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1. Introduction 

     Huang and Zhang [1] recently introduced the concept of cone metric space and established some fixed point 
theorems for contractive type mappings in a normal cone metric space. Subsequently, some other authors 
[7,8,9] studied the existence of points of coincidence, and common fixed points of mappings satisfying a 
contractive type condition in cone metric spaces.  Afterwards, Rezapour and Hamlbarani [2] studied fixed point 
theorems of contractive type mappings by omitting the assumption of normality in cone metric spaces. 

     Recently, Stojan Redenovic [10] has obtained coincidence point results for two mappings in cone metric 
spaces which satisfies new contractive conditions.  The same concept was further extended by Rangamma et 
al.[11] and Malhotra et al. [3] and proved coincidence point results and common fixed point results for three 
self mappings. 

     In this paper we improve and generalize the results of Rangamma et al.[11]  and  Malhotra et al. [3] with a 
new type of contractive condition.  

    The following definitions and results will be needed in the sequel. 

Definition 1.1 [1]. Let 퐸 be a real Banach space and 푃 be a subset of 퐸. The set 푃 is called a cone if, 

i) 푃	is closed, non-empty and 푃 ≠ {0 }, here 0  is the zero vector of E; 
ii) 푎, 푏 ∈ R, 푎,푏 ≥ 0,  푥,푦 ∈ 푃	푖푚푝푙푖푒푠		푎푥 + 푏푦	 ∈ 푃;  
iii) 푥 ∈ 푃 and  −푥 ∈ 푃 ⇒ 푥 = 0 . 
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     Given a cone PE,	we can define a partial ordering ≼ with respect to 푃 by   푥 ≼ 푦 if and only if  푦 − 푥 ∈ 푃.  We 
write  푥 ≺ 푦 to indicate that  푥 ≼ 푦 but  푥 ≠ 푦, while 푥 ≪ 푦  if and only if for 푦 − 푥 ∈ 푖푛푡	푃, where 푖푛푡	푃 denotes 
the interior of  푃. 

      Let 푃 be a cone in a real Banach space 퐸, then 푃 is called normal, if there exist a constant 퐾 > 0 such that for all 
푥, 푦,∈ 퐸, 

0 ≼ 푥 ≼ 푦	푖푚푝푙푖푒푠	‖푥‖ ≤ 퐾‖푦‖. 

The least positive number 퐾 satisfying the above inequality is called the normal constant of 푃.  

Definition 1.2[1]. Let X be a non-empty set, 퐸 be a real Banach space. Suppose that the mapping  푑:푋 × 푋 → 퐸 
satisfies:   

(i) 0 ≼ 푑(푥, 푦)	for all 푥,푦 ∈ 푋 and 푑(푥,푦) = 0  if and only if  푥 = 푦, 
(ii) 푑(푥, 푦) = 푑(푦, 푥)		for all 푥, 푦 ∈ 푋, 
(iii) 푑(푥, 푦) ≼ 푑(푥, 푧) + 푑(푧,푦)	for all 푥, 푦, 푧 ∈ 푋. 

Then 푑 is called a cone metric on 푋, and (푋, 푑) is called a cone metric space. 

        The concept of cone metric space is more general than that of a metric space, because each metric space is a 
cone metric space with 퐸 = 푅 and 푃 = [0, +∞). 

Definition 1.3[1]. Let (푋, 푑) be a cone metric space.  Let {푥 } be a sequence in 푋 and 푥 ∈ 푋. 

i) If for every 푐 ∈ 퐸  with 0 ≪ 푐  there is a positive integer 푛 > 푛  such that 푑(푥 ,푥) ≪ 푐  then the 
sequence {푥 } is said to be convergent and converges to 푥.  We denote this by 푙푖푚 → 푥 = 푥  or 
푥 → 푥 as 푛 → ∞. 

ii) If for every 푐 ∈ 퐸  with 0 ≪ 푐  there is a positive integer 푛 > 푛 ,  such that, 푑(푥 ,푥 ) ≪ 푐  for all 
푛,푚 > 푛 , then the sequence {푥 } is called a Cauchy sequence in 푋. 
 
(푋, 푑) is called a complete cone metric space, if every Cauchy sequence in 푋 is convergent in 푋. 

Lemma 1.1[1]. Let (푋,푑) be a cone metric space,  푃 be a normal cone with normal constant 퐾. Let {푥 } and {푦 } be 
two sequences in 푋.		  

i) {푥 } is a Cauchy sequence if and only if  푑(푥 ,푥 ) → 0  as  푛 → ∞. 
ii) If 푥 → 푥, 푦 → 푦 as 푛 → ∞, then 푑(푥 ,푦 ) → 푑(푥	,푦)		as 푛 → ∞.					 

Remark 1.1[12]. Let 푃 be a cone in a real Banach space 퐸 with zero vector 0  and 푎, 푏, 푐 ∈ 푃, then; 

i) If  푎 ≼ 푏 and 푏 ≪ 푐 then 푎 ≪ 푐. 
ii) If  푎 ≪ 푏 and 푏 ≪ 푐 then 푎 ≪ 푐. 
iii) If  0 	 ≼ 푢 ≪ 푐 for each 푐 ∈ 푖푛푡	푃 then 푢 = 0 	. 
iv) If 푐 ∈ 푖푛푡	푃 and 푎 	 → 0 	 then there exist 푛 ∈ 푁 such that, for all 푛 > 푛  we have 푎 	 ≪ 푐. 
v) If 0 	 ≼ 푎 	 ≼ 푏 	for each 푛 and 푎 	 → 푎,푏 	 → 푏 then 푎 ≼ 푏. 
vi) If 푎 ≼ 	푎 where 0 ≤  < 1 then 푎 = 0 . 

Definition 1.4. Let 푋 be a nonempty set and 푓,푔 be self maps on 푋 and 푥, 푧	 ∈ 푋. Then 푥 called coincidence point of 
pair (푓,푔) if 푓푥 = 푔푥, and 푧 is called point of coincidence of pair (푓,푔) if 푓푥 = 푔푥 = 푧.  

Definition 1.5. Let 푋 be a nonempty set and 푓,푔 be self maps on 푋.  Pair (푓,푔) is called weakly compatible if  
푓	푎푛푑	푔 commutes at their coincidence point, i.e. 푓푔푥 = 푔푓푥, whenever 푓푥 = 푔푥 for some  푥 ∈ 푋.  
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       Let 퐸,퐵 be two real Banach spaces, 푃 and 퐶 normal cones in 퐸 and 퐵 respectively.  Let " ≼ " and " ≤ " be the 
partial orderings induced by 푃 and 퐶 in 퐸 and 퐵 respectively.  Let ∅:푃 → 퐶 be a function satisfying: 

i) If 푎, 푏	 ∈ 푃 with 푎 ≼ 푏 then ∅[푎] ≤ 푘∅[푏], for some positive real k; 
ii) ∅[푎 + 푏] ≤ ∅[푎] + ∅[푏] for all 푎,푏	 ∈ 푃; 
iii) ∅ is sequentially continuous i.e. if  푎 	, 푎	 ∈ 푃 and 푙푖푚 → 푎 = 푎, then 푙푖푚 → ∅[푎 ] = ∅[푎];  
iv) If ∅[푎 ] → 0  then 푎 → 0 , where 0  and 0  are the zero vectors of 퐸 and 퐵 respectively.  

            We denote the set of all such functions by Ф(푃,퐶) i.e. ∅ ∈ Ф(푃,퐶) if  ∅ satisfies all above properties.  It is 
clear that ∅[푎] = 0  if and only if 푎 = 0 . 

              Let (푋,푑) be a cone metric space with normal cone 푃 and ∅ ∈ Ф(푃,퐶).  Since 푑(푥,푦) ≼ 푑(푥, 푧) + 푑(푧, 푦) 
for all 푥,푦, 푧	 ∈ 푋, therefore 

∅[푑(푥,푦)] ≤ 푘∅[푑(푥, 푧)] + 푘∅[푑(푧,푦)].	                           --------(1.1) 

Example 1.1[3]. Let 퐸 be any real Banach space with normal cone P and normal constant 퐾.Define ∅:푃 → 푃 by 
∅[푎] = 푎, for all 푎 ∈ 푃.Then  ∅ ∈ Ф(푃,퐶) with 퐸 = 퐵,푃 = 퐶 and 푘 = 1. 

2. Main Results 

Theorem 2.1. Let (푋, 푑) be a cone metric space, and 푃 a normal cone with normal constant 퐾.  Suppose 푓,푔,ℎ be 
self maps of 푋 satisfy the condition  

 ∅[푑(푓푥,푔푦)] ≤ 푎 ∅[푑(ℎ푥, 푓푥)] + 푎 ∅[푑(ℎ푦,푔푦)] 

+푎 ∅[푑(ℎ푦,푓푥)] + 푎 ∅[푑(ℎ푥,푔푦)] 

                                     +푎 ∅[푑(ℎ푥, ℎ푦)] for all 푥,푦	 ∈ 푋               ----------(2.1) 

where ∅ ∈ Ф(푃,퐶)  and 푎 ≥ 0(푖 = 1,2,3,4,5)  with 푎 + 푎 + 푎 + 푎 + 푎 < 1.  If 푓(푋) ∪ 푔(푋)ℎ(푋)  and ℎ(푋) 
is a complete subspace of 푋, then the maps 푓,푔 and ℎ have a unique point of coincidence in 푋.  Moreover, if (푓,ℎ) 
and (푔, ℎ) are weakly compatible pairs then 푓,푔 and ℎ have a unique common fixed point. 

Proof. Suppose 푥  be any arbitrary point of 푋. Since 푓(푋) ∪ 푔(푋)ℎ(푋), starting with  푥  we define a sequence 
{푦 } such that  

푦 = 푓푥 = ℎ푥 	푎푛푑  

푦 = 푔푥 = ℎ푥 , 

	for all 푛 ≥ 0.  We shall prove that {푦 } is a Cauchy sequence in 푋. 

If 푦 = 푦  for some 푛  e.g. if  푦 = 푦 , then from (2.1) we obtain 

          ∅[푑(푦 ,푦 )] = ∅[푑(푓푥 ,푔푥 )] 

                     ≤ 푎 ∅[푑(ℎ푥 ,푓푥 )] + 푎 ∅[푑(ℎ푥 ,푔푥 )] 

                            +푎 ∅[푑(ℎ푥 ,푓푥 )] + 푎 ∅[푑(ℎ푥 ,푔푥 )] 

                            +푎 ∅[푑(ℎ푥 ,ℎ푥 )] 

                   = 푎 ∅[푑(푦 ,푦 )] + 푎 ∅[푑(푦 ,푦 )] 
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                            +푎 ∅[푑(푦 ,푦 )] + 푎 ∅[푑(푦 ,푦 )] 

                            +푎 	∅[푑(푦 ,푦 )] 

Since 푦 = 푦 , it follows from above inequality that, 

∅[푑(푦 ,푦 )] ≤ 푎 ∅[푑(푦 ,푦 )] + 푎 ∅[푑(푦 ,푦 )] 

∅[푑(푦 ,푦 )] ≤ (푎 + 푎 )∅[푑(푦 ,푦 )] 

As 푎 + 푎 < 1	and from (vi) of remark 1.1, we obtain 

∅[푑(푦 ,푦 )] = 0  also ∅ ∈ Ф(푃,퐶) therefore we have 

 푑(푦 ,푦 ) = 0 	i.e. 푦 = 푦 . 

Similarly we obtain that 

푦 = 푦 = 푦 = − −−− −	= 휗 (say) 

Therefore {푦 } is a Cauchy sequence. 

Suppose 푦 ≠ 푦  for all 푛. Then from (2.1) it follows that 

 ∅[푑(푦 ,푦 )] = ∅[푑(푓푥 ,푔푥 )] 

                             ≤ 푎 ∅[푑(ℎ푥 ,푓푥 )] + 푎 ∅[푑(ℎ푥 ,푔푥 )] 

                                     +푎 ∅[푑(ℎ푥 ,푓푥 )] + 푎 ∅[푑(ℎ푥 ,푔푥 )] 

                                     +푎 ∅[푑(ℎ푥 ,ℎ푥 )] 

                            = 푎 ∅[푑(푦 ,푦 )] + 푎 ∅[푑(푦 ,푦 )] 

                                      +푎 ∅[푑(푦 ,푦 )] + 푎 ∅[푑(푦 ,푦 )] 

                                      +푎 ∅[푑(푦 ,푦 )] 

                           = (푎 + 푎 + 푎 )∅[푑(푦 ,푦 )] + (푎 + 푎 )∅[푑(푦 ,푦 )] 

     i.e.  ∅[푑(푦 ,푦 )] ≤ 	∅[푑(푦 ,푦 )] 

                                         = 휆∅[푑(푦 ,푦 )] 

where 휆 = < 1(푠푖푛푐푒	푎 + 푎 + 푎 + 푎 + 푎 < 1). 

Writing 	푑 = ∅[푑(푦 ,푦 )], we obtain 

                         푑 ≤ 흀푑                 ----------(2.2) 

Again 

 ∅[푑(푦 ,푦 )] = ∅[푑(푓푥 ,푔푥 )] 

                                 ≤ 푎 ∅[푑(ℎ푥 ,푓푥 )] + 푎 ∅[푑(ℎ푥 ,푔푥 )] 
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                                          +푎 ∅[푑(ℎ푥 ,푓푥 )] + 푎 ∅[푑(ℎ푥 ,푔푥 )] 

                                          +푎 ∅[푑(ℎ푥 ,ℎ푥 )] 

                               = 푎 ∅[푑(푦 ,푦 )] + 푎 ∅[푑(푦 ,푦 )] 

                                         +푎 ∅[푑(푦 ,푦 )] + 푎 ∅[푑(푦 ,푦 )] 

                                         +푎 ∅[푑(푦 ,푦 )] 

 

                               = (푎 + 푎 )∅[푑(푦 ,푦 )] 

                                         +(푎 + 푎 + 푎 )∅[푑(푦 ,푦 )] 

    i.e.  ∅[푑(푦 ,푦 )] ≤ ∅[푑(푦 ,푦 )] 

                                           = 휇∅[푑(푦 ,푦 )] 

where 휇 = < 1(푠푖푛푐푒	푎 + 푎 + 푎 + 푎 + 푎 < 1). 

      Therefore  푑 ≤ 휇푑               ---------(2.3) 

From (2.2) and (2.3) we get 

                           푑 ≤ 흀푑 ≤ 휆휇푑 ≤ −− −−≤ 휆 휇 푑           

and 

푑 ≤ 휇푑 ≤ 휆휇푑 ≤ − −−−≤ 휆 휇 푑 . 

Thus 

               푑 + 푑 ≤ 휆 휇 (1 + 휇)푑       --------(2.4)          

			푑 + 푑 ≤ 휆 휇 (1 + 휆)푑             -------(2.5) 

Let 푛,푚 ∈ 푁, then for the sequence {푦 } we consider ∅[푑(푦 ,푦 )] in two cases. 

If 푛 is even and 푚 > 푛, then using (1.1) and (2.4) we obtain 

 ∅[푑(푦 ,푦 )] ≤ 푘∅[푑(푦 ,푦 )] + 푘∅ 푑 푦 ,푦 + 

                            −−− −− −−+ 푘∅[푑(푦 ,푦 )] 

                      ≤ 푘[푑 + 푑 + 푑 + 푑 + 	− − −−] 

                      ≤ 푘[	휆	 휇	 (1 + 휇)	푑 + 휆	 휇	 (1 + 휇)푑 + 	− − −] 

 ∅[푑(푦 ,푦 )] ≤ ( ) ( )푑 . 

If 푛 is odd and 푚 > 푛, then again using (1.1) and (2.5) we obtain 
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     ∅[푑(푦 ,푦 )] ≤ 푘∅ 푑 푦 ,푦 + 푘∅[푑(푦 ,푦 )] + 

                              −−− −−− −+ 푘∅[푑(푦 ,푦 )] 

≤ 푘[푑 + 푑 + 푑 + 푑 + 	− − −−] 

≤ 푘[ 휇 (1 + )푑 +  휇 	(1 + )푑 + 	− − −] 

        ∅[푑(푦 ,푦 )] ≤ ( ) ( )푑 . 

Since 휆 < 1,휇 < 1 therefore 휆휇 < 1, so in both the cases ∅[푑(푦 ,푦 )] → 0  as 푛 → ∞, and since ∅ ∈ Φ(푃,퐶) we 
have 푑(푦 ,푦 ) → 0  as 푛 → ∞. So by lemma 1.1, {푦 } = {ℎ푥 } is a Cauchy sequence. 

Since ℎ(푋) is complete, there exists ϑ ∈ ℎ(푋) and 푢 ∈ 푋 such that 푙푖푚 → 푦 = 휗 and 휗 = ℎ푢. 

We shall show that 푢 is a coincidence point of pairs (푓, ℎ) and (푔,ℎ) i.e. 푓푢 = 푔푢 = ℎ푢. If 푓푢 ≠ ℎ푢 then 
0 ≺ 푑(푓푢,ℎ푢). Using (2.1) we obtain 

 
 ∅[푑(푓푢,푦 )] = ∅[푑(푓푢,푔푥 )] 

≤ 푎 ∅[푑(ℎ푢,푓푢)] + 푎 ∅[푑(ℎ푥 ,푔푥 )] 

                                       +푎 ∅[푑(ℎ푥 ,푓푢)] + 푎 ∅[푑(ℎ푢	,푔푥 )] 

                                       +푎 ∅[푑(ℎ푢,ℎ푥 )] 

                             = 푎 ∅[푑(ℎ푢, 푓푢)] + 푎 ∅[푑(푦 ,푦 )] 

                                       +푎 ∅[푑(푦 ,푓푢)] + 푎 ∅[푑(ℎ푢, 푦 )] 

                                       +푎 ∅[푑(ℎ푢,푦 )] 

                            = (푎 + 푎 )∅[푑(ℎ푢,푓푢)] + 푎 푑 . 

        Since 푦 → ℎ푢,푑 → 0 ,푑(푓푢,푦 ) → 푑(푓푢, ℎ푢) as 푛 → ∞ and ∅ ∈ Φ(푃,퐶), therefore letting 푛 → ∞ in 
above inequality and using remark 1.1 we get  

 ∅[푑(푓푢,ℎ푢)] ≤ (푎 + 푎 )∅[푑(푓푢,ℎ푢)] 

                       < ∅[푑(푓푢,ℎ푢)] (since 	푎 + 푎 < 1), 

a contradiction.  Therefore 푓푢 = ℎ푢.		Similarly it can be shown that 푔푢 = ℎ푢. 

                        푓푢 = 푔푢 = ℎ푢 = 휗      -------------(2.6) 

Thus 휗 is point of coincidence of pairs (푓, ℎ) and (푔, ℎ).  We shall show that it is unique. 

Suppose 푤 is another point of coincidence of these pairs i.e. 푓푧 = 푔푧 = ℎ푧 = 푤	 for some 푧 ∈ 푋. 

Then from (2.1) it follows that 

 ∅[푑(푤,휗)] = ∅[푑(푓푧,푔푢)] 



   International Journal of Mathematics Trends and Technology – Volume 11 Number 2 – Jul 2014 

ISSN: 2231-5373                   http://www.ijmttjournal.org Page 130 
 

≤ 푎 ∅[푑(ℎ푧, 푓푧)] + 푎 ∅[푑(ℎ푢,푔푢)] + 푎 ∅[푑(ℎ푢,푓푧)] 

+푎 ∅[푑(ℎ푧,푔푢)] + 푎 ∅[푑(ℎ푧, ℎ푢	)] 

                     = 푎 ∅[푑(푤,푤	)] + 푎 ∅[푑(휗,휗)] + 푎 ∅[푑(휗,푤	)] 

                                     +푎 ∅[푑(푤,휗)] + 푎 ∅[푑(푤,휗)] 

                     = (푎 + 푎 + 푎 )∅[푑(푤, 휗)]. 

Since 푎 + 푎 + 푎 < 1, by remark 1.1 we obtain 

								∅[푑(푤,휗)] = 0  i.e. 푤 = 휗. Thus point of coincidence is unique. 

          If pairs (푓, ℎ)  and (푔, ℎ)  are weakly compatible, from (2.6) we have 푓휗 = 푓ℎ푢 = ℎ푓푢 = ℎ휗  and 푔휗 =
푔ℎ푢 = ℎ푔푢 = ℎ휗, therefore 푓휗 = 푔휗 = ℎ휗 = 푝	(say). This shows that 푝 is another point of coincidence, therefore 
by uniqueness, we must have  푝 = 휗 i.e. 

                                      푓휗 = 푔휗 = ℎ휗 = 휗. 

Thus 휗 is unique common fixed point of self maps 푓,푔 and ℎ. 

 

Corollary 2.1.  

(i) If 푎 = 푎 = 0 in Theorem 2.1, then we have the Theorem 2.1 of [3]. 
(ii) If 푎 = 푎 = 푎 = 푎 = 0, Theorem 2.1 is generalization of Theorem 1 of [1], Theorem 2.1 of [4] and 

Theorem 2.3 of [5]. 
(iii) If 푎 = 푎 = 푎 = 0, Theorem 2.1 is generalization of Theorem 3 of [1], Theorem 2.3 of [4] and 

Theorem 2.6 of [2]. 
(iv) If 푎 = 푎 = 푎 = 0, Theorem 2.1 is generalizes Theorem 5 of [1]. 

Theorem 2.2. Let (푋, 푑) be a cone metric space and P a normal cone with normal constant 퐾.  Suppose 푓,푔,ℎ be 
self maps of 푋	satisfy the condition. 

 ∅[푑(푓푥,푔푦)] ≤ 푎 ∅[푑(ℎ푥, ℎ푦)] + 푎 ∅[푑(푓푥, ℎ푥)] 

                              +푎 ∅[푑(푔푦,ℎ푦)] + 푎 ∅[푑(푓푥, ℎ푦) + 푑(푔푦, ℎ푥)] 

                                          for all 푥,푦	 ∈ 푋                             ---------(2.7) 

where  ∅ ∈ Φ(푃,퐶)  and 푎 , 푎 ,푎 ,푎 	∈ [0,1)  satisfying 푎 + 푎 + 푎 + 2푎 < 1.  If 푓(푋) ∪ 푔(푋) ⊂ ℎ(푋)  and 
ℎ(푋) is complete subspace of 푋, then the maps 푓,푔	푎푛푑	ℎ have a unique point of coincidence in 푋.		Moreover, if 
(푓, ℎ) and (푔,ℎ) are weakly compatible pairs then 푓,푔 and ℎ have a unique common fixed point.  

Proof. Suppose 푥  be any arbitrary point of 푋. Since 푓(푋) ∪ 푔(푋) ⊂ ℎ(푋),  starting with 푥  we define a sequence 
{푦 } such that 

푦 = 푓푥 = ℎ푥  and 푦 = 푔푥 = ℎ푥 , for all 푛 ≥ 0.  We shall prove that {푦 } is a Cauchy sequence 
in 푋. 

If 푦 = 푦  for some 푛, e.g. if 푦 = 푦 , then from (2.7) we obtain 
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 ∅[푑(푦 ,푦 )] = ∅[푑(푓푥 ,푔푥 )]                                   

					≤ 	 푎 ∅[푑(ℎ푥 ,ℎ푥 )] + 푎 ∅[푑(푓푥 ,ℎ푥 )]	               
+푎 ∅[푑(푔푥 ,ℎ푥 )] + 푎 ∅[푑(푓푥 , ℎ푥 ) + 푑(푔푥 ,ℎ푥 )] 

    = 푎 ∅[푑(푦 ,푦 )] + 푎 ∅[푑(푦 ,푦 )] 

+푎 ∅[푑(푦 ,푦 )] + 푎 ∅[푑(푦 ,푦 ) + 푑(푦 ,푦 )] 

Since 푦 = 푦  it follows from above inequality that 

 ∅[푑(푦 ,푦 )] ≤ (푎 + 푎 )∅[푑(푦 ,푦 )]. 

As 푎 + 푎 < 1 and from (vi) of remark 1.1 we obtain ∅[푑(푦 ,푦 )] = 0  also ∅ ∈ Φ(푃,퐶)  therefore we 
have 푑(푦 ,푦 ) = 	0  ie. 푦 = 푦 . 

Similarly we obtain that 

푦 = 푦 = 푦 = 	− 	−	−	−= 	휗 (say) 

Therefore {푦 } is a Cauchy sequence. 

Suppose 푦 ≠ 푦  for all 푛.  Then from (2.7) it follows that 

 ∅[푑(푦 ,푦 )] = ∅[푑(푓푥 ,푔푥 )] 

 ≤ 푎 ∅[푑(ℎ푥 ,ℎ푥 )] + 푎 ∅[푑(푓푥 ,ℎ푥 )] 

+푎 ∅[푑(푔푥 ,ℎ푥 )] + 푎 ∅[푑(푓푥 ,ℎ푥 ) + 푑(푔푥 ,ℎ푥 )] 

 = 푎 ∅[푑(푦 ,푦 )] + 푎 ∅[푑(푦 ,푦 )] 

         +푎 ∅[푑(푦 ,푦 )] + 푎 ∅[푑(푦 ,푦 ) + 푑(푦 ,푦 )] 

 ≤ (푎 + 푎 + 푎 )∅[푑(푦 ,푦 )] + (푎 + 푎 )∅[푑(푦 ,푦 )] 

i.e.  ∅[푑(푦 ,푦 )] ≤ ∅[푑(푦 ,푦 )] 

                                    = 휆∅[푑(푦 ,푦 )] 

where 휆 = < 1(푠푖푛푐푒	푎 + 푎 + 푎 + 2푎 < 1). 

Writing 푑 = ∅[푑(푦 ,푦 )], we obtain 

                         푑 ≤ 흀푑                 ----------(2.8) 

Again 

 ∅[푑(푦 ,푦 )] = ∅[푑(푓푥 ,푔푥 )] 

  ≤ 푎 ∅[푑(ℎ푥 , ℎ푥 )] + 푎 ∅[푑(푓푥 ,ℎ푥 )] 

+푎 ∅[푑(푔푥 ,ℎ푥 )] + 푎 ∅[푑(푓푥 , ℎ푥 ) + 푑(푔푥 ,ℎ푥 )] 



   International Journal of Mathematics Trends and Technology – Volume 11 Number 2 – Jul 2014 

ISSN: 2231-5373                   http://www.ijmttjournal.org Page 132 
 

 = 푎 ∅[푑(푦 ,푦 )] + 푎 ∅[푑(푦 ,푦 )] 

     +푎 ∅[푑(푦 ,푦 )] + 푎 ∅[푑(푦 ,푦 ) + 푑(푦 ,푦 )] 

 ≤ (푎 + 푎 + 푎 )∅[푑(푦 ,푦 )] + (푎 + 푎 )∅[푑(푦 ,푦 )] 

i.e.  ∅[푑(푦 ,푦 )] ≤ ∅[푑(푦 ,푦 )] 

= 휇∅[푑(푦 ,푦 )] 

where 휇 = < 1(푠푖푛푐푒	푎 + 푎 + 푎 + 2푎 < 1). 

Therefore              푑 ≤ 휇푑                           ---------(2.9) 

From (2.8) and (2.9) we get 

                         푑 ≤ 흀푑 ≤ 휆휇푑 ≤ − −−−≤ 휆 휇 푑           

and 

																																												푑 ≤ 휇푑 ≤ 휆휇푑 ≤ −− −−≤ 휆 휇 푑 . 

Thus 

             푑 + 푑 ≤ 휆 휇 (1 + 휇)푑       --------(2.10)          

and 

       푑 + 푑 ≤ 휆 휇 (1 + 휆)푑             -------(2.11) 

Let 푛,푚 ∈ 푁, then for the sequence {푦 } we consider ∅[푑(푦 ,푦 )] in two cases. 

If 푛 is even and 푚 > 푛, then using (1.1) and (2.10) we obtain 

∅[푑(푦 ,푦 )] ≤ 푘∅[푑(푦 ,푦 )] + 푘∅[푑(푦 ,푦 )] + 

                                                    −−− −− −−+ 푘∅[푑(푦 ,푦 )] 

															≤ 푘[푑 + 푑 + 푑 + 푑 + 	− − −−] 

≤ 푘[ 	휇 (1 + 휇)푑 +  	휇 (1 + 휇)푑 + 	− − −] 

∅[푑(푦 ,푦 )] ≤
푘(휆휇) (1 + 휇)

1 − 휆휇 푑 . 

Similarly if  푛 is odd and 푚 > 푛, then again using (1.1) and (2.11) we obtain 

∅[푑(푦 ,푦 )] ≤
푘(휆휇) (1 + )

1− 휆휇 푑 . 

Since 휆 < 1,휇 < 1 therefore 휆휇 < 1, so in both the cases ∅[푑(푦 ,푦 )] → 0  as 푛 → ∞, and since ∅ ∈ Φ(푃,퐶) we 
have 푑(푦 ,푦 ) → 0  as 푛 → ∞. So by lemma 1.1, {푦 } = {ℎ푥 } is a Cauchy sequence. 
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    Since ℎ(푋) is complete, there exists ϑ ∈ ℎ(푋) and 푢 ∈ 푋 such that 푙푖푚 → 푦 = 휗 and 휗 = ℎ푢.We shall show 
that 푢 is a coincidence point of pairs (푓,ℎ) and (푔, ℎ) i.e. 푓푢 = 푔푢 = ℎ푢. 

If 푓푢 ≠ ℎ푢 then 0 ≺ 푑(푓푢, ℎ푢). Using (2.7) we obtain  

 ∅[푑(푓푢,푦 )] = ∅[푑(푓푢,푔푥 )] 

   ≤ 푎 ∅[푑(ℎ푢,ℎ푥 )] + 푎 ∅[푑(푓푢,ℎ푢)] 

+푎 ∅[푑(푔푥 ,ℎ푥 )] + 푎 ∅[푑(푓푢, ℎ푥 ) + 푑(푔푥 ,ℎ푢)] 

   = 푎 ∅[푑(ℎ푢, 푦 )] + 푎 ∅[푑(푓푢,ℎ푢)] + 푎 ∅[푑(푦 ,푦 )] 

             +푎 ∅[푑(푓푢,푦 ) + 푑(푦 ,ℎ푢)] 

Since 푦 → ℎ푢, 푑 → 0 ,푑(푓푢, 푦 ) → 푑(푓푢, ℎ푢)as 푛 → ∞ and ∅ ∈ Φ(푃,퐶), therefore letting 푛 → ∞ in above 
inequality and using remark 1.1 we get  

∅[푑(푓푢, ℎ푢)] ≤ (푎 + 푎 )∅[푑(푓푢,ℎ푢)] 

                                     < ∅[푑(푓푢,ℎ푢)] (since  푎 + 푎 < 1), 

a contradiction.  Therefore 푓푢 = ℎ푢.		Similarly it can be shown that 푔푢 = ℎ푢. 

Therefore, 

          푓푢 = 푔푢 = ℎ푢 = 휗      -------------(2.12) 

Thus 휗 is point of coincidence of pairs (푓, ℎ) and (푔, ℎ).  We shall show that it is unique. 

Suppose 푤 is another point of coincidence of these pairs i.e. 푓푧 = 푔푧 = ℎ푧 = 푤	 for some 푧 ∈ 푋. 

Then from (2.7) it follows that 

 ∅[푑(푤,휗)] = ∅[푑(푓푧,푔푢)] 

≤ 푎 ∅[푑(ℎ푧, ℎ푢)] + 푎 ∅[푑(푓푧,ℎ푧)] + 푎 ∅[푑(푔푢, ℎ푢)] 

                              +푎 ∅[푑(푓푧,ℎ푢) + 푑(ℎ푧,푔푢	)] 

                      = 푎 ∅[푑(푤, 푣	)] + 푎 ∅[푑(푤,푤	)] + 푎 ∅[푑(휗,휗	)] 

                               +푎 ∅[푑(푤, 휗) + 푑(휗,푤)] 

                        = (푎 + 2푎 )∅[푑(푤, 휗)] 

Since 푎 + 2푎 < 1, by remark 1.1 we obtain 

∅[푑(푤,휗)] = 0  i.e. 	푤 = 휗.  Thus point of coincidence is unique. 

If pairs (푓,ℎ) and (푔, ℎ) are weakly compatible, from (2.12) we have 푓휗 = 푓ℎ푢 = ℎ푓푢 = ℎ휗  and 푔휗 = 푔ℎ푢 =
ℎ푔푢 = ℎ휗, therefore 푓휗 = 푔휗 = ℎ휗 = 푝	(say).  This shows that 푝 is another point of coincidence, therefore by 
uniqueness, we must have  푝 = 휗 i.e. 
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푓휗 = 푔휗 = ℎ휗 = 휗. 

Thus 휗 is unique common fixed point of self maps 푓,푔 and ℎ. 

Corollary 2.2. Let 푓	푎푛푑	ℎ	 be self maps on a cone metric space 푋 with 푃 be a normal cone and  퐾 is normal 
constant, satisfying  푓(푋)ℎ(푋) and  

 ∅[푑(푓푥, 푓푦)] ≤ 푎 ∅[푑(ℎ푥,ℎ푦)] + 푎 ∅[푑(푓푥,ℎ푥)] 

								+푎 ∅[푑(푓푦,ℎ푦)] + 푎 ∅[푑(푓푥,ℎ푦) + 푑(푓푦,ℎ푥)] 

   for all 푥,푦	 ∈ 푋,where  ∅ ∈ Φ(푃,퐶) and 푎 ,푎 , 푎 ,푎 	∈ [0,1) satisfying 푎 + 푎 + 푎 + 2푎 < 1.  If one of  푓(푋) 
or ℎ(푋) is complete subspace of 푋, then the maps 푓	푎푛푑	ℎ have a unique point of coincidence in 푋.		Moreover, if 
푓	푎푛푑	ℎ are  weakly compatible, then 푓 and ℎ have a unique common fixed point.  

Corollary 2.3. Let 푓	 be a self map on a cone metric space 푋 with  normal cone P and normal constant   퐾 satisfying   

 ∅[푑(푓푥, 푓푦)] ≤ 푎 ∅[푑(푥,푦)] + 푎 ∅[푑(푓푥,푥)] 

+푎 ∅[푑(푓푦,푦)] + 푎 ∅[푑(푓푥,푦) + 푑(푓푦,푥)] 

  for all 푥, 푦	 ∈ 푋 , where  ∅ ∈ Φ(푃,퐶) and 푎 ,푎 , 푎 ,푎 	∈ [0,1) satisfying 푎 + 푎 + 푎 + 2푎 < 1 .  If 푓(푋)  is 
complete subspace of 푋, then  푓	has a unique fixed point in 푋.		 
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