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1.  Introduction 

 In 1984, Jerzy Popenda [1] introduced a particular type of difference operator   
defined on )(ku  as )(1)(=)( kukuku   . In 1989 Miller and Rose [8] introduced the 
discrete analogue of the Riemann-Liouville fractional derivative and proved some properties of 
the fractional difference operator. The general fractional h-difference Riemann-Liouville operator 
and its inverse )(tfh

  were mentioned in [3,9]. As application of h , by taking m=
(positive integer) and =h , the sum of thm  partial sums on thn  powers of arithmetic, 
arithmetic-geometric progressions and products of n consecutive terms of arithmetic progression 
have been derived using )(kum  [5]. 

  In 2011, M.Maria Susai Manuel, et.al, [6] have extended the definition of   to )(  
defined as )()(=)()( kukuku     for the real valued function )(ku  and )(0,  is fixed. 
In [7], the authors have used the generalized  -difference equation;  

 )(0,),[0,),(=)()(   kkukvkv   (1) 
 and obtained a summation solution of the above equation in the form  
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   There are two types of solutions for the equation (1): one is summation another one is closed 
form solution. If we are able to find a closed form solution of equation (1) which is coinciding with 
the summation solution of that equation, then we can obtain formula for finding the values of 
several finite series. In this paper, we extend the theory of generalized thm  order difference 
equation developed in [11] to generalized thm  order  -difference equation. 

 In [12], the authors have defined the m series of )(ku . Here we define corressponding 
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)(m series as below 
  Let 0>  and )(ku  be real valued function on )[0,  and 0=)(ku  for all 
,0)(k . Then, for (1)Nm , the )(m series of )(ku  with respect to   is defined as 

below:  
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and in general )(m series:  
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  Also, we find that the )(m series of )(ku  is the summation solution of the thm  order 
difference equation  

 0.>),[0,),(=)()(   kkukvm
  (3) 

 where ))((=)( 1
)()()( kuku mm    . 

Hence in this paper, we obtain )(m series to )(ku  w.r.to   by equating summation 
and closed form solution of equation (3).  

2.  Preliminaries 
   Before stating and proving our results, we present some notations, basic definitions and 

preliminary results which will be useful for further subsequent discussions. Let 0>  be fixed, 


 




kkjk =),[0,  where 






k  denotes the upper integer part of 
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    1)(
111 |||)( . Throughout 

this paper, 0  and 1 , m  is positive integer, )(ku  defined on )[0,  and 0=)(ku , 
,0)(k  and 1},,{1,2,=1  mLm   )0( 1mL  = }{ ,   is empty set, )( 1mLt  = set of all 

subsets of size t  from the set, 1mL  )1( 1mL = 1}}{,{3}{2},{{1}, m , )2( 1mL = 

1}}2,{,1},{2,,,{2,3}1},{1,,{1,3},{{1,2},  mmmm  . 1}},{{1,2,=)( 1  mLt m  , 
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 for 1m , and 1=)(
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if
t

i
  for 1t .  

Definition 2.1 [4] Let )(ku , )[0.k  be a real valued function and )(0,  be fixed. Then 
the generalized   difference operator on )(kv  is defined as:  

 ).()(=)()( kvkvkv     (4) 
  

  
Lemma 2.2 [10] If )(=)()( kukv , then )(=)(1

)( kvku    

 )()(=|)(and 1
)( jvkvku

k
k
j







  
   (5) 

 are solutions of equation (3) when m=1.  
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Lemma 2.3 [2] Let n

qs  and n
qS  are the Stirling numbers of the first and second kinds 

respectively, 1== 0
0

0
0 Ss  and qq

qq SsSs 00
00 ==0==  if 0q , (0)Nn . Then,  

 1)),((1)(=and)1)(()(= )()(  nkkkknkkkk nn   (6) 
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3.  Main Results 
In this section we obtain solution and )(m series of  difference equation to 

polynomial factorials and geometric function. 
 

Lemma 3.1 Let ),[  k , a  and 
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 is a solution of  difference equation (3) when kaku =)(  and 1=m .  
  

Proof. The proof follows from (4) and (5).  
  

Theorem 3.2 Let k<<0   and m is a positive integer. Then,  

 
mk

m

mkm

m

k
k 







































 








)(

1)(1)(
1

)( =  (10) 

 is a solution of  difference equation (3) when 
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Proof. The proof of (10) follows from (4) and Lemma 2.2 for 1,2,3,=m .  

  
Theorem 3.3  Let )(ku  and )(kv  be two real valued functions. Then, 

 )].()([)()(=)]()([ 1
)(

1
)(

1
)(

1
)( kukvkvkukvku    

  (11) 
  

  
Proof. From (4), we find that  

 ).()()()(=)]()([ )()( kukwkwkukwku      (12) 

Taking )(=)()( kvkw  and )(=)( 1
)( kvkw    in equation (12), we obtain  
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 )].()([)()(=)]()([ 1
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The following theorem gives the summation solution and )(m series of the equation (3).  
Theorem 3.4  (  summation formula) For ),[  mk ,  
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 is a summation solution of equation (3).  
  

Proof. Taking 1
)(

   on (2) and applying (2) for )(1
)(  rku  , we get  
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 Expanding (15) and operating 1
)(

   on both sides, we obtain  
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The proof follows by continuing this process m times.  
 The following theorem gives the complete solution of the equation (3). 
 

Remark 3.5 In (14) as well as in )(m series one can replace 






k  by 






k  and hence 


 





kkj = .  

  
Theorem 3.6  (Complete solution) If a , ),[  k , then.  
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is a complete solution of equation (3).  
  

Proof. Applying the limit j to k on )(1
)( ku   and using (5), we write  
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where )(=)( 1
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)( ju   is a constant and )(1
)( ku   is a function of k. Taking 
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   on both sides of (19) and applying the limit j  to k, we obtain  
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where )()2( kF   is obtained from equation (18) by putting 2=m . 
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   on (20), applying the limit j2  to k and using (10), we get 
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which is the same as  
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In the same way, we find that  
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The proof completes by continuing this process m times.  
  

Theorem 3.7  ( )(m series formula) The summation-complete relation of   equation (3) is 
given by  
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 where )()( kFm   is as given in equation (18).  
  

Proof. The proof follows by equating the summation solution given in Theorem 3.4 and the 
complete solution given in Theorem 3.6.  

  
Remark 3.8 In equation (18), )()( kum   is called the simple solution of the equation (3). 

)()( )()( kukF m
m

   is called balancing factor of the equation (3) and L.H.S of (21) is 
summation solution of the equation (3).  

  
Corollary 3.9  )(m series formula to kn ak )(
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Proof. Taking )(=)( nkku   and kakv =)(  in (11), we obtain  
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Using (6), (8) and applying (9) for kknkn akakak (1)2)(1)( ,,   , we arrive  
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 Taking )(1
)( ku   on (23) for 1m  times, we arrive  
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 The proof follows by taking kn akku )(=)(   in Theorem 3.7.  
 The following example illustrates corollary 3.9.  

Example 3.10 Consider the case when 4=m  and 2=n . In this case, 
{1,2,3}=3L , {3}}{2},{{1},=)1( 3L , {2,3}}{1,3},{{1,2},=)2( 3L , 

{{1,2,3}}=)3( 3L  and (22) becomes  
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 The double summation expression of (25) will be obtained by adding the sums 
corresponds to )1( 3L :  
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corresponds to )2( 3L :  
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and to )3( 3L :  
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In particular when 15.2=k , 3.4= , 1.2= , 2=a  and 1.8= j  in (25)  
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4.20512356=560.8266197447.10167054523.249237735.3826516=(15.2)(2)
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 and  
 1.0.02324361=40.3444248971.479514691.614530423.46171360=(8.4)(2)
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Theorem 3.11 (Special cases on factorial for 1=m )  
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Proof. The proof of (26), (27), (28) and (29) follows from (4), (6) and (14).  
 
Conclusion: Here we obtained summation and complete solution of higher order generalized 
difference equation and derived several formula on finite series by equating summation solution 
and complete solution of  difference equation to polynomial factorial with geometric function. 
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