On the Parameters of 2- Class Hadamard Association Schemes

S. N. Singh ${ }^{\# 1}$, Om Prakash Dubey ${ }^{\# 2}$.
1. Dept. of Information Management, Xavier Institute of Social Service, Purulia Road, PB-7, Ranchi-834001, Jharkhand, (INDIA).
2.Dept. of Mathematics, Bengal College of Engg. \& Tech., Bidhannagar, Durgapur-713212,
West Bengal, (INDIA)

Abstract

We have all possible parameter of 2-class association schemes having the property that suitable (1, -1)- linear combinations of their association matrices yield the blocks of a Hadamard matrix (H-matrix) of certain classical form of Paley and Williamson. Some 2-class association schemes with the above parameters are identified. The known Hadamard Coherent Configurations or 2-Class Association Schemes (CC's or 2-AS's) listed in Table 2 do not yield H-matrices of new order. However we have forwarded new methods of constructing H-matrices of the forms II and III. The developed technique gives several easy constructions of H-matrix from any 2-AS, whose parameters are given.

Keywords- Parameter of Hadamard Matrix, Coherent Configuration, Association scheme.

I. INTRODUCTION

An ($\mathrm{n} x \mathrm{n}$) matrix H with entries +1 and -1 is called a Hadamard matrix (or H-matrix), if $\left\{\mathrm{H} \mathrm{H}^{\mathrm{T}}=\mathrm{n}_{\mathrm{n}}\right\}$. If ($\mathrm{n}>2$) and H-matrix of order n exists, then $(n=4 t)$, where t is an integer. It is conjectured that H -matrix of order 4t exists for every ($\mathrm{t} \geq 1$). It remains unsettled in spite of various methods of constructions forwarded by different authors. For a brief surveys see Hall (1967), Hedayat et.al. (1978). However the conjecture is supported by the fact that for every order $4 t(t>$ 3) investigated there are several in-equivalent H -matrices of order 4 t reported by Seberry (2001). We recall following definitions from Alejandro et al. (2003) and Raghavarao (1988).

1.1 Coherent configuration (CC):

Let $\mathrm{X}=\{1,2, \ldots, \mathrm{n}\}$ and $\mathrm{P}=\left\{\mathrm{R}_{0}, \mathrm{R}_{1}, \ldots, \mathrm{R}_{\mathrm{t}}\right\}$ be a set of binary relations on X satisfying the following four relations:
(a) P is a partition of X^{2}.
(b) there is a subset P_{0} of P which is a partition of the diagonal, $\mathrm{D}=\{(\alpha, \alpha): \alpha \in \mathrm{X}\}$.
(c) for any relation $\mathrm{R}_{\mathrm{i}} \varepsilon \mathrm{P}$, its converse $\mathrm{R}_{\mathrm{i}}^{\mathrm{T}}\left(\right.$ or $\left.\mathrm{R}_{\mathrm{i}}^{-1}\right) \in \mathrm{P}$.
(d) for $0 \leq i, j, k \leq t$, there exists an integer $p_{i j}{ }^{k}$ such that $(\alpha, \beta) \in R_{k}$ implies the order of the set $\{\gamma:(\alpha, \gamma) \in$ R_{i} and $(\gamma, \beta) \in \mathrm{R}_{\mathrm{j}}$ \} is $\mathrm{p}_{\mathrm{ij}}{ }^{\mathrm{k}}$ which is independent of the choice of $(\alpha, \beta) \in \mathrm{R}_{\mathrm{k}} \cdot \mathrm{p}_{\mathrm{ij}}{ }^{\mathrm{k}}$ are called intersection numbers or parameters of the CC.

Let $\mathrm{A}_{\mathrm{i}}=\left[\mathrm{a}_{\mathrm{jk}}\right]$ be the $(0,1)$-matrix, is called adjacency matrix
of the relation R_{i}, defined as:

$$
a_{j k}=\left\{\begin{array}{l}
1, \text { if }(j, k) \in R_{i} \\
0, \text { otherwise }
\end{array}\right.
$$

Clearly $\mathrm{A}=\left\{\mathrm{A}_{0}, \mathrm{~A}_{1}, . . \mathrm{A}_{t}\right\}$ satisfies

$\left(\mathrm{c}_{1}\right) \mathrm{A}_{0}+\mathrm{A}_{1}+\ldots+. \mathrm{A}_{t}=\mathrm{J}_{\mathrm{n}}$ (all1 matrix)
$\left(\mathrm{c}_{2}\right)$ there is a subset of the set A , with sum I_{n} (c_{3}) $\mathrm{A}_{\mathrm{i}} \mathrm{A}_{\mathrm{j}}=\sum_{\mathrm{k}=0}^{\mathrm{t}} \mathrm{p}_{\mathrm{ij}}{ }^{\mathrm{k}} \mathrm{A}_{\mathrm{k}} \ldots$ (1)

A is called basis algebra or coherent algebra of the CC as the matrices belonging to A form a basis of an associative algebra over the field of complex numbers. A CC is faithfully represented by basis matrices A_{i} of its basis algebra. A CC $P=\left\{R_{0}, R_{1}, \ldots, R_{t}\right\}$ is called a t-class Association Scheme (t-AS) if it contains an identity relation R_{0} (or $\mathrm{A}_{0}=\mathrm{I}$) and its relations R_{i} are symmetric (or basis matrices A_{i} of its coherent algebra are symmetric). Basis matrices of an Association Scheme (AS) are called association matrices. A 2-class association scheme is equivalent to a strongly regular graph.

If $\mathrm{p}_{\mathrm{ij}}{ }^{\mathrm{k}}$ are parameters of a 2-class Association Schemes, $p_{i i}{ }^{0}=n_{i}$ is called the number of $i^{\text {th }}$ associates of a point and $\mathrm{n}_{1}, \mathrm{n}_{2}$ and $\mathrm{p}_{\mathrm{ij}}{ }^{\mathrm{k}}$ satisfy,

$$
\begin{aligned}
& p_{i j}{ }^{k}=p_{j i}{ }^{k}, p_{i o}{ }^{j}=\delta_{i j}, p_{i j}{ }^{0}=0 \text {; when } i \neq j, \\
& n_{1}+n_{2}=v-1 \text { and } p_{j 1}{ }^{i}+p_{j 2}{ }^{i}=n^{j}-\delta_{i j}, i, j=1,2 \ldots(2)
\end{aligned}
$$

1.2 H-matrices from AS or CC:

A project of the first author is to obtain all ASs and CCs defined by minimum number of relations leading to the construction of an H-matrix of given form. It was motivated by the fact that the construction of H -matrices of Paley uses a family of CC's and that of Williamson uses a family of AS's. Today we have several ASs and CCs used in Statistics and Coding theory but a few which are suitable for the construction of H-matrices. In view of the significance of such schemes, we forward the following definition:
 called Hadamard (or H-CC or H-AS related to an H-matrix of a given form) if suitable (1, -1)-linear combination (or combinations) of (0,1)-basis matrices A_{i} of its coherent algebra yields a Hadamard matrix (or blocks of the Hadamard matrix).

The present paper is a part of the above project confined to Hadamard 2-AS's. A result in this direction is due to Singh, et al. (2002) who forwarded a method of constructing H -matrices from underlying 2-ASs of a partial geometry. Here we obtain the parameters of four families of Hadamard 2-ASs. Finally we have identified and tabulated 2ASs included in the families.

II. PARAMETERS OF HADAMARD 2-ASS

We consider Hadamard matrices of the following form and order, whose dependence on the association matrices of Hadamard 2-ASs or basis matrices of H-CC's (which are trivial extension of 2-ASs) are shown below.

TABLE 1

No.	Form of the H-matrix	Order of the H-matrix
I	$\mathrm{H}=\mathrm{I}-\mathrm{A}_{1}+\mathrm{A}_{2}$, where $\mathrm{A}_{1}, \mathrm{~A}_{2}$ are association matrices of a $2-\mathrm{AS}$ on $\mathrm{v}=$ $4 t$ points.	$\mathrm{O}(\mathrm{H})=\mathrm{v}=4 \mathrm{t}$
II	$H=\left[\begin{array}{cc} 1 & e \\ e^{t} & I-A_{1}+A_{2} \end{array}\right],$ where $\mathrm{A}_{1}, \mathrm{~A}_{2}$ are association matrices of a 2 AS on $v=4 t-1$ points.	$\mathrm{O}(\mathrm{H})=\mathrm{v}+1=4 \mathrm{t}$
III	$\begin{gathered} \mathrm{H}=\mathrm{H} \times \mathrm{I}_{\mathrm{v}}+\mathrm{K} \times\left(\mathrm{A}_{1}-\right. \\ \left.\mathrm{A}_{2}\right), \quad \text { where } \mathrm{K}= \\ \mathrm{V}_{\mathrm{n}} \mathrm{H}, \\ \mathrm{~V}_{\mathrm{n}}= \\ \mathrm{I}_{\mathrm{h} / 2} \times\left[\begin{array}{rr} 0 & 1 \\ -1 & 0 \end{array}\right], \mathrm{h} \end{gathered}$ =order of an H -matrix H and $\mathrm{A}_{1}, \mathrm{~A}_{2}$ are association Matrices of a 2-AS on $v=$ 2 n points.	$\mathrm{O}(\mathrm{H})=2 \mathrm{nh}$
IV	$\mathrm{H}=\left[\begin{array}{ll}\mathrm{A} & \mathrm{B} \\ -\mathrm{B} & \mathrm{A}\end{array}\right]$, where $\mathrm{A}=\mathrm{I}-\mathrm{A}_{1}+\mathrm{A}_{2}$ $\mathrm{B}=\mathrm{I}+\mathrm{A}_{1}-\mathrm{A}_{2}$, and A_{1} and A_{2} are association matrices of a $2-A S$ on $2 t$ points.	$\mathrm{O}(\mathrm{H})=4 \mathrm{t}$

Theorem: Let $\operatorname{AS}(\mathrm{i}), \mathrm{i}=1,2,3,4$ be four families of the association schemes required by the forms I, II, III, IV respectively in table1 as per Singh et al. (2009). Then for some values of n and m ,

1. A 2-AS of $\mathrm{AS}(1)$ has parameters
(i) $\mathrm{v}=4 \mathrm{n}^{2} \mathrm{n}_{1}=\mathrm{p}_{11}{ }^{2}=\mathrm{n}(2 \mathrm{n}-1), \mathrm{p}_{11}{ }^{1}=\mathrm{p}_{11}{ }^{2}=\mathrm{n}(\mathrm{n}-1)$.
or (ii) $v=4 n^{2} n_{1}=p_{11}^{2}=n(2 n+1)$,

$$
\mathrm{p}_{11}{ }^{1}=\mathrm{p}_{11}{ }^{2}=\mathrm{n}(\mathrm{n}+1) .
$$

2. A 2-AS of $\operatorname{AS}(2)$ has the parameters $v=4 n^{2}-1$, $\mathrm{n}_{1}=2 \mathrm{n}^{2}, \mathrm{p}_{12}{ }^{1}=\mathrm{n}^{2}-1, \mathrm{p}_{12}{ }^{2}=\mathrm{n}^{2}$ and contains the 2-AS of $p g(n, 2 n+1, n)$.
3. A 2-AS of $\mathrm{AS}(3)$ has parameters $\mathrm{v}=(2 \mathrm{n}-$ $1)^{2}+1, \mathrm{n}_{1}=\mathrm{p}_{11}{ }^{2}=\mathrm{m}(2 \mathrm{n}-1), \mathrm{p}_{12}{ }^{1}=\mathrm{p}_{12}{ }^{2}=\mathrm{n}^{2}-\mathrm{n}$, where $\mathrm{n} \geq 2, \quad\left\lceil\frac{n}{2}\right\rceil \leq m \leq n-1$ and contains the AS of $\operatorname{pg}(n, 2 n, n)$.
4. $A S(4)=A S(3)$.

A common property shared by all the Hadamard 2ASs belonging to the above four families is that the parameters $\mathrm{p}_{12}{ }^{1}$ and $\mathrm{p}_{12}{ }^{2}$ are as equal as possible i.e. $\left|\mathrm{p}_{12}{ }^{1}-\mathrm{p}_{12}{ }^{2}\right|=0$ or 1 .

III. TABLE OF KNOWN HADAMARD 2-ASs

TABLE 2

Hadamard 2- AS $\begin{gathered} \left(\mathrm{v}, \mathrm{p}_{11}^{0}, \mathrm{p}_{11}^{1},\right. \\ \left.\mathrm{p}_{11}^{2}\right) \end{gathered}$	Family AS (i) and form of the H - matrix	Source of the Hadamard 2-AS
$\begin{array}{cc} \hline(1)(\mathrm{i}) & \\ \text { AS } & \left(4 \mathrm{n}^{2}, \mathrm{n}\right. \end{array}$		Infinitely many 2-ASs obtained from Bush type

IV. CONCLUSIONS

Hall (1967); Clatworthy (1973); Spence (1995); Brouwer (1996); Spence; Hanaki et al. reported that H-matrices of new order will be obtained when 2-ASs of corresponding parameters are known. The identifications of the following 2ASs as Hadamard ones appear to be new:
(i) Clatworthy's AS of Misc. PBIBD $\# \mathrm{M}_{3}, \mathrm{M}_{31 \mathrm{a}}, 2$-ASs of Clatworthy's Nos. pg9(n=3) and pg13($n=4$),
(ii) Hanaki's AS16 \#4, 5 and 6,

International Journal of Mathematics Trends and Technology - Volume 11 Number 2 - Jul 2014

(iii) 180 2-ASs with parameters $(36,14,4,6)$ reported by Spence and AS $(64,36,22,22)$ by Brouwer,
(iv) dual of BIBDs with $\mathrm{v}=2 \mathrm{n}^{2}-\mathrm{n}, \mathrm{k}=\mathrm{n}, \lambda=1$ for $\mathrm{n}=3$, . .,9 vide Hall no.14, 32, 51, 77, 111, 145, 174 respectively,
(v) dual of $\operatorname{BIBD}\left(2 n^{2}-2 n+1, k=n, \lambda=1\right)$ with Hall No.9, 22,42 for $\mathrm{n}=3,4,5$ respectively.

REFERENCES

[1] P. P. Alejandro, R. A. Bailey and, P. J. Cameron, Association schemes and permutation Groups, Discrete Mathematics, Vol. 266, pp. 47-67, 2003.
[2] A. Bonato, W. H. Holzmann and H. Kharaghani, Hadamard matrices and strongly regular graphs with the 3-e.c. adjacency property, Electronic Jr. of Combinatorics, Vol. 8(1), Pdf. , 2001.
[3] A. E. Brouwer, Strongly regular graphs in: The CRC handbook of Combinatorial Designs, (ed. C. J. Colbourn and J. H. Dinitz), pp. 667-685, 1996.
[4] W. H. Clatworthy, et al., Tables of Two-associate class Partially Balanced Designs, National Bureau of Standards, Applied Mathematics, Series No. 63, Washington D.C., pp. 151-184, 1973.
[5] M. Hall, Jr., Combinatorial Theory, Blaisdell Publishing co., Toronto, Ontario, 1967.
[6] A. Hanaki and I. Miyamoto, Classification of association schemes with small vertices, http: // kissme.shindu-u.ac.jp/as/
[7] A. Hedayat and W. D. Wallis, Hadamard matrices and their applications, Annals of Statistics, Vol. 6, pp. 1184-1238, 1978.
[8] Z. Janko, H. Kharaghani, and V. D. Tonchev, Bush-type Hadamard matrices and symmetric designs, Journal of Combinatorial Designs, Vol. 9(1), pp. 72-78, 2001.
[9] R. Mathon and A. Rosa, Tables of parameters of BIBDs with $r \leq$ 41 Including Existence, Enumeration and Resolvability Results: An Update, Ars Combinatoria, Vol. 32, pp. 65-96, 1992.
[10] B. D. Mckay and E. Spence, The classification of regular two graphs on 36 and 38 vertices, Australas. Jr. Combinatorics, Vol.24, pp. 293-300, 2001.
[11] M. Muzychuk and Q. Xiang, Symmetric Bush-type Hadamard Matrices of order $4 m^{4}$ Exists for All Odd m, Proceedings of American Mathematical Society, Vol. 134, pp. 2197-2204, 2006.
[12] D. Raghavarao, Construction and Combinatorial Problems in Design of Experiments, Dover, New York, 1988.
[13] J. Seberry, Library of Hadamard matrices, http://www.uow.edu.au/~jennie/hadamard.html, 2001.
[14] M. K. Singh, K. Sinha and Sanpei Kageyama, A construction of Hadamard matrices from BIBD $\left(2 k^{2}-2 k+1, k, 1\right)$, Australas Journal of Combinatorics, Vol. 26, pp. 93-97, 2002.
[15] M. K. Singh and S. N. Singh, Hadamard Matrices from two-class association schemes, International Jr. of Mathematical Modeling, Simulation and Applications, Vol. 02 (02), pp. 198-209, 2009.
[16] E. Spence, Regular Two-Graphs on 36 Vertices, Linear Algebra and its Application, pp. 226-228, 1995.
[17] E. Spence, Strongly Regular Graphs on at most 64 vertices, http://www.maths.gla.ac.uk/ es/srgraphs.html.

