n)] = \{[(u_i \ u_{i+1}) \cup (v_i \ v_{i+1}) : 1 \le i \le n-1] \cup$	f*(u ₁ v ₂)	= 1
$\begin{split} & [(u_1 \ u_n) \cup (v_1 \ v_n) \cup (u_1 \ v_2) \cup \\ & (v_1 \ u_2)] \cup [(u_i \ v_{i+1}) \cup (u_i \ v_{i-1}) \cup \\ & (v_i \ u_{i+1}) \cup (v_i \ u_{i-1}) : 2 \leq i \leq n-1] \rbrace \\ & \text{Define } f: V(G) {\rightarrow} \{0,1,2\} \text{ by} \end{split}$	Here $e_f(0) = e_f(1)$ for all n.	
	It satisfies the condition $ e_f(0) - e_f(1) \le 1$.	
	Hence , $D_2(C_n)$ is a mean cordial graph.	

For example the graph $D_2(C_4)$ and $D_2(C_5)$ are shown in the figure 1 and figure 2.

 $f(u_1) = 1$

 $f(v_1) = 1$

 $f(\mathbf{u}_i) = \begin{cases} 0 & if \quad i \equiv 0 \mod 2 \\ 1 & if \quad i \equiv 1 \mod 2 \end{cases} , \ 2 \le i \le n$

 $f(\mathbf{v}_i) = \begin{cases} 1 & if \ i \equiv 0 \mod 2 \\ 0 & if \ i \equiv 1 \mod 2 \end{cases}, 2 \le i \le n$

 $f^{*}(u_{i} u_{i+1}) = \begin{cases} 0 & if \ i \equiv 1 \mod 2 \\ 1 & if \ i \equiv 0 \mod 2 \end{cases} , \ 1 \le i \le n-1$

 $f^{*}(v_{i} v_{i+1}) = \begin{cases} 1 & if \ i \equiv 1 \mod 2 \\ 0 & if \ i \equiv 0 \mod 2 \end{cases} , \ 1 \le i \le n-1$

 $f^{*}(u_{i} v_{i+1}) = \begin{cases} 1 & if \ i \equiv 1 \mod 2 \\ 0 & if \ i \equiv 0 \mod 2 \end{cases} , 2 \le i \le n-1$

 $f^*(u_i v_{i-1}) = \begin{cases} 1 & if \ i \equiv 1 \mod 2 \\ 0 & if \ i \equiv 0 \mod 2 \end{cases} , 2 \le i \le n-1$

 $f^{*}(v_{i} u_{i+1}) = \begin{cases} 0 & if \ i \equiv 1 \mod 2 \\ 1 & if \ i \equiv 0 \mod 2 \end{cases} , 2 \le i \le n-1$

 $f^{*}(v_{i} u_{i-1}) = \begin{cases} 0 & if \ i \equiv 1 \mod 2 \\ 1 & if \ i \equiv 0 \mod 2 \end{cases} , \ 2 \le i \le n-1$

The induced edge labeling are

3.

Theorem 3.2

 $D_2[K_{1,n}]$ is a Mean cordial Graph.

Proof:

Let
$$G = (V, E)$$

Let G be $D_2[K_{1,n}]$

Let
$$V[D_2(K_{1,n})] = \{u, v, (u_i v_i) : 1 \le i \le n\}$$

Let
$$E[D_2(K_{1,n})] = \{[(u \ u_i) \cup (u \ v_i) \cup (v \ u_i) \cup (v \ v_i)]\}$$

$$: 1 \le i \le n\}$$

Define $f: V(G) \rightarrow \{0,1,2\}$ by

Case (i) : n is even

f(u) = 1

f(v) = 1

$$f(\mathbf{u}_i) = \begin{cases} 0 & if \ i \equiv 1 \mod 2 \\ 2 & if \ i \equiv 0 \mod 2 \end{cases} , \ 1 \le i \le n$$

$$f(v_i) = \begin{cases} 0 & if \quad i \equiv 1 \mod 2 \\ 2 & if \quad i \equiv 0 \mod 2 \end{cases} , \ 1 \le i \le n$$

The induced edge labeling are

$$f^{*}(\mathbf{u} \ \mathbf{u}_{i}) = \begin{cases} 0 \ if \ i \equiv 1 \mod 2 \\ 1 \ if \ i \equiv 0 \mod 2 \end{cases} , 1 \le i \le n$$

$$f^{*}(\mathbf{u} \ \mathbf{v}_{i}) = \begin{cases} 0 \ if \ i \equiv 1 \mod 2 \\ 1 \ if \ i \equiv 0 \mod 2 \end{cases} , 1 \le i \le n$$

$$f^{*}(\mathbf{v} \ \mathbf{u}_{i}) = \begin{cases} 0 \ if \ i \equiv 1 \mod 2 \\ 1 \ if \ i \equiv 0 \mod 2 \end{cases} , 1 \le i \le n$$

$$f^{*}(\mathbf{v} \ \mathbf{v}_{i}) = \begin{cases} 0 \ if \ i \equiv 1 \mod 2 \\ 1 \ if \ i \equiv 0 \mod 2 \end{cases} , 1 \le i \le n$$

$$f^{*}(\mathbf{v} \ \mathbf{v}_{i}) = \begin{cases} 0 \ if \ i \equiv 1 \mod 2 \\ 1 \ if \ i \equiv 0 \mod 2 \end{cases} , 1 \le i \le n$$

Here $e_f(0) = e_f(1)$

It satisfies the condition $|e_f(0) - e_f(1)| \le 1$.

Hence $[D_2(K_{1,n})]$ (n is even) is a mean cordial graph. For example $D_2(K_{1,2})$ is shown in the figure 3.

Case (ii): n is odd

f(u) = 1

f(v)=1

$$f(\mathbf{u}_i) = \begin{cases} 0 & if \quad i \equiv 1 \mod 2 \\ 2 & if \quad i \equiv 0 \mod 2 \end{cases}, \ 1 \le i \le n$$

$$f(\mathbf{v}_i) = \begin{cases} 0 & if \ i \equiv 0 \mod 2 \\ 2 & if \ i \equiv 1 \mod 2 \end{cases} , \ 1 \le i \le n$$

The induced edge labeling are

$$f^{*}(\mathbf{u} \ \mathbf{u}_{i}) = \begin{cases} 0 \ if \ i \equiv 1 \mod 2 \\ 1 \ if \ i \equiv 0 \mod 2 \end{cases}, \ 1 \le i \le n$$

$$f^{*}(\mathbf{u} \ \mathbf{v}_{i}) = \begin{cases} 0 \ if \ i \equiv 0 \mod 2 \\ 1 \ if \ i \equiv 1 \mod 2 \end{cases}, \ 1 \le i \le n$$

$$f^{*}(\mathbf{v} \ \mathbf{u}_{i}) = \begin{cases} 0 \ if \ i \equiv 1 \mod 2 \\ 1 \ if \ i \equiv 0 \mod 2 \end{cases}, \ 1 \le i \le n$$

$$f^{*}(\mathbf{v} \ \mathbf{v}_{i}) = \begin{cases} 0 \ if \ i \equiv 1 \mod 2 \\ 1 \ if \ i \equiv 0 \mod 2 \end{cases}, \ 1 \le i \le n$$

$$f^{*}(\mathbf{v} \ \mathbf{v}_{i}) = \begin{cases} 0 \ if \ i \equiv 1 \mod 2 \\ 1 \ if \ i \equiv 0 \mod 2 \end{cases}, \ 1 \le i \le n$$
Here $\mathbf{e}_{f}(0) = \mathbf{e}_{f}(1)$

It satisfies the condition $|e_f(0) - e_f(1)| \le 1$. Hence $[D_2(K_{1,n})]$ (n is odd) is a mean cordial graph.

For example $D_2(K_{1,3})$ is shown in the figure.

International Journal of Mathematics Trends and Technology – Volume 11 Number 2 – Jul 2014

Figure 4

Theorem 3.3

Graph $D_2[P_n+K_1]$ is a Mean Cordial Graph.

Proof:

 $f^{*}(v_{i} \; v_{i+1}) \;\; = 1$

$$f^{*}(u_{i} v_{i+1}) = \begin{cases} 1 & if \ i \equiv 1 \mod 2 \\ 0 & if \ i \equiv 0 \mod 2 \end{cases} , \ 1 \le i \le n-1$$

$$f^{*}(v_{i} u_{i+1}) = \begin{cases} 0 & \text{if } i \equiv 1 \mod 2 \\ 1 & \text{if } i \equiv 0 \mod 2 \end{cases} , \ 1 \le i \le n-1$$

Hence $e_f(0) = e_f(1)$ for all n.

It satisfies the condition $|e_f(0) - e_f(1)| \le 1$.

Hence $D_2(P_n + K_1)$ is a mean cordial graph

For example, $D_2(P_2 + K_1)$ is shown in the figure 5.

Theorem 3.4

Graph $D_2(P_n)$ is a Mean Cordial Graph.

Proof:

Let
$$G = (V, E)$$

Let G be $D_2(P_n)$

Let $V[D_2(P_n)] = \{u_i, v_i: 1 \le i \le n\}$

Let $E[D_2(P_n)] = \{[(u_iu_{i+1}): 1 \le i \le n-1] \cup [(v_i v_{i+1}): 1 \le i \le n-1]\}$

$$\cup [(v_i u_{i+1}):1 \le i \le n-1] \cup [(u_i v_{i+1}):1 \le i \le n-1] \}$$

Define f: V(G) \rightarrow 0,1,2} by

$$f(\mathbf{u}_i) = \begin{cases} 2 & if \ i \equiv 1 \mod 2 \\ 0 & if \ i \equiv 0 \mod 2 \end{cases}, 1 \le i \le n$$

$$\mathbf{f}(\mathbf{v}_{i}) = \begin{cases} 0 & if \ i \equiv 0 \mod 2 \\ 1 & if \ i \equiv 1 \mod 2 \end{cases}, 1 \le i \le n$$

The induced edge labeling are

$$f^*(u_i u_{i+1}) = 1, 1 \le i \le n-1$$

$$f^*(v_i v_{i+1}) = 0, 1 \le i \le n-1$$

$$f^{*}(v_{i} u_{i+1}) = \begin{cases} 0 & if \ i \equiv 1 \mod 2 \\ 1 & if \ i \equiv 0 \mod 2 \end{cases}, \ 1 \le i \le n-1 \end{cases}$$

$$f^{*}(u_{i} v_{i+1}) = \begin{cases} 1 \ if \ i \equiv 1 \mod 2 \\ 0 \ if \ i \equiv 0 \mod 2 \end{cases}, \ 1 \le i \le n-1$$

It satisfies the condition

 $e_f(0) = e_f(1)$ for all n

Hence, $D_2(P_n)$ is a mean cordial graph.

For example, the mean cordial graph of $D_2(P_4)$ is shown in the figure 6.

4. Conclusion

Graph labeling place a vital role not only in the theoretical aspect but also in many practical application problems. There are number of labeling such as magic labeling, graceful labeling, mean labeling and super-mean labeling.

Particularly cordial related labeling such as mean cordial, divisor cordial, mean-square cordial labeling etc. place an important role in digital technology

5. References

- 1. *Gallian*. J.A, A Dynamic Survey of Graph Labeling, The Electronic Journal of Combinotorics 6(2001)#DS6.
- 2. *Harary,F., Graph Theory*, Addision Wesley Publishing Company Inc, USA, 1969.
- 3. *A.NellaiMurugan*, *Studies in Graph theory- Some Labeling Problems in Graphs and Related topics*, Ph.D Thesis, September 2011.
- 4. **A.Nellai Murugan** and V.Baby Suganya, Cordial labeling of path related splitted graphs, Indian Journal of Applied Research ISSN 2249 –555X, Vol.4, Issue 3, Mar. 2014, ISSN 2249 555X , PP 1-8.
- A.Nellai Murugan and M. Taj Nisha, A study on divisor cordial labelling of star attached paths and cycles, Indian Journal of Research ISSN 2250 – 1991,Vol.3, Issue 3, Mar. 2014, PP 12-17.
- A.Nellai Murugan and V.Brinda Devi, A study on path related divisor cordial graphs International Journal of Scientific Research, ISSN 2277–8179,Vol.3, Issue 4, April. 2014, PP 286 – 291
- A.Nellai Murugan and A. Meenakshi Sundari, On Cordial Graphs, International Journal of Scientific Research, ISSN 2277–8179,Vol.3, Issue 7, July. 2014, PP 419 - 420
- 8. A.Nellai Murugan and P. Iyadurai Selvaraj, *Path Related Cup Cordial graphs*. International Journal of Advanced Research, ISSN 2249 –555X,Vol.4, Issue 8, Aug. 2014
- **9. A.Nellai Murugan** and P. Iyadurai Selvaraj, *Cycle and Armed Cup Cordial graphs*. International Journal of Innovative Science, Engineering and Technology, Research, ISSN 2348–7968, Vol.1, Issue 5, 2014.