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Abstract 

Let  G = (V, E) be a simple graph. G is said to be a mean cordial graph if  f : V(G)→{0,1,2} such that for each edge uv 

the induced map f* defined by  f*(uv) =  



 

2
)()( vfuf

 where x denote the least integer which is ≤ x and  |ef (0) - ef(1)| ≤ 1 

where ef(0) is no.of edges with zero label. ef(1) is no.of edges with one  label. 

The graph that admits a mean cordial labeling is called a mean cordial graph (MCG). 

     In this paper , we proved that D2[Cn] , D2[K1,n] , D2[Pn + K1] , D2[Pn] are mean cordial graphs. 
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1.INTRODUCTION: 

A graph G is a finite non-empty set of objects called 
vertices together with a set of unordered pairs of distinct 
vertices of G which is called edges. Each e = {uv} of vertices 
in E is called an edge or a line of G. For graph theoretical 
Terminology we follow  

2.PRELIMINARIES: 

We define the concept of mean cordial labeling as 
follows. 

Let G = (V, E) be a simple graph. G is said to be a 
mean cordial graph if f : V(G)→{0,1,2} such that for each 
edge uv the induced map f* defined by f*(uv) 

= 



 

2
)()( vfuf

    where x denote the least integer which 

is ≤ x and |ef(0) - ef(1)| ≤ 1 where ef(0) is no.of edgeswith label 
0. ef (1) is number of edges with label 1. 

A graph that admits a mean cordial labeling is called 
a mean cordial graph. We proved that D2[Cn] , D2[K1,n ] ,       
D2[Pn + K1] , D2[Pn] are mean cordial graphs.                  

 

DEFINITION 2.1 (SHADOW GRAPH) 

Let G be a connected Graph. A Graph, constructed by 
taking two copies of G say G1 and G2 and joining each vertex 

u in G1 to the neighbours of the corresponding  vertex v in G2 
,that is for every vertex u in G1 there exists v in G2 such that 
N(u) = N(v). The resulting Graph is known as shadow Graph 
and it is denoted by D2(G). 

DEFINITION 2.2 (CYCLE) 

A closed path is called a cycle and a cycle of length k 
is denoted by Ck. 

 

DEFINITION 2.3(STAR) 

Let Sm,n  (n > 2) is a star with n spokes in which each 
spoke is a path of length m. 

DEFINITION 2.4(FAN) 

The join G1 + G2 of G1 and G2 consists of G1G2 and all 
lines joining V1 with V2 as vertex set                               
V(G1G2) = V(G1) V(G2) and edges E(G1G2) = E(G1) 
E(G2)      [uv : u V(G1) and  v V(G2) ]. The graph Pn + K1 
is called a Fan and Pn + 2K1 is called the Doublefan. 

DEFINITION 2.5(PATH) 

If all the vertices in a walk are distinct, then it is 
called a path and a path of length k is denoted by Pk+1. 
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3.  MAIN RESULTS ON MEAN CORDIAL GRAPH 

       Theorem 3.1       

                 D2(Cn) is a Mean Cordial Graph. 

       Proof:  

                   Let G = (V, E) 

                   Let G be [D2(Cn)] 

                   Let V[D2(Cn)] = {ui , vi :1≤ i ≤ n} 

Let E[D2(Cn)] = {[(ui ui+1)  (vi vi+1) : 1≤ i ≤ n-1]   
  [(u1 un)  (v1 vn )  (u1 v2)  

 (v1 u2)]  [(ui vi+1)  (ui vi-1)  
 (vi ui+1)  (vi ui-1) : 2≤ i ≤ n-1]} 

                   Define f : V(G)→{0,1,2} by 

                   f(u1) = 1 

                   f(v1) = 1 

                   f(ui) =











2mod11
2mod00

iif
iif

   , 2≤ i ≤ n 

                  f(vi) = 











2mod10
2mod01

iif
iif

   ,2≤ i ≤ n 

                    The induced edge labeling are 

                   f*(ui ui+1) = 











2mod01
2mod10

iif
iif

  , 1≤ i ≤ n-1 

                   f*(vi vi+1) =











2mod00
2mod11

iif
iif

   , 1≤ i ≤ n-1 

                    f*(ui vi +1) = 











2mod00
2mod11

iif
iif

    , 2≤ i ≤ n-1 

                    f*(ui vi-1) = 











2mod00
2mod11

iif
iif

   , 2≤ i ≤ n-1 

                    f*(vi ui+1) = 











2mod01
2mod10

iif
iif

  , 2≤ i ≤ n-1 

                    f*(vi ui-1) = 











2mod01
2mod10

iif
iif

  , 2≤ i ≤ n-1 

                  When n is even , f*(u1 vn)  = 1 

                                                f*(u1 v2)  = 1 

                                                f*(v1 un )  = 0 

                                                f*(v1 u2)  = 0 

                   When n is odd , f*(v1 u5 )  = 1 

                                                 f*(u1 vn)  = 0 

                                                 f*(v1 u2 )  = 0 

                                                 f*(u1 v2)  = 1 

                      Here ef(0) = ef(1) for all n. 

                      It satisfies the condition |ef(0) - ef(1)| ≤ 1. 

                       Hence , D2(Cn) is a mean cordial graph. 

                      For example the graph D2(C4) and D2(C5) are 
shown in the figure1 and figure 2. 
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  Theorem 3.2 

                          D2[K1,n] is a Mean cordial Graph. 

Proof: 

                  Let G = (V, E) 

                  Let G be D2[K1,n] 

                  Let V[D2(K1,n)] = {u, v, (ui vi) : 1≤ i ≤ n} 

                  Let E[D2(K1,n)] = {[(u ui)  (u vi)  (v ui)  (v vi)] 

 : 1≤ i ≤ n} 

                  Define f : V(G)→{0,1,2} by 

                  Case (i) :  n is even 

                   f(u) = 1 

                   f(v) = 1 

                  f(ui) = 











2mod02
2mod10

iif
iif

  , 1≤ i ≤ n 

                 f(vi) =











2mod02
2mod10

iif
iif

   , 1≤ i ≤ n 

                 The induced edge labeling are 

                f*(u ui) =











2mod01
2mod10

iif
iif

   , 1≤ i ≤ n 

                f*(u vi) = 











2mod01
2mod10

iif
iif

  , 1≤ i ≤ n 

                f*(v ui) = 











2mod01
2mod10

iif
iif

  , 1≤ i ≤ n 

                f*(v vi) = 











2mod01
2mod10

iif
iif

  , 1≤ i ≤ n 

                  Here ef(0) = ef(1) 

                It satisfies the condition |ef (0) - ef (1)| ≤ 1. 

              Hence [D2(K1,n)]  (n is even)  is a mean cordial graph. 

                     For example D2(K1,2) is shown in the figure 3. 

 

                                

 

 

 

 

 

                

 

Figure 3 

             Case (ii): n is odd  

             f(u) = 1 

             f(v) = 1 

             f(ui) = 











2mod02
2mod10

iif
iif

 , 1≤ i ≤ n 

             f(vi) =











2mod12
2mod00

iif
iif

  , 1≤ i ≤ n 

             The induced edge labeling are 

              f*(u ui) = 











2mod01
2mod10

iif
iif

 , 1≤ i ≤ n 

             f*(u vi) =











2mod11
2mod00

iif
iif

   , 1≤ i ≤ n 

              f*(v ui) =











2mod01
2mod10

iif
iif

  , 1≤ i ≤ n 

            f*(v vi) = 











2mod01
2mod10

iif
iif

 , 1≤ i ≤ n 

             Here ef(0) = ef(1) 

             It satisfies the condition |ef (0) - ef(1)| ≤ 1. 

              Hence [D2(K1,n)] (n is odd) is a mean cordial graph. 

             For example D2(K1,3) is shown in the figure.  
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Figure 4 

    

 Theorem 3.3 

                          Graph  D2[Pn+K1] is a Mean Cordial  Graph. 

    Proof: 

                Let G = (V, E) 

                Let G be D2[Pn +K1] 

               Let V[D2(Pn + K1)] = {u,v,ui,vi : 1≤ i≤ n} 

               Let E[D2(Pn+K1)] = {(u ui)  (u vi)  (v ui)   

      (v vi)  (ui ui+1)  (vi vi+1) 

                                                 (uivi+1)(vi ui+1): 1≤ i ≤ n-1} 

               Define f: V(G)→{0,1,2} by 

               f(u) = 2 

              f(v) = 0 

              f(ui) = 











2mod00
2mod11

iif
iif

  , 1≤ i ≤ n 

              f(vi) = 1 

              The induced edge labeling are 

               f*(u ui)  = 1 

               f*(u vi) = 1 

              f*(v ui)  = 0 

              f*(v vi)  = 0 

              f*(ui ui+1)  = 0 

               f*(vi vi+1)  = 1 

               f*(ui vi+1) =











2mod00
2mod11

iif
iif

   , 1≤ i ≤ n-1 

              f*(vi ui+1) =











2mod01
2mod10

iif
iif

   , 1≤ i ≤ n-1 

               Hence ef(0) = ef(1) for all n. 

              It satisfies the condition  |ef(0) - ef(1)|≤ 1. 

              Hence D2(Pn +K1) is a mean cordial graph 

              For example, D2(P2+ K1) is shown in the figure 5. 

                

 

 

 

 

 

 

 

Figure 5 

   Theorem 3.4 

Graph  D2(Pn) is a Mean Cordial Graph. 

Proof: 

Let G= (V, E) 

Let G be D2(Pn) 

Let  V[D2(Pn)] = {ui ,vi :1≤ i≤ n} 

Let  E[D2(Pn)]= {[(uiui+1):1≤ i≤ n-1][(vi vi+1):1 ≤ i≤ n-1] 

                        [(vi ui+1):1 ≤ i≤ n-1][(ui vi+1):1 ≤ i≤ n-1]} 

          Define f: V(G)→0,1,2} by 

          f(ui) =   ni
iif
iif













1,
2mod00
2mod12

 

          f(vi) = ni
iif
iif













1,
2mod11
2mod00
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         The induced edge labeling  are 

         f*(ui ui+1) =  1, 1≤ i≤ n-1 

         f*(vi vi+1) =  0, 1 ≤ i ≤ n-1 

         f*(vi ui+1) = 











2mod01
2mod10

iif
iif

 , 1 ≤ i ≤ n-1  

         f*(ui vi+1) = 











2mod00
2mod11

iif
iif

, 1 ≤ i ≤ n-1 

         It satisfies the condition 

         ef(0) = ef(1) for all n 

         Hence, D2(Pn) is a mean cordial graph. 

         For example, the mean cordial graph of  D2(P4) is shown 
in the figure 6.  

 

 

 

 

 

 

 

Figure 6 

4. Conclusion 

 Graph labeling place a vital role not only in the 
theoretical aspect but also in many practical application 
problems. There are number of labeling such as magic 
labeling, graceful labeling, mean labeling and super-mean 
labeling.  

 Particularly cordial related labeling such as mean 
cordial, divisor cordial, mean-square cordial labeling etc. 
place an important role in digital technology 
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