Some Results on Mean Cordial Graphs

A.Nellai Murugan ${ }^{1}$ and G.Esther2
Department of Mathematics, V.O. Chidambaram College,
Tuticorin, Tamilnadu (INDIA)

Abstract

Let $\mathrm{G}=(\mathrm{V}, \mathrm{E})$ be a simple graph. G is said to be a mean cordial graph if $\mathrm{f}: \mathrm{V}(\mathrm{G}) \rightarrow\{0,1,2\}$ such that for each edge uv the induced map f^{*} defined by $\mathrm{f}^{*}(\mathrm{uv})=\left[\frac{f(u)+f(v)}{2}\right]$ where $\lfloor\mathrm{x}\rfloor$ denote the least integer which is $\leq \mathrm{x}$ and $\left|\mathrm{e}_{\mathrm{f}}(0)-\mathrm{e}_{\mathrm{f}}(1)\right| \leq 1$ where $e_{f}(0)$ is no.of edges with zero label. $e_{f}(1)$ is no.of edges with one label.

The graph that admits a mean cordial labeling is called a mean cordial graph (MCG). In this paper, we proved that $\mathrm{D}_{2}\left[\mathrm{C}_{\mathrm{n}}\right], \mathrm{D}_{2}\left[\mathrm{~K}_{1, n}\right], \mathrm{D}_{2}\left[\mathrm{P}_{\mathrm{n}}+\mathrm{K}_{1}\right], \mathrm{D}_{2}\left[\mathrm{P}_{\mathrm{n}}\right]$ are mean cordial graphs. Key words: Mean cordial labeling, Mean cordial graph.

2000 Mathematics Subject Classification 05C78.

1.INTRODUCTION:

A graph G is a finite non-empty set of objects called vertices together with a set of unordered pairs of distinct vertices of G which is called edges. Each $e=\{u v\}$ of vertices in E is called an edge or a line of G. For graph theoretical Terminology we follow

2.PRELIMINARIES:

We define the concept of mean cordial labeling as follows.

Let $G=(V, E)$ be a simple graph. G is said to be a mean cordial graph if $\mathrm{f}: \mathrm{V}(\mathrm{G}) \rightarrow\{0,1,2\}$ such that for each edge uv the induced map f^{*} defined by $\mathrm{f}^{*}(\mathrm{uv})$ $=\left[\frac{f(u)+f(v)}{2}\right]$ where $\lfloor\mathrm{x}\rfloor$ denote the least integer which is $\leq \mathrm{x}$ and $\left|\mathrm{e}_{\mathrm{f}}(0)-\mathrm{e}_{\mathrm{f}}(1)\right| \leq 1$ where $\mathrm{e}_{\mathrm{f}}(0)$ is no.of edgeswith label 0 . $e_{f}(1)$ is number of edges with label 1.

A graph that admits a mean cordial labeling is called a mean cordial graph. We proved that $\mathrm{D}_{2}\left[\mathrm{C}_{\mathrm{n}}\right], \mathrm{D}_{2}\left[\mathrm{~K}_{1, \mathrm{n}}\right]$, $\mathrm{D}_{2}\left[\mathrm{P}_{\mathrm{n}}+\mathrm{K}_{1}\right], \mathrm{D}_{2}\left[\mathrm{P}_{\mathrm{n}}\right]$ are mean cordial graphs.

Definition 2.1 (Shadow Graph)

Let G be a connected Graph. A Graph, constructed by taking two copies of G say G_{1} and G_{2} and joining each vertex
u in G_{1} to the neighbours of the corresponding vertex v in G_{2} ,that is for every vertex u in G_{1} there exists v in G_{2} such that $\mathrm{N}(\mathrm{u})=\mathrm{N}(\mathrm{v})$. The resulting Graph is known as shadow Graph and it is denoted by $\mathrm{D}_{2}(\mathrm{G})$.

Definition 2.2 (CyCle)

A closed path is called a cycle and a cycle of length k is denoted by C_{k}.

DEFINITION 2.3(STAR)

Let $\mathrm{S}_{\mathrm{m}, \mathrm{n}}(\mathrm{n}>2)$ is a star with n spokes in which each spoke is a path of length m .

DEFINITION 2.4(FAN)

The join $G_{1}+G_{2}$ of G_{1} and G_{2} consists of $G_{1} \cup G_{2}$ and all lines joining V_{1} with V_{2} as vertex set $V\left(G_{1} \cup G_{2}\right)=V\left(G_{1}\right) \cup V\left(G_{2}\right)$ and edges $E\left(G_{1} \cup G_{2}\right)=E\left(G_{1}\right)$ $\cup E\left(G_{2}\right) \quad\left[u v: u \in V\left(G_{1}\right)\right.$ and $\left.v \in V\left(G_{2}\right)\right]$. The graph $P_{n}+K_{1}$ is called a Fan and $\mathrm{P}_{\mathrm{n}}+2 \mathrm{~K}_{1}$ is called the Doublefan.

DEFINITION 2.5(PATH)

If all the vertices in a walk are distinct, then it is called a path and a path of length k is denoted by $\mathrm{P}_{\mathrm{k}+1}$.

3. Main Results on Mean Cordial Graph

Theorem 3.1
$D_{2}\left(C_{n}\right)$ is a Mean Cordial Graph.

Proof:

Let $\mathrm{G}=(\mathrm{V}, \mathrm{E})$
Let G be $\left[\mathrm{D}_{2}\left(\mathrm{C}_{\mathrm{n}}\right)\right.$]
Let $\mathrm{V}\left[\mathrm{D}_{2}\left(\mathrm{C}_{\mathrm{n}}\right)\right]=\left\{\mathrm{u}_{\mathrm{i}}, \mathrm{v}_{\mathrm{i}}: 1 \leq \mathrm{i} \leq \mathrm{n}\right\}$
Let $E\left[D_{2}\left(C_{n}\right)\right]=\left\{\left[\left(u_{i} u_{i+1}\right) \cup\left(v_{i} v_{i+1}\right): 1 \leq i \leq n-1\right] \cup\right.$
$\left[\left(u_{1} u_{n}\right) \cup\left(v_{1} v_{n}\right) \cup\left(u_{1} v_{2}\right) \cup\right.$
$\left.\left(v_{1} u_{2}\right)\right] \cup\left[\left(u_{i} v_{i+1}\right) \cup\left(u_{i} v_{i-1}\right) \cup\right.$
$\left.\left.\left(v_{i} u_{i+1}\right) \cup\left(v_{i} u_{i-1}\right): 2 \leq i \leq n-1\right]\right\}$
Define $\mathrm{f}: \mathrm{V}(\mathrm{G}) \rightarrow\{0,1,2\}$ by
$\mathrm{f}\left(\mathrm{u}_{1}\right)=1$
$\mathrm{f}\left(\mathrm{v}_{1}\right)=1$
$\mathrm{f}\left(\mathrm{u}_{\mathrm{i}}\right)=\left\{\begin{array}{ll}0 & \text { if } i \equiv 0 \bmod 2 \\ 1 & \text { if } i \equiv 1 \bmod 2\end{array}\right\}, 2 \leq \mathrm{i} \leq \mathrm{n}$
$\mathrm{f}\left(\mathrm{v}_{\mathrm{i}}\right)=\left\{\begin{array}{l}1 \text { if } i \equiv 0 \bmod 2 \\ 0 \text { if } i \equiv 1 \bmod 2\end{array}\right\}, 2 \leq \mathrm{i} \leq \mathrm{n}$
The induced edge labeling are
$\mathrm{f}^{*}\left(\mathrm{u}_{\mathrm{i}} \mathrm{u}_{\mathrm{i}+1}\right)=\left\{\begin{array}{ll}0 & \text { if } i \equiv 1 \bmod 2 \\ 1 & \text { if } i \equiv 0 \bmod 2\end{array}\right\}, 1 \leq \mathrm{i} \leq \mathrm{n}-1$
$\mathrm{f}^{*}\left(\mathrm{v}_{\mathrm{i}} \mathrm{v}_{\mathrm{i}+1}\right)=\left\{\begin{array}{l}1 \text { if } i \equiv 1 \bmod 2 \\ 0 \quad \text { if } i \equiv 0 \bmod 2\end{array}\right\}, 1 \leq \mathrm{i} \leq \mathrm{n}-1$
$\mathrm{f}^{*}\left(\mathrm{u}_{\mathrm{i}} \mathrm{v}_{\mathrm{i}+1}\right)=\left\{\begin{array}{l}1 \text { if } i \equiv 1 \bmod 2 \\ 0 \quad \text { if } i \equiv 0 \bmod 2\end{array}\right\}, 2 \leq \mathrm{i} \leq \mathrm{n}-1$
$\mathrm{f}^{*}\left(\mathrm{u}_{\mathrm{i}} \mathrm{v}_{\mathrm{i}-1}\right)=\left\{\begin{array}{l}1 \text { if } i \equiv 1 \bmod 2 \\ 0 \quad \text { if } i \equiv 0 \bmod 2\end{array}\right\}, 2 \leq \mathrm{i} \leq \mathrm{n}-1$
$\mathrm{f}^{*}\left(\mathrm{v}_{\mathrm{i}} \mathrm{u}_{\mathrm{i}+1}\right)=\left\{\begin{array}{ll}0 & \text { if } i \equiv 1 \bmod 2 \\ 1 & \text { if } i \equiv 0 \bmod 2\end{array}\right\}, 2 \leq \mathrm{i} \leq \mathrm{n}-1$
$\mathrm{f}^{*}\left(\mathrm{v}_{\mathrm{i}} \mathrm{u}_{\mathrm{i}-1}\right)=\left\{\begin{array}{ll}0 & \text { if } i \equiv 1 \bmod 2 \\ 1 & \text { if } i \equiv 0 \bmod 2\end{array}\right\}, 2 \leq \mathrm{i} \leq \mathrm{n}-1$

$$
\begin{aligned}
& \text { When } n \text { is even, } f^{*}\left(\mathrm{u}_{1} \mathrm{v}_{\mathrm{n}}\right) \\
& \qquad \begin{aligned}
\mathrm{f}^{*}\left(\mathrm{u}_{1} \mathrm{v}_{2}\right) & =1 \\
\mathrm{f}^{*}\left(\mathrm{v}_{1} \mathrm{u}_{\mathrm{n}}\right) & =0 \\
\mathrm{f}^{*}\left(\mathrm{v}_{1} \mathrm{u}_{2}\right) & =0 \\
\text { When } \mathrm{n} \text { is odd, } \mathrm{f}^{*}\left(\mathrm{v}_{1} \mathrm{u}_{5}\right) & =1 \\
\mathrm{f}^{*}\left(\mathrm{u}_{1} \mathrm{v}_{\mathrm{n}}\right) & =0 \\
\mathrm{f}^{*}\left(\mathrm{v}_{1} u_{2}\right) & =0 \\
\mathrm{f}^{*}\left(\mathrm{u}_{1} \mathrm{v}_{2}\right) & =1
\end{aligned}
\end{aligned}
$$

Here $e_{f}(0)=e_{f}(1)$ for all n.
It satisfies the condition $\left|e_{f}(0)-e_{f}(1)\right| \leq 1$.
Hence, $\mathrm{D}_{2}\left(\mathrm{C}_{\mathrm{n}}\right)$ is a mean cordial graph.
For example the graph $D_{2}\left(\mathrm{C}_{4}\right)$ and $\mathrm{D}_{2}\left(\mathrm{C}_{5}\right)$ are shown in the figure 1 and figure 2.

Figure 1

Figure 2

Theorem 3.2

$$
\mathrm{D}_{2}\left[\mathrm{~K}_{1, \mathrm{n}}\right] \text { is a Mean cordial Graph. }
$$

Proof:

Let $\mathrm{G}=(\mathrm{V}, \mathrm{E})$
Let G be $\mathrm{D}_{2}\left[\mathrm{~K}_{1, \mathrm{n}}\right]$
Let $\mathrm{V}\left[\mathrm{D}_{2}\left(\mathrm{~K}_{1, \mathrm{n}}\right)\right]=\left\{\mathrm{u}, \mathrm{v},\left(\mathrm{u}_{\mathrm{i}} \mathrm{v}_{\mathrm{i}}\right): 1 \leq \mathrm{i} \leq \mathrm{n}\right\}$
Let $E\left[D_{2}\left(K_{1, n}\right)\right]=\left\{\left[\left(u_{i}\right) \cup\left(u v_{i}\right) \cup\left(\mathrm{v}_{\mathrm{i}}\right) \cup\left(\mathrm{v} \mathrm{v}_{\mathrm{i}}\right)\right]\right.$

$$
: 1 \leq \mathrm{i} \leq \mathrm{n}\}
$$

Define $\mathrm{f}: \mathrm{V}(\mathrm{G}) \rightarrow\{0,1,2\}$ by
Case (i) : n is even

$$
\begin{aligned}
& \mathrm{f}(\mathrm{u})=1 \\
& \mathrm{f}(\mathrm{v})=1 \\
& \mathrm{f}\left(\mathrm{u}_{\mathrm{i}}\right)=\left\{\begin{array}{ll}
0 & \text { if } i \equiv 1 \bmod 2 \\
2 & \text { if } i \equiv 0 \bmod 2
\end{array}\right\}, 1 \leq \mathrm{i} \leq \mathrm{n} \\
& \mathrm{f}\left(\mathrm{v}_{\mathrm{i}}\right)=\left\{\begin{array}{ll}
0 & \text { if } i \equiv 1 \bmod 2 \\
2 & \text { if } i \equiv 0 \bmod 2
\end{array}\right\}, 1 \leq \mathrm{i} \leq \mathrm{n}
\end{aligned}
$$

The induced edge labeling are
$\mathrm{f}^{*}\left(\mathrm{u}_{\mathrm{i}}\right)=\left\{\begin{array}{ll}0 & \text { if } i \equiv 1 \bmod 2 \\ 1 & \text { if } i \equiv 0 \bmod 2\end{array}\right\}, 1 \leq \mathrm{i} \leq \mathrm{n}$
$\mathrm{f}^{*}\left(\mathrm{u} \mathrm{v}_{\mathrm{i}}\right)=\left\{\begin{array}{ll}0 & \text { if } i \equiv 1 \bmod 2 \\ 1 & \text { if } i \equiv 0 \bmod 2\end{array}\right\}, 1 \leq \mathrm{i} \leq \mathrm{n}$
$\mathrm{f}^{*}\left(\mathrm{v}_{\mathrm{i}}\right)=\left\{\begin{array}{ll}0 & \text { if } i \equiv 1 \bmod 2 \\ 1 & \text { if } i \equiv 0 \bmod 2\end{array}\right\}, 1 \leq \mathrm{i} \leq \mathrm{n}$
$\mathrm{f}^{*}\left(\mathrm{v} \mathrm{v}_{\mathrm{i}}\right)=\left\{\begin{array}{ll}0 & \text { if } i \equiv 1 \bmod 2 \\ 1 & \text { if } i \equiv 0 \bmod 2\end{array}\right\}, 1 \leq \mathrm{i} \leq \mathrm{n}$
Here $\mathrm{e}_{\mathrm{f}}(0)=\mathrm{e}_{\mathrm{f}}(1)$
It satisfies the condition $\left|e_{f}(0)-e_{f}(1)\right| \leq 1$.
Hence $\left[D_{2}\left(K_{1, n}\right)\right]$ (n is even) is a mean cordial graph.
For example $D_{2}\left(K_{1,2}\right)$ is shown in the figure 3 .

Figure 4

Theorem 3.3
Graph $\mathrm{D}_{2}\left[\mathrm{P}_{\mathrm{n}}+\mathrm{K}_{1}\right]$ is a Mean Cordial Graph.
Proof:
Let $\mathrm{G}=(\mathrm{V}, \mathrm{E})$
Let G be $D_{2}\left[P_{n}+K_{1}\right]$
Let $\mathrm{V}\left[\mathrm{D}_{2}\left(\mathrm{P}_{\mathrm{n}}+\mathrm{K}_{\mathrm{l}}\right)\right]=\left\{\mathrm{u}, \mathrm{v}, \mathrm{u}_{\mathrm{i}}, \mathrm{v}_{\mathrm{i}}: 1 \leq \mathrm{i} \leq \mathrm{n}\right\}$
Let $E\left[D_{2}\left(P_{n}+K_{1}\right)\right]=\left\{\left(u_{i}\right) \cup\left(u v_{i}\right) \cup\left(\mathrm{v}_{\mathrm{i}}\right) \cup\right.$

$$
\begin{aligned}
& \left(v v_{i}\right) \cup\left(u_{i} u_{i+1}\right) \cup\left(v_{i} v_{i+1}\right) \\
& \left.\cup\left(u_{i} v_{i+1}\right) \cup\left(v_{i} u_{i+1}\right): 1 \leq i \leq n-1\right\}
\end{aligned}
$$

Define $\mathrm{f}: \mathrm{V}(\mathrm{G}) \rightarrow\{0,1,2\}$ by
$\mathrm{f}(\mathrm{u})=2$
$f(v)=0$
$\mathrm{f}\left(\mathrm{u}_{\mathrm{i}}\right)=\left\{\begin{array}{l}1 \text { if } i \equiv 1 \bmod 2 \\ 0 \text { if } i \equiv 0 \bmod 2\end{array}\right\}, 1 \leq \mathrm{i} \leq \mathrm{n}$
$\mathrm{f}\left(\mathrm{v}_{\mathrm{i}}\right)=1$
The induced edge labeling are

$$
\begin{array}{cl}
\mathrm{f}^{*}\left(\mathrm{u}_{\mathrm{i}}\right) & =1 \\
\mathrm{f}^{*}\left(\mathrm{u}_{\mathrm{i}}\right) & =1 \\
\mathrm{f}^{*}\left(\mathrm{v} \mathrm{u}_{\mathrm{i}}\right) & =0 \\
\mathrm{f}^{*}(\mathrm{v} v \mathrm{vi}) & =0 \\
\mathrm{f}^{*}\left(\mathrm{u}_{\mathrm{i}} \mathrm{u}_{\mathrm{i}+1}\right) & =0 \\
\mathrm{f}^{*}\left(\mathrm{v}_{\mathrm{i}} \mathrm{v}_{\mathrm{i}+1}\right) & =1
\end{array}
$$

$\mathrm{f}^{*}\left(\mathrm{u}_{\mathrm{i}} \mathrm{v}_{\mathrm{i}+1}\right)=\left\{\begin{array}{l}1 \text { if } i \equiv 1 \bmod 2 \\ 0 \quad \text { if } i \equiv 0 \bmod 2\end{array}\right\}, 1 \leq \mathrm{i} \leq \mathrm{n}-1$
$\mathrm{f}^{*}\left(\mathrm{v}_{\mathrm{i}} \mathrm{u}_{\mathrm{i}+1}\right)=\left\{\begin{array}{ll}0 & \text { if } i \equiv 1 \bmod 2 \\ 1 & \text { if } i \equiv 0 \bmod 2\end{array}\right\}, 1 \leq \mathrm{i} \leq \mathrm{n}-1$

Hence $e_{f}(0)=e_{f}(1)$ for all n.
It satisfies the condition $\left|e_{f}(0)-e_{f}(1)\right| \leq 1$.
Hence $\mathrm{D}_{2}\left(\mathrm{P}_{\mathrm{n}}+\mathrm{K}_{1}\right)$ is a mean cordial graph
For example, $D_{2}\left(P_{2}+K_{1}\right)$ is shown in the figure 5 .

Figure 5

Theorem 3.4

Graph $D_{2}\left(P_{n}\right)$ is a Mean Cordial Graph.

Proof:

Let $\mathrm{G}=(\mathrm{V}, \mathrm{E})$
Let G be $\mathrm{D}_{2}\left(\mathrm{P}_{\mathrm{n}}\right)$
Let $V\left[D_{2}\left(P_{n}\right)\right]=\left\{\mathrm{u}_{\mathrm{i}}, \mathrm{v}_{\mathrm{i}}: 1 \leq \mathrm{i} \leq \mathrm{n}\right\}$
Let $E\left[D_{2}\left(P_{n}\right)\right]=\left\{\left[\left(u_{i} u_{i+1}\right): 1 \leq i \leq n-1\right] \cup\left[\left(v_{i} v_{i+1}\right): 1 \leq i \leq n-1\right]\right.$

$$
\left.\cup\left[\left(v_{i} u_{i+1}\right): 1 \leq \mathrm{i} \leq \mathrm{n}-1\right] \cup\left[\left(\mathrm{u}_{\mathrm{i}} \mathrm{v}_{\mathrm{i}+1}\right): 1 \leq \mathrm{i} \leq \mathrm{n}-1\right]\right\}
$$

Define $\mathrm{f}: \mathrm{V}(\mathrm{G}) \rightarrow 0,1,2\}$ by

$$
\begin{aligned}
& \left.\mathrm{f}_{\mathrm{u}}\right)=\left\{\begin{array}{l}
2 \text { if } i \equiv 1 \bmod 2 \\
0 \quad \text { if } i \equiv 0 \bmod 2
\end{array}\right\}, 1 \leq i \leq n \\
& \mathrm{f}\left(\mathrm{v}_{\mathrm{i}}\right)=\left\{\begin{array}{ll}
0 & \text { if } i \equiv 0 \bmod 2 \\
1 & \text { if } i \equiv 1 \bmod 2
\end{array}\right\}, 1 \leq i \leq n
\end{aligned}
$$

The induced edge labeling are
$\mathrm{f}^{*}\left(\mathrm{u}_{\mathrm{i}} \mathrm{u}_{\mathrm{i}+1}\right)=1,1 \leq \mathrm{i} \leq \mathrm{n}-1$
$\mathrm{f}^{*}\left(\mathrm{v}_{\mathrm{i}} \mathrm{v}_{\mathrm{i}+1}\right)=0,1 \leq \mathrm{i} \leq \mathrm{n}-1$
$\mathrm{f}^{*}\left(\mathrm{v}_{\mathrm{i}} \mathrm{u}_{\mathrm{i}+1}\right)=\left\{\begin{array}{ll}0 & \text { if } i \equiv 1 \bmod 2 \\ 1 & \text { if } i \equiv 0 \bmod 2\end{array}\right\}, 1 \leq \mathrm{i} \leq \mathrm{n}-1$
$\mathrm{f}^{*}\left(\mathrm{u}_{\mathrm{i}} \mathrm{v}_{\mathrm{i}+1}\right)=\left\{\begin{array}{l}1 \text { if } i \equiv 1 \bmod 2 \\ 0 \quad \text { if } i \equiv 0 \bmod 2\end{array}\right\}, 1 \leq \mathrm{i} \leq \mathrm{n}-1$
It satisfies the condition
$e_{f}(0)=e_{f}(1)$ for all n
Hence, $\mathrm{D}_{2}\left(\mathrm{P}_{\mathrm{n}}\right)$ is a mean cordial graph.
For example, the mean cordial graph of $\mathrm{D}_{2}\left(\mathrm{P}_{4}\right)$ is shown in the figure 6.

Figure 6

4. Conclusion

Graph labeling place a vital role not only in the theoretical aspect but also in many practical application problems. There are number of labeling such as magic labeling, graceful labeling, mean labeling and super-mean labeling.

Particularly cordial related labeling such as mean cordial, divisor cordial, mean-square cordial labeling etc. place an important role in digital technology

5. References

1. Gallian. J.A,A Dynamic Survey of Graph Labeling, The Electronic Journal of Combinotorics 6(2001)\#DS6.
2. Harary, F., Graph Theory, Addision - Wesley Publishing Company Inc, USA, 1969.
3. A.NellaiMurugan, Studies in Graph theory- Some Labeling Problems in Graphs and Related topics, Ph.D Thesis, September 2011.
4. A.Nellai Murugan and V.Baby Suganya, Cordial labeling of path related splitted graphs, Indian Journal of Applied Research ISSN 2249 -555X,Vol.4, Issue 3, Mar. 2014, ISSN 2249 -555X , PP 1-8.
5. A.Nellai Murugan and M. Taj Nisha, A study on divisor cordial labelling of star attached paths and cycles, Indian Journal of Research ISSN 2250 1991, Vol.3, Issue 3, Mar. 2014, PP 12-17.
6. A.Nellai Murugan and V.Brinda Devi, A study on path related divisor cordial graphs International Journal of Scientific Research, ISSN 2277-8179,Vol.3, Issue 4, April. 2014, PP 286-291
7. A.Nellai Murugan and A. Meenakshi Sundari, On Cordial Graphs, International Journal of Scientific Research, ISSN 2277-8179,Vol.3, Issue 7, July. 2014, PP 419-420
8. A.Nellai Murugan and P. Iyadurai Selvaraj, Path Related Cup Cordial graphs. International Journal of Advanced Research, ISSN 2249 -555X,Vol.4, Issue 8, Aug. 2014
9. A.Nellai Murugan and P. Iyadurai Selvaraj, Cycle and Armed Cup Cordial graphs. International Journal of Innovative Science, Engineering and Technology, Research, ISSN 2348-7968, Vol.1, Issue 5, 2014.
