On the Parameters of 2- Class Hadamard Association Schemes

S. N. Singh^{#1}, Om Prakash Dubey^{#2}.

1. Dept. of Information Management, Xavier Institute of Social Service, Purulia Road, PB-7, Ranchi–834001, Jharkhand, (INDIA).

2. Dept. of Mathematics, Bengal College of Engg. & Tech., Bidhannagar, Durgapur-713212,

West Bengal, (INDIA)

Abstract- We have all possible parameter of 2-class association schemes having the property that suitable (1, -1)- linear combinations of their association matrices yield the blocks of a Hadamard matrix (H-matrix) of certain classical form of Paley and Williamson. Some 2-class association schemes with the above parameters are identified. The known Hadamard Coherent Configurations or 2-Class Association Schemes (CC's or 2-AS's) listed in Table 2 do not yield H-matrices of new order. However we have forwarded new methods of constructing H-matrices of the forms II and III. The developed technique gives several easy constructions of H-matrix from any 2-AS, whose parameters are given.

Keywords- Parameter of Hadamard Matrix, Coherent Configuration, Association scheme.

I. INTRODUCTION

An (n x n) matrix H with entries +1and -1 is called a **Hadamard matrix** (or H-matrix), if {H H^T= n I_n}. If (n > 2) and H-matrix of order n exists, then (n = 4t), where t is an integer. It is conjectured that H-matrix of order 4t exists for every (t \geq 1). It remains unsettled in spite of various methods of constructions forwarded by different authors. For a brief surveys see Hall (1967), Hedayat et.al. (1978). However the conjecture is supported by the fact that for every order 4t (t > 3) investigated there are several in-equivalent H-matrices of order 4t reported by Seberry (2001). We recall following definitions from Alejandro et al. (2003) and Raghavarao (1988).

1.1 Coherent configuration (CC):

Let $X = \{1, 2, ..., n\}$ and $P = \{R_0, R_1, ..., R_t\}$ be a set of binary relations on X satisfying the following four relations:

- (a) P is a partition of X^2 .
- (b) there is a subset P_0 of P which is a partition of the diagonal, $D = \{(\alpha, \alpha): \alpha \in X\}.$
- (c) for any relation $R_i \in P$, its converse R_i^T (or R_i^{-1}) $\in P$.
- (d) for $0 \le i, j, k \le t$, there exists an integer p_{ij}^{k} such that $(\alpha, \beta) \in R_{k}$ implies the order of the set $\{ \gamma : (\alpha, \gamma) \in$ R_{i} and $(\gamma, \beta) \in R_{j} \}$ is p_{ij}^{k} which is independent of the choice of $(\alpha, \beta) \in R_{k}$. p_{ij}^{k} are called intersection numbers or parameters of the CC.

Let $A_i = [a_{jk}]$ be the (0, 1)-matrix, is called adjacency matrix

of the relation R_i, defined as:

$$a_{jk} = \begin{cases} 1, \text{ if } (j, k) \in \mathbb{R} \\ 0, \text{ otherwise} \end{cases}$$

Clearly A={ $A_0, A_1, ..., A_t$ } satisfies (c₁)A₀+A₁+...+.A_t=J_n(all1 matrix) (c₂) there is a subset of the set A, with sum I_n

$$(c_3) A_i A_j = \sum_{k=0}^{l} p_{ij}^{\ k} A_k \dots (1)$$

A is called basis algebra or coherent algebra of the CC as the matrices belonging to A form a basis of an associative algebra over the field of complex numbers. A CC is faithfully represented by basis matrices A_i of its basis algebra. A CC $P=\{R_0, R_1, \ldots, R_t\}$ is called a t-class Association Scheme (t-AS) if it contains an identity relation R_0 (or $A_0=I$) and its relations R_i are symmetric (or basis matrices A_i of its coherent algebra are symmetric). Basis matrices of an Association Scheme (AS) are called association matrices. A 2-class association scheme is equivalent to a strongly regular graph.

If $p_{ij}^{\ k}$ are parameters of a 2-class Association Schemes, $p_{ii}^{\ 0} = n_i$ is called the number of i^{th} associates of a point and n_1 , n_2 and $p_{ij}^{\ k}$ satisfy,

$$p_{ij}^{\ k} = p_{ji}^{\ k}$$
, $p_{io}^{\ j} = \delta_{ij}$, $p_{ij}^{\ 0} = 0$; when $i \neq j$,

$$n_1+n_2 = v-1$$
 and $p_{j1}{}^i + p_{j2}{}^i = n^j - \delta_{ij}$, $i,j=1,2$... (2)

1.2 H-matrices from AS or CC:

A project of the first author is to obtain all ASs and CCs defined by minimum number of relations leading to the construction of an H-matrix of given form. It was motivated by the fact that the construction of H-matrices of Paley uses a family of CC's and that of Williamson uses a family of AS's. Today we have several ASs and CCs used in Statistics and Coding theory but a few which are suitable for the construction of H-matrices. In view of the significance of such schemes, we forward the following definition:

<u>Hadamard CC or AS</u>: A CC or AS $\{A = (A_i)\}$ will be called Hadamard (or H-CC or H-AS related to an H-matrix of a given form) if suitable (1, -1)-linear combination (or combinations) of (0,1)-basis matrices A_i of its coherent algebra yields a Hadamard matrix (or blocks of the Hadamard matrix).

The present paper is a part of the above project confined to Hadamard 2-AS's. A result in this direction is due to Singh, et al. (2002) who forwarded a method of constructing H-matrices from underlying 2-ASs of a partial geometry. Here we obtain the parameters of four families of Hadamard 2-ASs. Finally we have identified and tabulated 2-ASs included in the families.

II. PARAMETERS OF HADAMARD 2-ASS

We consider Hadamard matrices of the following form and order, whose dependence on the association matrices of Hadamard 2-ASs or basis matrices of H-CC's (which are trivial extension of 2-ASs) are shown below.

TABLE 1									
No.	Form of the H-matrix	Order of the							
		H-matrix							
Ι	$H = I - A_1 + A_2$, where A_1 , A_2 are association matrices of a 2 - AS on v = 4t points.	O (H) = v =4t							
Π	$H = \begin{bmatrix} 1 & e \\ e^{t} & I - A_1 + A_2 \end{bmatrix},$ where A_1 , A_2 are association matrices of a 2- AS on $v = 4t-1$ points.	O (H) = v + 1 =4t							
III	$ \begin{split} H &= H \times I_{v} + K \times (A_{1} - A_{2}), & \text{where } K = V_{n} H, \\ V_{n} &= I_{h/2} \times \begin{bmatrix} 0 & 1 \\ -1 & 0 \end{bmatrix}, h \end{split} $	O(H)= 2nh							
IV	=order of an H-matrix H and A ₁ , A ₂ are association Matrices of a 2-AS on $v =$ 2n points. $H = \begin{bmatrix} A & B \\ -B & A \end{bmatrix}$, where $A = I - A_1 + A_2,$ $B = I + A_1 - A_2, \text{ and } A_1 \text{ and}$ $A_2 \text{ are association matrices}$ of a 2-AS on 2t points.	O(H)= 4t							

<u>Theorem</u>: Let AS(i), i=1, 2,3,4 be four families of the association schemes required by the forms I, II, III, IV respectively in table1 as per Singh et al. (2009). Then for some values of n and m,

1. A 2-AS of AS(1) has parameters

(i)
$$v=4n^2 n_1 = p_{11}^2 = n(2n-1)$$
, $p_{11}^1 = p_{11}^2 = n(n-1)$.
or (ii) $v=4n^2 n_1 = p_{11}^2 = n(2n+1)$,
 $p_{11}^1 = p_{11}^2 = n(n+1)$.

- 2. A 2-AS of AS(2) has the parameters v= $4n^{2}-1$, $n_{1}= 2n^{2}$, $p_{12}{}^{1}=n^{2}-1$, $p_{12}{}^{2}=n^{2}$ and contains the 2-AS of pg (n,2n+1,n).
- 3. A 2-AS of AS(3) has parameters v= (2n-1)²+1, n₁= p_{11}^2 = m(2n-1), p_{12}^1 = p_{12}^2 = n²-n,

where $n \ge 2$, $\left\lceil \frac{n}{2} \right\rceil \le m \le n-1$ and contains

the AS of pg(n,2n,n).

4. AS(4) = AS(3).

A common property shared by all the Hadamard 2-ASs belonging to the above four families is that the parameters p_{12}^{1} and p_{12}^{2} are as equal as possible i.e. $|p_{12}^{1} - p_{12}^{2}| = 0$ or 1.

III. TABLE OF KNOWN HADAMARD 2-ASs

TABLE 2									
Hadamard 2-	Family	Source of the Hadamard							
AS	AS (i)	2-AS							
$(v, p^{0}_{11}, p^{1}_{11})$	and form								
p ² ₁₁)	of the H-								
	matrix								
(1)(i)		Infinitely many 2-ASs							
AS $(4n^2,n)$		obtained from Bush type							

(2n-1), n (n-	AS(1)	H-matrices of order16r ² ,	+1))		$\lambda \square = 1$ for $n = 3, \dots, 9$
1), n (n-1))		see Bonato, et al. (2001).	(a) for n=2		vide Hall no.14, 32, 51,
Where (a)		For 2-ASs of small order	(b) for n=3		77, 111,145, 174
n=2r, 4r		#M ₂ see Clatworthy	(c) n=4		respectively by Hall
being the		(1973),and Hanaki AS16,			(1967). Also see Mathon
order of an		# 5 and 6. Infinitely many	(2) CC derived	AS(2)	et al. (1992).
H-matrix.		2-ASs can be obtained	from AS of		2-ASs of Clatworthy's
		from symmetric Bush-	pg (n, 2n + 1,		(1952) Nos. pg7(n=3),
		type H- matrices of order	n)		pg11(n=4) and
		4r ⁴ vide Muzychuk et al.	n= 3, 4, ,9.		pg15(n=5).
		(2006) and lemma 3 of			
		Bonato (2001).			
		There are 32548 2-ASs	(3)	AS(3)	
(b) $n=r^2$,	AS (1)	vide Spence (1995);	AS of pg (n,2n,		Dual of BIBD (2n ² -2n+1,
where r is		Mckay et al. (2001) and	n)		k=n , $\lambda = 1$) with Hall
odd.		Janko, et. al. (2001).			(1967) No.9, 22, 42 for n=
		Clatworthy's (1973) AS			3, 4, 5 respectively. Also
(c) n=3	AS (1)	of Misc. PBIBD #M ₃ ,			see Mathon et al. (1992).
		M _{31a} and Hanaki AS16			
		#4.		IV. CO	NCLUSIONS
(d) n=5	AS (1)	There are 180 2-ASs vide	Hall (1967); Clatworthy (1973); Spence (1995); Brouwer		
		Spence (1995), Mckay et	(1996); Spence; Hanaki et al. reported that H-matrices of new		
		al. (2001), Brouwer	order will be obtained when 2-ASs of corresponding		
		(1996) and Spence.	parameters are known. The identifications of the following 2-		
(1) (ii)	AS(1)	2-ASs of Clatworthy's	ASs as Hadamard ones appear to be new:		
AS		(1952) Nos. pg9 (n=3)	(i) Clatworthy's AS of Misc. PBIBD $\#M_3$, M_{31a} , 2-ASs of		
(4n ² ,n(2n+1),		and pg13 (n=4). Dual of	Clatworthy's Nos. pg9(n=3) and pg13(n=4),		
n(n+1),n(n		BIBD with v=2n ² -n, k=n,	(ii) Hanaki's AS16 #4, 5 and 6,		

- (iii) 180 2-ASs with parameters (36, 14, 4, 6) reportedby Spence and AS (64, 36, 22, 22) by Brouwer,
- (iv) dual of BIBDs with $v = 2n^2 -n$, k = n, $\lambda = 1$ for n = 3, . . .,9 vide Hall no.14, 32, 51, 77, 111, 145, 174 respectively,
- (v) dual of BIBD (2n²-2n+1, k = n, λ = 1)with Hall No.9,
 22, 42 for n= 3, 4, 5 respectively.

REFERENCES

- P. P. Alejandro, R. A. Bailey and, P. J. Cameron, Association schemes and permutation Groups, Discrete Mathematics, Vol. 266, pp. 47-67, 2003.
- [2] A. Bonato, W. H. Holzmann and H. Kharaghani, Hadamard matrices and strongly regular graphs with the 3-e.c. adjacency property, Electronic Jr. of Combinatorics, Vol. 8(1), Pdf., 2001.
- [3] A. E. Brouwer, Strongly regular graphs in: The CRC handbook of Combinatorial Designs, (ed. C. J. Colbourn and J. H. Dinitz), pp. 667-685, 1996.
- [4] W. H. Clatworthy, et al., *Tables of Two-associate class Partially Balanced Designs*, National Bureau of Standards, Applied Mathematics, Series No. 63, Washington D.C., pp. 151-184, 1973.
- [5] M. Hall, Jr., Combinatorial Theory, Blaisdell Publishing co., Toronto, Ontario, 1967.
- [6] A. Hanaki and I. Miyamoto, Classification of association schemes with small vertices, http://kissme.shindu-u.ac.jp/as/
- [7] A. Hedayat and W. D. Wallis, *Hadamard matrices and their applications*, Annals of Statistics, Vol. 6, pp. 1184-1238, 1978.
- [8] Z. Janko, H. Kharaghani, and V. D. Tonchev, Bush-type Hadamard matrices and symmetric designs, Journal of Combinatorial Designs, Vol. 9(1), pp. 72-78, 2001.

- [9] R. Mathon and A. Rosa, Tables of parameters of BIBDs with r≤ 41 Including Existence, Enumeration and Resolvability Results: An Update, Ars Combinatoria, Vol. 32, pp. 65-96, 1992.
- [10] B. D. Mckay and E. Spence, *The classification of regular two graphs on 36 and 38 vertices*, Australas. Jr. Combinatorics, Vol.24, pp. 293-300, 2001.
- [11] M. Muzychuk and Q. Xiang, Symmetric Bush-type Hadamard Matrices of order 4m⁴ Exists for All Odd m, Proceedings of American Mathematical Society, Vol. 134, pp. 2197-2204, 2006.
- [12] D. Raghavarao, Construction and Combinatorial Problems in Design of Experiments, Dover, New York, 1988.
- [13] J. Seberry, Library of Hadamard matrices, http://www.uow.edu.au/~jennie/hadamard.html, 2001.
- [14] M. K. Singh, K. Sinha and Sanpei Kageyama, A construction of Hadamard matrices from BIBD (2k²-2k+1, k, 1), Australas Journal of Combinatorics, Vol. 26, pp. 93-97, 2002.
- [15] M. K. Singh and S. N. Singh, Hadamard Matrices from two-class association schemes, International Jr. of Mathematical Modeling, Simulation and Applications, Vol. 02 (02), pp. 198-209, 2009.
- [16] E. Spence, *Regular Two-Graphs on 36 Vertices*, Linear Algebra and its Application, pp. 226-228, 1995.
- [17] E. Spence, Strongly Regular Graphs on at most 64 vertices, http://www.maths.gla.ac.uk/ es/srgraphs.html.

.....