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Abstract: Let 퐺(푉,휎,휇) be a simple undirected fuzzy graph. A subset S of V is called a 
dominating set in G if every vertex in V-S is adjacent to at least one vertex in S.  A subset S of V 
is said to be a restrained dominating set if every vertex in V-S is adjacent to atleast one vertex in 
S as well as adjacent to atleast one vertex in V-S. The restrained domination number of a fuzzy 
graph 퐺(푉,휎,휇)	is denoted by 훾 	(G) which is the smallest cardinality of a restrained 
dominating set of G. The minimum number of colours required to colour all the vertices such 
that adjacent vertices do not receive the same colour is the chromatic number 휒(G). For any 
fuzzy graph G a complete fuzzy sub graph of G is called a clique of G. In this paper we find an 
upper bound for the sum of the Restrained domination and chromatic number in fuzzy graphs 
and characterize the corresponding extremal fuzzy graphs. 
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1.INTRODUCTION: 

Let 퐺(푉, 휎, 휇) be simple undirected strong fuzzy graph. The degree of any vertex u in G 
is the number of edges incident with u and is denoted by d(u). The minimum and maximum 
degree of a vertex is denoted by (G) and (G) respectively, Pn denotes the path on n vertices. 
The vertex connectivity (G) of a fuzzy graph G is the minimum number of vertices whose 
removal results in a disconnected fuzzy graph. The chromatic number 휒 is defined to be the 
minimum number of colours required to colour all the vertices such that adjacent vertices do not 
receive the same colour. For any fuzzy graph G a complete sub fuzzy graph of G is called a 
clique of G. The number of vertices in a largest clique of G is called the clique number of G.  

 Let G(V,E) be a simple undirected strong fuzzy graph. A subset S of V is called a 
dominating set in G if every vertex in V-S is adjacent to at least one vertex in S.  A subset S of V 
is said to be a restrained dominating set if every vertex in V-S is adjacent to atleast one vertex in 
S as well as adjacent to atleast one vertex in V-S. The restrained domination number, denoted by 
훾 	(G) is the smallest cardinality of a restrained dominating set of a fuzzy graph G. The 
minimum number of colours required to colour all the vertices such that adjacent vertices do not 
receive the same colour is the chromatic number 휒(G). For any fuzzy graph G a complete sub 
fuzzy graph of G is called a clique of G. 
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 If X is collection of objects denoted generically by x, then a Fuzzy set 퐴  is X is a set of 
ordered pairs: A = {(x, µ (x))/x ∈ X}, µ (x) is called the membership function of x in A that 
maps X to the membership space M (when M contains only the two points 0 and 1). Let E be the 
(crisp) set of nodes. A fuzzy graph is then defined by, G 푥 , 푥 = { 푥 ,푥 , µ 푥 ,푥 / 푥 ,푥 ∈
E × E}. H 푥 , 푥  is a Fuzzy Sub graph of G 푥 , 푥  if µ 푥 , 푥 ≤ µ 푥 , 푥 	∀ 푥 ,푥 ∈ E ×
E, H 푥 , 푥  is a spanning fuzzy sub graph of G 푥 ,푥  if the node set of  H 푥 ,푥 	and  G 푥 , 푥  
are equal, that is if they differ only in their arc weights. 

 Several authors have studied the problem of obtaining an upper bound for the sum of a 
domination parameter and a fuzzy graph theoretic parameter and characterized the corresponding 
extremal fuzzy graphs. In [5], Paulraj Joseph J and Arumugam S proved that 훾+k≤p. In[7], 
Paulraj Joseph J and Arumugam S proved that 훾 	(G)+	휒 ≤ p+1. They also characterized the 
class of fuzzy graphs for which the upper bound is attained. They also proved similar results for 
훾 and 훾 	. In[4], Mahadevan G introduced the concept the complementary perfect domination 
number 훾  and proved that  훾 (G)+	휒 ≤ 2n-2, and characterized the corresponding extermal 
fuzzy graphs. In[9], S.Vimala and J.S.Sathya proved that 훾 	(G)+휒(G)=2n-5. They also 
characterised the class of fuzzy graphs for which the upper bound is attained. In this paper we 
obtain sharp upper bound for the sum of the restrained domination number and chromatic 
number and characterize the corresponding extremal fuzzy graphs. We use the following 
previous results. 

Theorem 1.1 [1]: For any connected fuzzy graph G, 훾 	(G)	≤ 푛 

Theorem 1.2 [2]: For any connected fuzzy graph G, 휒(G)≤ ∆(G)+1. 

2.Main results 

Theorem 2.1: For any connected fuzzy graph G, 훾 	(G)+ 휒(G)≤2n and the equality holds if and 
only if G≅K1 

Proof: 훾 	(G)+휒(G)	≤ n++1=n+(n-1)+1≤2n. If 훾 	(G)+휒(G)=2n the only possible case is 
훾 	(G)=n and 휒(G)=n, Since 휒(G)=n, G=Kn , But for Kn, 훾 	(G)=1, so that G≅K1. Conversely if 
G is isomorphic to K1, then  for K1,	훾 	(G) = 1,푎푛푑		휒(G) = 1훾 	(G)+휒(G)=2. Hence the 
proof. 

Theorem 2.2: For any connected fuzzy graph G, 훾 	(G)+휒(G)=2n-1 and the equality holds if 
and only if G≅K2 

Proof: If G is isomorphic to K2, then for K2 ,	훾 	(G) = 1, 푎푛푑		휒(G) = 2	. 훾 	(G)+휒(G)=2n-
1=3. Conversely assume that 훾 	(G)+휒(G)=2n-1. This is possible only if 훾 	(G)=n and 휒(G)=n-
1 (or) 훾 	(G) = n-1 and 휒(G) = n. 

Case (i) Let  훾 	(G)=n and 휒(G)=n-1. 
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Since 휒(G)= n-1, G contains a clique K on n-1 vertices. Let x be a vertex of G-Kn-1. Since G is 
connected the vertex x is adjacent to one vertex ui for some i in Kn-1 {x, ui} is 훾 	– set, so that 
훾 	(G)=2, we have n=2. Then 휒 = 1, which is for totally disconnected fuzzy graph. Which is a 
contradiction. Hence no fuzzy graph exists. 

 Case (ii) Let 훾 	(G)=n-1 and 휒(G)=n 

Since 휒(G)=n, G=Kn , But for Kn , 훾 	(G)=1, so that n=2, 휒 =2 Hence G≅K2.  

Theorem 2.3: For any connected fuzzy graph G, 훾 	(G)+휒(G)=2n-2 and the equality holds if 
and only if G≅K3, P3 

Proof: Let G be isomorphic to K3, then for K3 ,	훾 	(G) = 1, 푎푛푑		휒(G) = 3.훾 	(G)+휒(G)=2n-
2=4. And if G is isomorphic to P3, then for P3,	훾 	(G) = 2,푎푛푑		휒(G) = 2.		훾 	(G)+휒(G)=2n-
2=4. Conversely assume that 훾 	(G)+휒(G)=2n-2. This is possible only if 훾 	(G)=n and 휒(G)=n-
2 (or) 훾 	(G)=n-1 and 휒(G)=n-1 (or) 훾 	(G)=n-2 and 휒(G)=n. 

Case (i) Let  훾 	(G)=n and 휒(G)=n-2. 

Since  휒 (G)= n-2, G contains a clique K on n-2 vertices. Let S={x,y}∈G-Kn-2. Then < 푆 >= 퐾  
or 퐾  

Subcase (a) Let < 푆 >= 퐾  Since G is connected, x is adjacent to some ui of Kn-2. Then {y,uj} 
for some i≠j is 훾 	- set, so that 훾 	(G)=2 and hence n=2. But 휒(G)=n-2=0. Which is a 
contradiction. Hence no fuzzy graph exists. 

Subcase (b) Let < 푆 >= 퐾  Since G is connected, x is adjacent to some ui of Kn-2. Then y is 
adjacent to the same ui of Kn-2. Then {x,y,ui} 훾 	- set, so that 훾 	(G)=3 and hence n=3. But 
휒(G)=n-2=1 which is for totally disconnected fuzzy graph. Which is a contradiction. Hence no 
fuzzy graph exists, (or) y is adjacent to uj of Kn-2 for i≠j. In this case {x,y,ui} 훾 	- set, so that 
훾 	(G)=3 and hence n=3. But 휒(G)=n-2=1 which is for totally disconnected fuzzy graph. Which 
is a contradiction. Hence no fuzzy graph exists. 

Case (ii) Let 훾 	(G)=n-1 and 휒(G)=n-1. 

Since  휒 (G)= n-1, G contains a clique K on n-1 vertices. Let x be a vertex of G-Kn-1.  Since G is 
connected, x is adjacent to one vertex ui for some i in Kn-1, so that {x, ui} is 훾 	– set, so that 
훾 	(G)=2, we have n=3. Then 휒 = 2, Hence G≅P3 

Case (iii) Let  훾 	(G)=n-2 and 휒(G)=n 

Since 휒(G)=n, G=Kn , But for Kn , 훾 	(G) = 1,so that n=3, 휒 = 3 Hence G≅K3.  Hence the proof. 

Theorem 2.4: For any connected fuzzy graph G, 훾 	(G)+ 휒(G)=2n-3 and the equality holds if 
and only if G≅K1,3,C3(P2), K4 

Proof: Let G be isomorphic to K1,3, then for K1,3 ,	훾 	(G) = 3, 푎푛푑		휒(G) = 2.훾 	(G)+휒(G)=2n-
3=5. Let G be isomorphic to C3(P2), then for C3(P2),	훾 	(G) = 2,푎푛푑		휒(G) =
3훾 	(G)+휒(G)=2n-3=5. Let G be isomorphic to K4 , then for K4,	훾 	(G) = 1,푎푛푑		휒(G) =
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4훾 	(G)+휒(G)=2n-3=5.  Conversely assume that 훾 	(G)+ 휒(G)=2n-3. This is possible only if 
훾 	(G)=n and 휒(G)=n-3 (or) 훾 	(G)=n-1 and 휒(G)=n-2 (or) 훾 	(G)=n-2 and 휒(G)=n-1(or) 
훾 	(G)=n-3 and 휒(G)=n. 

Case (i) Let  훾 	(G)=n and 휒(G)=n-3. 

Since  휒 (G)= n-3, G contains a clique K on n-3 vertices. Let S={x,y,z}∈ G-Kn-3. Then < 푆 >=
퐾  , 퐾 , K2∪K1,P3 

Subcase (i) Let < 푆 >= 퐾 . Since G is connected, x is adjacent to some ui of Kn-3. Then {x,ui} is 
훾 	- set, so that 훾 	(G)=2 and hence n=2. But 휒(G)=n-3=negative value. Which is a 
contradiction. Hence no fuzzy graph exists. 

Subcase (ii) Let < 푆 >= 퐾  Since G is connected, one of the vertices of Kn-3 say ui is adjacent to 
all the vertices of S or two vertices of S or one vertex of S. If ui for some i is adjacent to all the 
vertices of S, then {x,y,z,ui} is a 훾 	-set of G, so that훾 	(G)=4 and hence n=4. But 휒(G)=4-
3=1which is for totally disconnected fuzzy graph. Which is a contradiction. Hence no fuzzy 
graph exists. Since G is connected ui for some i is adjacent to two vertices of S say x and y and z 
is adjacent to uj for i≠j in Kn-3, then {x,y,z,uj} for i≠j in Kn-3 is 훾 	-set of G, so that 훾 	(G)=4 
and hence n=4. But 휒(G)=n-3=1which is totally disconnected fuzzy graph. Which is a 
contradiction. Hence no fuzzy graph exists. If ui for some i is adjacent to x and uj is adjacent to y 
and uk is adjacent to z, for i≠j≠k in Kn-3 then {x,y,z,uk} is a 훾 	-set of G. so that 훾 	(G)=4and 
hence n=4. But 휒(G)=n-3=1 which is for totally disconnected fuzzy graph. Which is a 
contradiction. Hence no fuzzy graph exists. 

Subcase (iii) Let < 푆 >= P = {푥,푦, 푧}. Since G is connected, x(or equivalently z) is adjacent to 
ui for some i in Kn-3. Then {z,ui} is a 훾 	-set of G. so that 훾 	(G)=2 and hence n=2. But 휒(G)=n-
3=negative value. Which is a contradiction. Hence no fuzzy graph exists. If ui is adjacent to y 
then {x,z,uj} for some i≠j is a 훾 	-set of G. so that 훾 	(G)=3 and hence n=3. But 휒(G)=n-3=0. 
Which is a contradiction. Hence no fuzzy graph exists.  

Subcase (iv) Let < 푆 >= K ∪ K  Let xy be the edge and z be the isolated vertex of K ∪ K  
Since G is connected, there exists a ui in Kn-3 is adjacent to x and z. Then { y,z,uj} for some i≠j 
is a 훾 	-set of G, so that 훾 	(G)=3 and hence n=3. But 휒(G)=n-3=0. Which is a contradiction. 
Hence no fuzzy graph exists. If z is adjacent to uj for some i≠j then { y,z,uj} for some i≠j is a 
훾 	-set of G, so that 훾 	(G)=3 and hence n=3. But 휒(G)=n-3=0. Which is a contradiction. Hence 
no fuzzy graph exists.  

Case (ii) Let  훾 	(G)=n-1 and 휒(G)=n-2. 

Since 휒(G)=n-2, G contains a clique K on n-2 vertices. Let S={x,y}∈G-Kn-2. Then < 푆 >= 퐾  or 
퐾  

Subcase (a) Let < 푆 >= 퐾  Since G is connected, x(or equivalently y) is adjacent to some ui of 
Kn-2. Then {y,uj} for some i≠j is 훾 	- set, so that 훾 	(G)=2 and hence n=3. But 휒(G)=n-2=1 for 
which G is totally disconnected, which is a contradiction. Hence no fuzzy graph exists. 
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Subcase (b) Let < 푆 >= 퐾  Since G is connected, x is adjacent to some ui of Kn-2. Then y is 
adjacent to the same ui of Kn-2. Then {x,y,uj} for some i≠j is 훾 	- set, so that 훾 	(G)=3 and 
hence n=4. But 휒(G)=n-2=2. Then G is isomorphic to K1,3. Otherwise x is adjacent to ui of Kn-2 
for some i and y is adjacent to uj of Kn-2 for i≠j. Then {x,y,uk} for some i≠j≠k is 훾 	- set, so that 
훾 	(G)=3 and hence n=4. But 휒(G)=n-2=2. Then Kn-2=K2 in K2 the vertex uk cannot be exist. 
Which is a contradiction. In this case also no fuzzy graph exists.  

Case (iii) Let 훾 	(G)=n-2 and 휒(G)=n-1. 

Since 휒(G)=n-1, G contains a clique K on n-1 vertices. Let x be a vertex of Kn-1. Since G is 
connected the vertex x is adjacent to one vertex ui for some i in Kn-1 so that {x,ui} 훾 	-set of G 
훾 	(G)=2, we have n=4 and 휒 = 3 .Then K=K3. If x is adjacent to ui, then G ≅ C (P ).  

Case (iv) Let  훾 	(G)=n-3 and 휒(G)=n 

Since 휒(G)=n, G=Kn, But for Kn, 훾 	(G)=1, so that n=4, 휒 = 4 Hence G≅K4. Hence the proof. 

Theorem 2.5: For any connected fuzzy graph G, 훾 	(G)+휒(G)=2n-4 and the equality holds if 
and only if G≅K1,4, S(K1,3), K3(2P2), K3(P2,P2,0), K4(P1) P4,K5 . 

Proof: If G is any one of the fuzzy graphs in the theorem, then it can be verified that 훾 	(G)+ 
휒(G)=2n-4.Conversely assume that 훾 	(G)+휒(G)=2n-4. This is possible only if 훾 	(G)=n and 
휒(G)=n-4 (or) 훾 	(G)=n-1 and 휒(G)=n-3 (or) 훾 	(G)=n-2 and 휒(G)=n-2 (or) 훾 	(G)=n-3 and 
휒(G)=n-1 (or) 훾 	(G)=n-4 and 휒(G)=n. 

Case (i) Let  훾 	(G)=n and 휒(G)=n-4.  

Since 휒(G)=n-4, G contains a clique K on  n-4 vertices. Let S = {v1, v2, v3, v4}∈G-Kn-4. Then the 
induced subfuzzy graph <s> has the following possible cases K4,퐾4,P4,C4, P3UK1, K2UK2, 
K3UK1, K1,3, K4-e, C3(1,0,0), K2U퐾2 

In all the above cases, it can be verified that no new fuzzy graphs exists. 

Case(ii) Let  훾 	(G)=n-1 and 휒(G)=n-3.  

Since 휒(G)=n-3, G contains a clique K on  n-3 vertices. Let S={x,y,z}∈G-Kn-3. Then <S>=퐾  
,퐾 , K2∪K1,P3 

Subcase (i) Let < 푆 >= 퐾 . Since G is connected, x is adjacent to some ui of Kn-3. Then {z,ui} is 
- set, so that 훾 	(G)=2 and hence n=3. But 휒(G)=n-3=0. Which is a contradiction. Hence no 
fuzzy graph exists. 

Subcase (ii) Let < 푆 >= 퐾  Since G is connected, one of the vertices of Kn-3 say ui is adjacent to 
all the vertices of S or two vertices of S or one vertex of S. If ui for some i is adjacent to all the 
vertices of S, then {x,y,z,uj} for some i≠j in Kn-3 is 훾 	-set of G. so that 훾 	(G)=4 and hence 
n=5. But 휒(G)=n-3=2. Then Kn-3=K2 so G is isomorphic to K1,4. If ui for some i is adjacent to 
two vertices of S say x and y then G is connected, z is adjacent to uj for i≠j in Kn-3, then then 
{x,y,z,uj} for some i≠j in Kn-3 is 훾 	-set of G. so that 훾 	(G)=4 and hence n=5. But 휒(G)=n-3=2. 
Then Kn-3=K2 so G is isomorphic to S(K1,3). If ui for some i is adjacent to x and uj is adjacent to y 
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and uk is adjacent to z, then {x,y,z,ul } for i≠j≠k≠l in Kn-3 is 훾 	-set of G. so that 훾 	(G)=4 and 
hence n=5. 휒(G)=2 Then Kn-2=K2 in K2 the vertex ul cannot be exist. Which is a contradiction. In 
this case also no fuzzy graph exists. 

Subcase (iii) Let < 푆 >= P = {푥,푦, 푧}. Since G is connected, x(or equivalently z) is adjacent to 
ui for some i in Kn-3. Then {z,ui} is 훾 	-set of G. so that 훾 	(G)=2 and hence n=3. But 휒(G)=n-
3=0. Which is a contradiction. Hence no fuzzy graph exists. If ui is adjacent to y then {x,z,uj,} is 
훾 	-set of G. so that 훾 	(G)=3 and hence n=4. But 휒(G)=n-3=1 which is for totally disconnected 
fuzzy graph. Which is a contradiction. Hence no fuzzy graph exists.  

Subcase (iv) Let < S >= K ∪ K  Let xy be the edge and z be a isolated vertex of K ∪ K  Since 
G is connected, there exists a ui in Kn-3 is adjacent to x and z also adjacent to same ui Then 
{y,z,uk} is a 훾 	-set of G. So that 훾 	(G)=3 and hence n=4. But 휒(G)=n-3=1 which is for totally 
disconnected fuzzy graph, Which is a contradiction. Hence no fuzzy graph exists. If z is adjacent 
to uj for some i≠j then {y,z,uk} is a 훾 	-set of G. So that 훾 	(G)=3 and hence n=4. But 휒(G)=n-
3=1 which is for totally disconnected fuzzy graph, Which is a contradiction. Hence no fuzzy 
graph exists. 

Case (iii) Let  훾 	(G)=n-2 and 휒(G)=n-2. 

Since  휒 (G)= n-2, G contains a clique K on n-2 vertices. Let S={x,y}∈G-Kn-2. Then < 푆 >= 퐾  
or 퐾  

Subcase (a) Let < 푆 >= 퐾 . Since G is connected, x(or equivalently y) is adjacent to some ui of 
Kn-2. Then {y,uj} is 훾 	- set, so that 훾 	(G)=2 and hence n=4. But 휒(G)=n-2=2. Then G≅P4.  

Subcase (b) Let < 푆 >= 퐾 , since G is connected, x is adjacent to some ui of Kn-2. Then y is 
adjacent to the same ui of Kn-2. Then {x,y,uj} is 훾 	- set, so that 훾 	(G)=3 and hence n=5. But 
휒(G)=n-2=3. So that Kn-2=K3 Then G≅K3(2P2), or y is adjacent to uj of Kn-2 for i≠j. In this 
{x,uj,uk} is 훾 	- set, so that 훾 	(G)=3 and hence n=5. But 휒(G)=3. So that Kn-2=K3Then 
G≅K3(P2,P2,0)     

Case (iv) Let  훾 	(G)=n-3 and 휒(G)=n-1. 

Since  휒 (G)= n-1, G contains a clique K on n-1 vertices. Let x be a vertex of G-Kn-1. Since G is 
connected the vertex x is adjacent to one vertex ui for some i in Kn-1, then {x,ui} is 훾 	- set of G 
so that 훾 	(G) = 2, we have n=5 and 휒 = 4. Then Kn-1=K4 Let u1,u2,u3,u4 be the vertices of K4. 
Then x must be adjacent to only one vertex of G-K3. Without loss of generality let x be adjacent 
to u1.If d(x)=1, then G ≅ K (P ).  

Case (v) Let 훾 	(G)=n-4 and 휒(G)=n 

Since 휒(G)=n, G=Kn, But for Kn, γ (G)=1, so that n=5, 휒 = 5. Hence G≅K5. Hence the proof. 

CONCLUSION 

In this paper, upper bound of the sum of fuzzy restrained domination and chromatic number is 
proved.  In future this result can be extended to various domination parameters. The structure of 
the graphs had been given in this paper can be used in models and networks.  The authors have 
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obtained similar results with large cases of fuzzy graphs for which 훾 (G)+휒(G)=2n-5, 
훾 (G)+휒(G)=2n-6, 훾 	(G)+휒(G)=2n-7,훾 	(G)+휒(G)=2n-8 
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