Connectedness and Compactness via Semi-Star-Alpha-Open Sets

A. Robert¹, S. Pious Missier²

¹Department of Mathematics, Aditanar College of Arts and Science, Tiruchendur, INDIA.

²*P.G. Department of Mathematics, V.O.Chidambaram College, Thoothukudi, INDIA.*

Abstract: In this paper, we introduce new concepts, namely semi* α -connectedness and semi* α compactness using semi* α -open sets. We investigate their basic properties. We also discuss their relationships with already existing concepts of connectedness and compactness.

Mathematics Subject Classification: 54D05, 54D30.

Keywords: semi* α -closed, semi* α -closure, semi* α -compact, semi* α -connected, semi* α -open

I. INTRODUCTION

In 1974, Das [1] defined the concept of semi-connectedness in topological spaces and investigated its properties. Compactness is one of the most important, useful and fundamental concepts in topology. In 1981, Dorsett [2] introduced and studied the concept of semi-compact spaces. Since then, Hanna and Dorsett [3], Ganster [4] investigated the properties of semi-compact spaces. S. Pasunkili Pandian[5] introduced semi*-pre-compact spaces and investigated their properties. The authors have recently introduced and studied semi*-connectedness and semi*-compactness [6] in topological spaces. They have also defined semi* α -open sets [7] and semi* α -closed sets [8] and investigated their properties.

In this paper, we introduce the concept of semista-connected spaces. We investigate their basic properties. We also discuss their relationship with already existing concepts namely connectedness, semi-connectedness, a-connectedness, semi-pre-connectedness and semista-connectedness. Further we

define semi* α -compact spaces and investigate their properties. We also show that the concept of semi* α compactness is stronger than each of the concepts of compactness, semi*-compactness and α -compactness but weaker than the concepts of semi*-precompactness, semi-compactness and semi*compactness.

II. PRELIMINARIES

Throughout this paper X will always denote a topological space. If A is a subset of the space X, Cl(A) and Int(A) denote the closure and the interior of A respectively.

Definition 2.1:

A subset A of a topological space (X, τ) is called

(i) *generalized closed* (briefly g-closed)[9] if $Cl(A) \subseteq U$ whenever $A \subseteq U$ and U is open in X.

(ii) *generalized open* (briefly g-open)[9] if X\A is gclosed in X.

Definition 2.2:

A be a subset of X. The *generalized closure* [10] of A is defined as the intersection of all g-closed sets containing A and is denoted by $Cl^*(A)$.

Definition 2.3:

A subset A of a topological space (X, τ) is called (i) *semi-open* [11] (resp. α -*open*[12], *semi* α *open*[13] *semi-preopen*[14] *semi*-open*[15], *semi*a open*[7], *semi*-preopen*[5]) if A \subseteq Cl(Int(A)) (resp. A \subseteq Int(Cl(Int(A))), A \subseteq Cl(Int(Cl(Int(A)))), A \subseteq Cl(Int(Cl(A))) A \subseteq Cl*(Int(A)), A \subseteq Cl*(α Int(A)), A \subseteq Cl*(*p*Int(A))).

(ii) semi-closed [1] (resp. semi a-closed[16], semipreclosed[14], semi*-closed[17], semi*a-closed[8], semi*-preclosed[5]) if equivalently if $Int(Cl(A))\subseteq A$ (resp. $Int(Cl(Int(Cl(A))))\subseteq A$, $Int(Cl(Int(A)))\subseteq A$, $Int^*(Cl(A))\subseteq A$), $Int^*(\alpha Cl(A))\subseteq A$, $Int^*(pCl(A))\subseteq A$. (iii) semi*a-regular [8] if it is both semi*a-open and semi*a-closed.

Definition 2.4:

Let A be a subset of X. Then the *semi** α -*closure* [8] of A is defined as the intersection of all semi* α closed sets in X containing A and is denoted by $s^*\alpha Cl(A)$.

Theorem 2.5[7]:

- (i) Every α -open set is semi* α -open.
- (ii) Every open set is semi* α -open.
- (iii) Every semi*-open set is semi* α -open.
- (iv) Every semi* α -open set is semi α -open.
- (v) Every semi* α -open set is semi*-preopen.
- (vi) Every semi $*\alpha$ -open set is semi-preopen.
- (vii) Every semi* α -open set is semi-open.

Definition 2.6:

If A is a subset of X, the semi* α -frontier [18] of A is defined by $s*\alpha Fr(A)=s*\alpha Cl(A)\setminus s*\alpha Int(A)$.

Theorem 2.7[18]:

Let A be a subset of a space X. Then A is semi* α -regular if and only if s* α Fr(A)= ϕ .

Theorem 2.8[8]:

If A is a subset of X, then

(i) $s*\alpha Cl(X\setminus A)=X\setminus s*\alpha Int(A).$

(ii) $s*\alpha Int(X \setminus A) = X \setminus s*\alpha Cl(A).$

(iii) A is semi* α -closed if and only if $s*\alpha Cl(A)=A$.

Definition 2.9:

A topological space X is said to be connected [19] (resp. semi-connected [1], α -connected, semi*connected [6], semi*-pre-connected [5]) if X cannot be expressed as the union of two disjoint nonempty open (resp. semi-open, α -open, semi*-open, semi*preopen) sets in X.

Definition 2.10:[19]

A subset A of a topological space (X, τ) is called clopen if it is both open and closed in X.

Theorem 2.11 [19]:

A topological space X is connected if and only if the only clopen subsets of X are ϕ and X.

Definition 2.12:

A collection **B** of open (resp. semi-open) sets in X is called an open (resp. semi-open) cover of $A \subseteq X$ if $A \subseteq \bigcup \{ U_{\alpha} : \bigcup_{\alpha} \in \mathbf{B} \}$ holds.

Definition 2.13:

A space X is said to be compact [19] (resp. semicompact [2]) if every open (resp. semi-open) cover of X has a finite subcover.

Definition 2.14: [20]

A function $f: X \rightarrow Y$ is said to be

(i) semi* α -continuous if $f^{-1}(V)$ is semi* α -open in X for every open set V in Y.

(ii) semi* α -irresolute if $f^{-1}(V)$ is semi* α -open in X for every semi* α -open set V in Y.

(iii) semi* α -open if f(V) is semi* α -open in Y for every open set V in X.

(iv) semi* α -closed if f(V) is semi* α -closed in Y for every closed set V in X.

(v) pre-semi* α -open if f(V) is semi* α -open in Y for every semi* α -open set V in X.

(vi) pre-semi* α -closed if f(V) is semi* α -closed in Y for every semi* α -closed set V in X.

(vii) totally semi* α -continuous if $f^{-1}(V)$ is semi* α -regular in X for every open set V in Y.

(vii) semi* α -totally continuous if $f^{-1}(V)$ is clopen in X for every semi* α -open set V in Y.

(vii) strongly semi* α -continuous if $f^{-1}(V)$ is semi* α -regular in X for every subset V in Y.

(viii) contra-semi* α -continuous if $f^{-1}(V)$ is semi* α -closed in X for every open set V in Y.

(ix) contra-semi* α -irresolute if $f^{-1}(V)$ is semi* α -closed in X for every semi* α -open set V in Y.

Theorem 2.15:[20]

Let $f: X \longrightarrow Y$ be a function. Then

(i) f is semi* α -continuous if and only if $f^{-1}(F)$ is semi* α -closed in X for every closed set F in Y.

(ii) f is semi* α -irresolute if and only if $f^{-1}(F)$ is semi* α -closed in X for every semi* α -closed set F in Y.

(iii) f is contra-semi* α -continuous if and only if

 $f^{-1}(F)$ is semi* α -open in X for every closed set F in Y.

(iv) *f* is contra-semi* α -irresolute if and only if $f^{-1}(F)$ is semi* α -open in X for every semi* α -closed set F in Y. (iv) *f* is semi* α -totally continuous if $f^{-1}(F)$ is clopen in X for every semi* α -closed set F in Y.

(iv) f is totally semi* α -continuous if $f^{-1}(F)$ is semi* α -regular in X for every closed set F in Y. **Remark 2.16:**[7]

If (X, τ) is a locally indiscrete space, $\tau = \alpha O(X, \tau) = S^* \alpha O(X, \tau) = S \alpha O(X, \tau) = S \alpha O(X, \tau) = S \circ O(X, \tau) = S O(X, \tau).$

Theorem 2.17:[7]

A subset *A* of *X* is semi* α -open if and only if every point of *A* is a semi* α -interior point of *A*.

III. SEMI*α-CONNECTED SPACES

In this section we introduce semi* α connected spaces. We give characterizations for semi* α -connected spaces and also investigate their basic properties.

Definition 3.1:

A topological space X is said to be *semi** α -*connected* if X cannot be expressed as the union of two disjoint nonempty semi* α -open sets in X.

Theorem 3.2:

(i) Every semi* α -connected space is α -connected.

(ii) Every semi* α -connected space is connected.

(iii) Every semi* α -connected space is semi*-connected.

(iv) Every semi α -connected space is semi* α -connected.

(v) Every semi*-pre-connected space is semi* α -connected.

(vi) Every semi-pre-connected space is semi* α -connected.

(vii) Every semi-connected space is semi $*\alpha$ -connected.

Proof: Follows from Theorem 2.5 and definitions.

Remark 3.3:

It can be seen that the converse of each of the statements in Theorem 3.2 is not true.

Definition 3.4:

The sets *A* and *B* in a topological space *X* are said to be *semi*a-separated* if $A \cap s^* \alpha Cl(B) = s^* \alpha Cl(A) \cap B = \phi$.

Theorem 3.5:

For a topological space *X*, the following statements are equivalent:

- (i) X is semi* α -connected.
- (ii) X cannot be expressed as the union of two disjoint nonempty semi* α -closed sets in X.
- (iii) The only semi* α regular subsets of X are ϕ and X itself.
- (iv) Every semi* α -continuous function of X into a discrete space Y is constant.
- (v) Every nonempty proper subset of X has nonempty semi* α -frontier.
- (vi) X cannot be expressed as the union of two non-empty semi $*\alpha$ -separated sets.

Proof: (i) \Rightarrow (ii): Let *X* be a semi* α -connected space. Suppose *X*=*A*∪*B* where *A* and *B* are disjoint nonempty semi* α -closed sets. Then *A*=*X**B* and *B*=*X**A* are disjoint non-empty semi* α -open sets in *X*. This is a contradiction to *X* is semi* α -connected. This proves (ii).

(ii) \Rightarrow (i): Assume that X cannot be expressed as the union of two disjoint nonempty semi* α -closed sets in X. Suppose $X=A\cup B$ where A and B are disjoint nonempty semi* α -open sets. Then $A=X\setminus B$ and $B=X\setminus A$ are disjoint non-empty semi* α -closed sets in X. This is a contradiction to (ii).

(i) \Rightarrow (iii): Suppose X is a semi* α -connected space. Let A be non-empty proper subset of X that is semi* α -regular. Then X\A is a non-empty semi* α -open and X=AU(X\A). This is a contradiction to X is semi* α -connected.

(iii) \Rightarrow (i): Suppose $X=A\cup B$ where *A* and *B* are disjoint non-empty semi* α -open sets. Then $A=X\setminus B$ is semi* α closed. Thus *A* is a non-empty proper subset that is semi* α -regular. This is a contradiction to (iii)

(iii) \Rightarrow (iv): Let *f* be a semi* α -continuous function of the semi* α -connected space *X* into the discrete space *Y*. Then for each $y \in Y$, $f^{-1}(\{y\})$ is a semi* α -regular set of *X*. Since *X* is semi* α -connected, $f^{-1}(\{y\})=\phi$ or *X*. If $f^{-1}(\{y\})=\phi$ for all $y \in Y$, then *f* fails to be a function. Therefore $f^{-1}(\{y_0\})=X$ for a unique $y_0 \in Y$. This implies $f(X)=\{y_0\}$ and hence *f* is a constant function. (iv) \Rightarrow (iii): Let *U* be a semi* α - regular set in *X*.

Suppose $U \neq \phi$. We claim that U=X. Otherwise, choose two fixed points y_1 and y_2 in *Y*. Define $f: X \longrightarrow Y$ by

$$f(x) = \begin{cases} y_1 \text{ if } x \in U \\ y_2 \text{ otherwise} \end{cases}$$

Then for any open set *V* in *Y*, $f^1(V)$ equals *U* if *V* contains y_1 but not y_2 , equals $X \setminus U$ if *V* contains y_2 but not y_1 , equals *X* if *V* contains both y_1 and y_2 and equals ϕ otherwise. In all the cases $f^{-1}(V)$ is semi* α -open in *X*. Hence *f* is a non-constant semi* α -continuous function of *X* into *Y*. This is a contradiction to our assumption. This proves that the only semi* α - regular subsets of *X* are ϕ and *X*.

(iii) \Rightarrow (v): Suppose that a space X is semi* α connected. If possible, let A be a non-empty proper subset of X. We claim that $s^* \alpha Fr(A) \neq \phi$. If possible, let $s^* \alpha Fr(A) = \phi$. Then by Theorem 2.7, A is semi* α regular. This is a contradiction. (v)⇒(iii): Suppose that every non-empty proper subset of *X* has a non-empty semi*α-frontier. The only semi*α- regular subsets of *X* are φ and *X* itself. On the contrary, suppose that *X* has a non-empty proper subset *A* which is semi*α-regular. By Theorem 2.7, s*α*F*r(*A*)=φ. This contradiction proves (iii).

(i) \Rightarrow (vi): Suppose $X=A \cup B$ where *A* and *B* are disjoint non-empty semi* α -separated sets in *X*. Since $A \cap s^* \alpha Cl(B) = \phi$, $s^* \alpha Cl(B) \subseteq X \setminus A = B$ and hence $s^* \alpha Cl(B) = B$ and so by Theorem 2.8(iii), *B* is semi* α -closed. Therefore A is semi* α -open. Similarly, B is semi* α -open. Hence X is not semi* α -connected. This is contradiction to (i).

(vi)⇒(i): Suppose X is not semi*α-connected. Then X can be written as $X=A \cup B$ where A and B are disjoint non-empty semi*α-open sets. Now $A=X\setminus B$ is semi*α-closed and hence by Theorem 2.8(iii), s*αCl(A)=A and so s*αCl(A)∩B=φ. Similarly $A \cap s^* αCl(B)=φ$. Thus A and B are semi*α-separated. This is a contradiction to (vi).

Theorem 3.6:

Let $f: X \rightarrow Y$ be a semi* α -continuous bijection and X be semi* α -connected. Then Y is connected.

Proof: Let $f:X \rightarrow Y$ be semi* α -continuous surjection and X be semi* α -connected. Let V be a clopen subset of Y. By Definition 2.14(i) $f^{1}(V)$ is semi* α -open and by Theorem 2.15(i), $f^{1}(V)$ is semi* α -closed and hence $f^{1}(V)$ is semi* α -regular in X. Since X is semi* α -connected, by Theorem 3.5 $f^{-1}(V)=\phi$ or X. Hence $V=\phi$ or Y. This proves that Y is connected.

Theorem 3.7:

Let $f: X \rightarrow Y$ be a semi* α -irresolute bijection. If X is semi* α -connected, so is Y.

Proof: Let $f:X \rightarrow Y$ be a semi* α -irresolute surjection and let *X* be semi* α -connected. Let *V* be a subset of *Y* that is semi* α -regular in *Y*. By Definition 2.14(ii) and by Theorem 2.15(ii), $f^{-1}(V)$ is semi* α -regular in *X*. Since *X* is semi* α -connected, $f^{-1}(V)=\phi$ or *X*. Hence $V=\phi$ or *Y*. This proves that *Y* is semi* α -connected.

Theorem 3.8:

Let $f: X \longrightarrow Y$ be a pre-semi* α -open and pre-semi* α closed bijection. If *Y* is semi* α -connected, so is *X*. **Proof:** Let *A* be subset of *X* that is semi* α - regular in *X*. Since *f* is both pre-semi* α -open and pre-semi* α -closed, *f*(*A*) is semi* α - regular in *Y*. Since *Y* is semi* α -connected, *f*(*A*)= ϕ or *Y*. Hence *A*= ϕ or *X*. Therefore by Theorem 3.5, *X* is semi* α -connected.

Theorem 3.9:

If $f:X \rightarrow Y$ is a semi* α -open and semi* α -closed bijection and Y is semi* α -connected, then X is connected.

Proof: Let *A* be a clopen subset of *X*. Since *f* is semi* α -open, *f*(*A*) is semi* α -open in *Y*. Since *f* is a semi* α -closed map, *f*(*A*) is semi* α -closed in *Y*. Hence *f*(*A*) is semi* α -regular in *Y*. Since *Y* is semi* α -connected, by Theorem 3.5, *f*(*A*)= ϕ or *Y*. Hence *A*= ϕ or *X*. By Theorem 2.11, *X* is connected.

Theorem 3.10:

If there is a semi* α -totally continuous function from a connected space *X* onto *Y*, then the only semi* α open sets in *Y* are ϕ and *Y*.

Proof: Let f be a semi* α -totally continuous function from a connected space X onto Y. Let V be any open set in Y. Then by Theorem 2.5(ii), V is semi* α -open in Y. Since f is semi* α -totally continuous, $f^{-1}(V)$ is clopen in X. Since X is connected, by Theorem 2.11, $f^{-1}(V)=\phi$ or X. This implies $V=\phi$ or Y.

Theorem 3.11:

If $f: X \rightarrow Y$ is a strongly semi* α -continuous bijection and *Y* is a space with at least two points, then *X* is not semi* α -connected.

Proof: Let $y \in Y$. Then $f^{-1}(\{y\})$ is a non-empty proper subset that is semi* α -regular in *X*. Hence by Theorem 3.5, *X* is not semi* α -connected.

Theorem 3.12:

Let $f: X \longrightarrow Y$ be a contra-semi* α -continuous surjection and *X* be semi* α -connected. Then *Y* is connected.

Proof: Let $f: X \rightarrow Y$ be a contra-semi* α -continuous surjection and X be semi* α -connected. Let V be a clopen subset of Y. By Definition 2.14(viii) and by Theorem 2.15(iii), $f^{-1}(V)$ is semi* α -regular in X. Since X is semi* α -connected, $f^{-1}(V)=\phi$ or X. Hence $V=\phi$ or Y. This proves that Y is connected.

Theorem 3.13:

Let $f: X \rightarrow Y$ be a semi* α -irresolute bijection. If X is semi* α -connected, so is Y.

Proof: Let $f: X \rightarrow Y$ be a semi* α -irresolute bijection and let X be semi* α -connected. Let V be a subset of Y that is semi* α -regular in Y. By Definition 2.14(ii) and by Theorem 2.15(ii), $f^{-1}(V)$ is semi* α -regular in X. Since X is semi* α -connected, $f^{-1}(V)=\phi$ or X. Hence $V=\phi$ or Y. This proves that Y is semi* α -connected.

Theorem 3.14:

Every contra-semi* α -continuous function from a semi* α -connected space into a T₁ space is necessarily constant.

Proof: Let $f: X \rightarrow Y$ be a contra-semi* α -continuous function and X be semi* α -connected and Y be T_1 . Since Y is T_1 , for each $y \in Y$, $\{y\}$ is closed in Y. Since f is contra-semi* α -continuous, by Theorem 2.15(iii), $f^{-1}(\{y\})$ is semi* α -open in X. Therefore $\{f^{-1}(\{y\}): y \in Y\}$ is a collection of pair wise disjoint semi* α -open sets in X. Since X is semi* α -connected,

 $f^{-1}({y_0})=X$ for some fixed $y_0 \in Y$. Hence $f(X)=y_0$. Thus *f* is a constant function.

Theorem 3.15:

Every contra-semi* α -irresolute function from a semi* α -connected space into a semi* α -T₁ space is necessarily constant.

Proof: Let $f: X \rightarrow Y$ be a contra-semi* α -irresolute function and X be semi* α -connected and Y be semi* α -T₁. Since Y is semi* α -T₁, for each $y \in Y$, $\{y\}$ is semi* α -closed in Y. Since f is contra-semi* α continuous, $f^{-1}(\{y\})$ is semi* α -open in X. Therefore $\{f^{-1}(\{y\}): y \in Y\}$ is a collection of pair wise disjoint semi* α -open sets in X. Since X is semi* α -connected, $f^{-1}(\{y_0\})=X$ for some fixed $y_0 \in Y$. Hence $f(X)=y_0$. Thus f is constant.

IV. SEMI*α-COMPACT SPACES

In this section we introduce semi* α -compact spaces and study their properties. We give characterizations for these spaces.

Definition 4.1:

A collection \mathcal{A} of semi* α -open sets in X is called a *semi*\alpha-open cover* of a subset B of X if $B \subseteq \bigcup \{U_{\alpha} : U_{\alpha} \in \mathcal{A}\}$ holds.

Definition 4.2:

A space X is said to be *semi*a-compact* if every semi* α -open cover of X has a finite subcover.

Definition 4.3:

A subset *B* of *X* is said to be *semi*a-compact relative to X* if for every semi*a-open cover \mathcal{A} of *B*, there is a finite subcollection of \mathcal{A} that covers *B*.

Remark 4.5:

Every finite topological space is semi* α -compact.

Theorem 4.6:

- (i) Every semi* α -compact space is α -compact.
- (ii) Every semi* α -compact space is compact.
- (iii) Every semi*α-compact space is semi*compact.
- (iv) Every semi-α-compact space is semi*αcompact.
- (v) Every semi*-pre-compact space is semi*αcompact.
- (vi) Every semi-pre-compact space is semi*αcompact.
- (vii) Every semi-compact space is semi*αcompact.

Proof: Follows from Theorem 2.5 and Definitions.

Theorem 4.7:

Every semi* α -closed subset of a semi* α -compact space X is semi* α -compact relative to X.

Proof: Let *A* be a semi* α -closed subset of a semi* α -compact space *X*. Let **B** be a semi* α -open cover of *A*. Then **B** \cup {*X**A*} is a semi* α -open cover of *X*. Since *X* is semi* α -compact, this cover contains a finite subcover of *X* and hence contains a finite subcollection of **B** that covers *A*. This shows that *A* is semi* α -compact relative to *X*.

Theorem 4.8:

A space *X* is semi* α -compact if and only if for every family of semi* α -closed sets in *X* which has empty intersection has a finite subfamily with empty intersection.

Proof: Suppose X is semi* α -compact and $\{F_{\alpha} : \alpha \in \Delta\}$ is a family of semi* α -closed sets in X such that $\cap \{F_{\alpha} : \alpha \in \Delta\} = \phi$. Then $\cup \{X \setminus F_{\alpha} : \alpha \in \Delta\}$ is a semi* α -open cover for X. Since X is semi* α -compact, this cover has a finite subcover $\{X \setminus F_{\alpha_1}, X \setminus F_{\alpha_2}, ..., X \setminus F_{\alpha_n}\}$. That is, $X = \cup \{X \setminus F_{\alpha_i} : i = 1, 2, ..., n\}$.

On taking the complements on both sides we get $\bigcap_{i=1}^{n} F_{\alpha_{i}} = \phi.$ Conversely, suppose that every family of semi* α -closed sets in X which has empty intersection has a finite subfamily with empty intersection. Let $\{U_{\alpha} : \alpha \in \Delta\}$ be a semi* α -open cover for X. Then $\cup \{U_{\alpha} : \alpha \in \Delta\} = X$. Taking the complements, we get $\cap \{X \setminus U_{\alpha} : \alpha \in \Delta\} = \phi$. Since $X \setminus U_{\alpha}$ is semi* α -closed for each $\alpha \in \Delta$, by the assumption, there is a finite sub family, $\{X \setminus U_{\alpha_{1}}, X \setminus U_{\alpha_{2}}, ..., X \setminus U_{\alpha_{n}}\}$ with empty intersection. That is $\bigcap_{i=1}^{n} (X \setminus U_{\alpha_{i}}) = \phi$. Taking

the complements on both sides, we get $\bigcup_{i=1}^{n} U_{\alpha_i} = X$.

Hence *X* is semi* α -compact.

Theorem 4.9:

Let $f: X \longrightarrow Y$ be a semi* α -irresolute bijection. If X is semi* α -compact, then so is Y.

Proof: Let $f: X \to Y$ be a semi* α -irresolute bijection and X be semi* α -compact. Let $\{V_{\alpha}\}$ be a semi* α open cover for Y. Then $\{f^{-1}(V_{\alpha})\}$ is a cover of X by semi* α -open sets. Since X is semi* α -compact,

 $\{f^{-1}(V_{\alpha})\}$ contains a finite subcover, namely

 $\{f^{-1}(V_{\alpha_1}), f^{-1}(V_{\alpha_2}), ..., f^{-1}(V_{\alpha_n})\}$. Then $\{V_{\alpha_1}, V_{\alpha_2}\}$

 \dots, V_{α_n} } is a finite subcover for Y. Thus Y is semi* α compact.

Theorem 4.10:

Let $f: X \longrightarrow Y$ be a semi* α -continuous bijection and X be semi* α -compact. Then Y is compact.

Proof: Let $f : X \rightarrow Y$ be a semi* α -continuous bijection and X be semi* α -compact. Let $\{V_{\alpha}\}$ be an open cover for Y. Then $\{f^{-1}(V_{\alpha})\}$ is a cover of X by semi* α -open sets. Since X is semi* α -compact,

 $\{f^{-1}(V_{\alpha})\}$ contains a finite sub cover, namely

$$\{ f^{-1}(V_{\alpha_1}), f^{-1}(V_{\alpha_2}), ..., f^{-1}(V_{\alpha_n}) \}$$
. Then $\{ V_{\alpha_1}, ..., N_{\alpha_n} \}$

 $V_{\alpha_2},...,V_{\alpha_n}$ } is a cover for *Y*. Thus *Y* is compact.

Theorem 4.11:

Let $f: X \longrightarrow Y$ be a pre-semi* α -open injection. If *Y* is semi* α -compact, then so is *X*.

Proof: Let { V_{α} } be a semi* α -open cover for *X*. Then { $f(V_{\alpha})$ } is a cover of *Y* by semi*. Since *Y* is semi* α -compact, { $f(V_{\alpha})$ } contains a finite subcover, namely {

 $f(V_{\alpha_1}), f(V_{\alpha_2}),..., f(V_{\alpha_n}) \}$. Then $\{V_{\alpha_1}, V_{\alpha_2},..., V_{\alpha_n}\}$ is a finite subcover for X. Therefore X is semi* α -compact.

Theorem 4.12:

If $f: X \rightarrow Y$ is a semi* α -open injection and Y is semi* α -compact, then X is compact.

Proof: Let $\{V_{\alpha}\}$ be an open cover for X. Then $\{f(V_{\alpha})\}$ is a cover of Y by semi* α -open sets. Since Y is semi* α -compact, $\{f(V_{\alpha})\}$ contains a finite sub cover, namely $\{f(V_{\alpha_1}), f(V_{\alpha_2}), ..., f(V_{\alpha_n})\}$. Then

 $\{V_{\alpha_1}, V_{\alpha_2}, ..., V_{\alpha_n}\}$ is a finite sub cover for X. Thus X is compact.

Theorem 4.13:

Let $f: X \rightarrow Y$ be a contra-semi* α -continuous function and *Y* be T₁. If *X* is semi* α -compact, then the range of *f* is finite. Further if *Y* is infinite, *f* cannot be onto.

Proof: Since *Y* is T₁, for each $y \in Y$, {*y*} is closed in *Y*. Since *f* is contra-semi* α -continuous, by Theorem 2.15(iii), $f^{-1}(\{y\})$ is semi* α -open in *X*. Therefore { $f^{-1}(\{y\})$: $y \in Y$ } is a semi* α -open cover for *X*. Since *X* is semi* α -compact, there are y₁, y₂,..., y_n in *Y* such that { $f^{-1}(\{y_i\})$: i=1,2,...n} is a cover of *X* by semi* α -open sets . Therefore $\bigcup \{f^{-1}(\{y_i\})$: i=1,2,...n}=*X* . That is, $f^{-1}(\{y_1, y_2, ..., y_n\})=X$. This implies $f(X)=\{y_1, y_2, ..., y_n\}$. Thus the range of *f* is finite. If *Y* is infinite, $f(X) \neq Y$. Hence *f* cannot be onto.

Theorem 4.14:

Let $f : X \rightarrow Y$ be a contra-semi* α -irresolute function and *Y* be semi* α -T₁. If *X* is semi* α -compact, then the range of *f* is finite. Further if *Y* is infinite, *f* cannot be onto.

Proof: Since *Y* is semi* α -T₁, for each $y \in Y$, {*y*} is semi* α -closed in *Y*. Since *f* is contra-semi* α -continuous, by Theorem 2.15(iv), $f^{-1}(\{y\})$ is semi* α -open in *X*. Therefore $\{f^{-1}(\{y\}): y \in Y\}$ is a semi* α -open cover for *X*. Since *X* is semi* α -compact, there are y₁, y₂,..., y_n in *Y* such that $\{f^{-1}(\{y\}): i=1,2,...n\}$ is a cover of *X* by semi* α -open sets . Therefore

U { $f^{-1}({y_1}): i=1,2,...n$ }=X. That is, $f^{-1}({y_1, y_2, ..., y_n})=X$. This implies $f(X)={y_1, y_2, ..., y_n}$. Thus the range of f is finite. If Y is infinite, $f(X)\neq Y$. Hence f cannot be onto.

V. CONCLUSION

We have introduced the concepts of semi* α connectedness and semi* α -compactness in topological spaces using semi* α -open sets. We have also found characterizations for semi* α -connected spaces and semi* α -compact spaces. We have shown that the concept of semi* α -connectedness is stronger than each of the concepts of α -connectedness and semi*-connectedness but weaker than semi α connectedness and semi*-pre-connectedness.

References

- [1] Das, P., I.J. M. M. 12, 1974, 31-34.
- [2] Dorsett, C., Semi compactness, semi separation axioms, and product spaces, Bulletin of the Malaysian Mathematical Sciences Society, 4 (1), 1981, 21–28.
- [3] Hanna, F., Dorsett, C., Semi compactness, Q&A in General Topology 2, 1984, 38-47.
- [4] Ganster, M., Some Remarks on Strongly compact and Semi compact spaces, Bulletin of the Malaysian Mathematical Sciences Soceity, 10 (2), 1987, 67–81.
- [5] Pasunkili Pandian,S., A Study on Semi Star-Preopen Sets in Topological Spaces, Ph.D Thesis, Manonmaniam Sundaranar University, Tirunelveli, India, 2013.
- [6] Robert, A. and Pious Missier, S., On Semi*-Connected and Semi*-Compact Spaces, International Journal of Modern Engineering Research, Vol.2, Issue.4, July-Aug 2012 pp-2852-2856
- [7] Robert, A. and Pious Missier, S., A New Class of sets weaker than α-open sets, International Journal of Mathematics and Soft Computing, 4(2) (2014), 197-206.
- [8] Robert, A and Pious Missier, S., Between α-closed sets and semi α-closed sets, International Journal of Modern Engineering Research, 4(6) 2014, 34-41.
- [9] Levine, N., Generalized closed sets in topology, Rend. Circ. Mat. Palermo. 19(2), 1970, 89-96.
- [10] Dunham, W., A new closure operator for Non-T₁ topologies, Kyungpook Math. J. 22, 1982, 55-60.
- [11] Levine, N., Semi-open sets and semi-continuity in topological space, Amer. Math.Monthly.,70,1963,36-41.
- [12] Njastad, O., Some Classes of Nearly Open Sets, Pacific J. Math., 15 (3) (1965), 961-970.
- [13] Navalagi, G.B., Definition Bank in General Topology, Topology Atlas (2000).
- [14] Andrijevic, D., Semi-Preopen Sets, Mat. Vesnik, 38(1986), 24-32.
- [15] Robert, A. and Pious Missier, S., A New Class of Nearly Open Sets, International Journal of Mathematical Archive., 3(7), 2012, 1-8.
- [16] Othman,H. A., New types of α-continuous mapping, Master Degree Thesis, Al-Mustansiriya University, IRAQ (2004).
- [17] Robert, A. and Pious Missier, S., On Semi*-closed sets, Asian Journal Of Current Engineering And Maths., 1 (4) (2012), 173-176.

- [18] Pious Missier, S. and Robert, A., New Notions via Semi-Star-Alpha-Open Sets.(communicated)
- [19] Willard, S., *General Topology*, Addison Wesley Publishing Company, Inc, 1970.
- [20] Pious Missier, S. and Robert, A., *Semi-Star-Alpha-Open Sets and Associated Functions*.(communicated).