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Abstract: Some quadrature rules involving values of  the integrand  and its derivatives at a certain set of nodes in the domain of  
analyticity of  an analytic function have been constructed for the numerical evaluation of  the contour integral of the function along a 
directed line segment. The degree of  precision of  the quadrature rules has been enhanced by examining the truncation error associated 
with the quadrature rules. 
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I. INTRODUCTION 

     The integral for which numerical evaluation has been 

discussed in this paper is prescribed as  

																													퐼(푓) = 푓(푧)푑푧 																																							(1) 

where 푓(푧) is an analytic function in the disk Ω = {푧:	|푧 −

푧 | ≤ 휌, 휌 > |ℎ|} and 퐿 is a directed line segment from the point 

푧 − ℎ to the point 푧 + ℎ. Several authors viz. Birkhoff and 

Young [1], Tosic [2], Lether [3], Acharya, Acharya and Nayak 

[4], Milovanovic [5] etc have considered the problem of 

numerical evaluation of the integral 퐼(푓). The generalized seven 

point rule formulated by Milovanovic [5] has degree of 

precision at least seven. Examining the error terms in the 

generalized rule the degree of precision has been enhanced to 

eleven. Similarly the rule due to Acharya, Acharya and Nayak 

[4] requiring nine function values and the values of the 

derivatives has degree of precision nine. 

            Our aim in the present paper is to construct an 

interpolatory quadrature rule meant for the integral 퐼(푓) which 

requires at most nine evaluations of the function and its 

derivatives having degree of precision at least nine. The 

particular cases of the rule shall be discussed such that the 

number of function evaluations is reduced and the degree of 

precision is enhanced. 

II. CONSTRUCTION OF THE GENERAL RULE 

       Let 	푡, 푟 be two positive real parameters in the interval 

(0,1]. Let 푆 be the set of following points: 

			푆 = {푧 , 푧 ± 푡ℎ, 푧 ± 푖푡ℎ, 푧 ± 푟ℎ, 푧 ± 푖푟ℎ}															(2) 

where 푖 = √−1. Considering 푆 as the set of nodes let the 

proposed interpolatory quadrature rule meant for the integral 

퐼(푓) be given by 

푅(푓; 푡, 푟) = 퐶 푓(푧 ) + 퐶 {푓(푧 + 푡ℎ) + 푓(푧 − 푡ℎ)} 

							+퐶 {푓(푧 + 푖푡ℎ) + 푓(푧 − 푖푡ℎ)} 

											+퐶 푟ℎ{푓 ′(푧 + 푟ℎ) − 푓 ′(푧 − 푟ℎ)} 

																												+	퐶 푖푟ℎ{푓 ′(푧 + 푖푟ℎ)− 푓 ′(푧 − 푖푟ℎ)}					(3) 

where the coefficient 퐶 , 푗 = 0(1)4 are to be determined. It is 

noteworthy that the rule 푅(푓; 푡, 푟) integrates all odd degree 

monomials (푧 − 푧 ) ,푛 ∈ ℕ exactly. By making the rule 

푅(푓; 푡, 푟) exact i.e.  

																											퐼(푓) = 푅(푓; 푡, 푟)																																										(4) 

 

for the even degree monomials 푓(푧) = (푧 − 푧 ) ,푛 =

0,1,2,3,4 we arrive at the following system of equations: 
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			퐶 + 2퐶 + 2퐶 		= 2ℎ,																											

(퐶 − 퐶 )푡 + 2(퐶 − 퐶 )푟 = ℎ 3,⁄

(퐶 + 퐶 )푡 + 4(퐶 + 퐶 )푟 = ℎ 5⁄ ,

(퐶 − 퐶 )푡 + 6(퐶 − 퐶 )푟 = ℎ 7⁄ ,

(퐶 + 퐶 )푡 + 8(퐶 + 퐶 )푟 = ℎ 9⁄ .

			

⎭
⎪
⎪
⎪
⎬

⎪
⎪
⎪
⎫

													(5) 

 

for which the solutions as follows.  

퐶 = 2ℎ 1−
18푟 − 5

45푡 (2푟 − 푡 ) ,																									

	퐶 =
ℎ

2푡
18푟 − 5

45푡 (2푟 − 푡 ) +
7푟 − 1

7(3푟 − 푡 ) ,			

퐶 =
ℎ

2푡
18푟 − 5

45푡 (2푟 − 푡 )−
7푟 − 1

7(3푟 − 푡 ) ,			

퐶 =
ℎ

12푟
5 − 9푡

30푟 (2푟 − 푡 ) +
3 − 7푡

7(3푟 − 푡 ) ,

퐶 =
ℎ

12푟
5 − 9푡

30푟 (2푟 − 푡 )−
3 − 7푡

7(3푟 − 푡 ) .
⎭
⎪
⎪
⎪
⎪
⎬

⎪
⎪
⎪
⎪
⎫

					(6) 

 

The following theorem is now evident from equations (1), (3) – 

(6): 

Theorem 1: The rule 푅(푓; 푡, 푟) has degree of precision at least 

nine. 

       The truncation error associated with the rule 푅(푓; 푡, 푟) is 

given by 

											퐸(푓; 푡, 푟) = 퐼(푓) −푅(푓; 푡, 푟).																											(7) 

Using the Taylor series expansion in ascending powers of 

(푧 − 푧 )  for the function 푓(푧) in the disk Ω in equation (7) we 

have after simplification the following: 

 

				퐸(푓; 푡, 푟) = 훾푎 ℎ + 훿푏 ℎ + Ο(ℎ )												(8) 

where  

훾 = 2
1

11−
3푡 (7푟 − 1) + 5푟 (3− 7푡 )

21(3푟 − 푡 ) ,

훿 = 2
1

13−
푡 (18푟 − 5)− 3푟 (5− 9푡 )

45(2푟 − 푡 )

			

⎭
⎪
⎬

⎪
⎫

			(9) 

and 푎 ′s are  the Taylor coefficients given by 푎 = 푓( )(푧 ) 푛!⁄ .  

 

III. GENERATION OF PARTICULAR RULES FROM 

푹(풇; 풕,풓) 

       It is noteworthy that the rule  푅(푓; 푡, 푟) reduces to ninth 

degree rule due to Acharya, Acharya and Nayak [4] if  푡 = 푟. 

Further by making 푟 → ∞, the 푅(푓; 푡, 푟) reduces to the rules due 

to Birkhoff and Young [1], Tosic [2] and Lether [3] according as 

the parameter 푡 = 1, (3 7⁄ ) . , 3 5⁄  respectively.  

The   number  of  function  evaluations  in  푅(푓; 푡, 푟)  can  be  

reduced  if 

																						퐶 = 0, 			퐶 = 0																																													(10) 

where the coefficients 퐶  and 퐶  are given in equations (6). 

Solving the equations (10) the admissible solutions i.e. solutions 

which lie in the interval (0,1] have been found out and 

presented in Table-1. The pair of solutions  푡 , 푟 , 푗 = 1,2 yield 

the following rules. 

푄 = 퐶 푓 푧 + 푡 ℎ + 푓 푧 − 푡 ℎ 																								 

+퐶 푓 푧 + 푖푡 ℎ + 푓 푧 − 푖푡 ℎ 								 

																				+퐶 푟 ℎ 푓 ′ 푧 + 푟 ℎ − 푓 ′ 푧 − 푟 ℎ 													(11)		 

 

Table-1 

풕 풓 

0.7952800160735923434106

5882542246 

0.5913036965139735635138

1477218414 

0.4989541049847640133196

7744770451 

0.7895420878596878252541

6782809340 

 

         It is pertinent to note that the degree of precision of the 

푅(푓; 푡, 푟) rises from 9 to 11 and from 9 to 13 according as the 

error coefficient 훾 = 0 or 훾 = 훿 = 0 respectively. The 

equations 훾 = 0 and 퐶 = 0 are solved simultaneously and the 

following three pairs of admissible solutions 푡 , 푟 , 푗 = 3,4,5  are 

obtained and presented in Table-2. 
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Table-2 

풕 풓 

0.9046357865931109802427

1225305525 

0.371161935610789208214

98757469025 

0.8621907319467217779013

8589290812 

0.723799494986754001207

48118273143 

0.6482628536949749991016

0526866183 

0.850112195194702148254

22117682031 

 

Hence each of the rules 푄  given by  

푄 = 퐶 푓(푧 ) + 퐶 푓 푧 + 푡 ℎ + 푓 푧 − 푡 ℎ 													 

+퐶 푓 푧 + 푖푡 ℎ + 푓 푧 − 푖푡 ℎ 																		 

											+퐶 푟 ℎ 푓 ′ 푧 + 푟 ℎ − 푓 ′ 푧 − 푟 ℎ 													(12)			 

has degree of precision 11 and requires 7 function evaluations 

where the values of  푡 		and	푟  have been prescribed in Table-2.  

               Finally by solving the equations 훾 = 0 and 훿 = 0 

simultaneously we get the admissible solutions 푡 		and	푟 , 푗 =

6,7,8 which have been presented in Table-3. 

Table-3 

풕 풓 

0.9207867529207306270407

3084712281 

0.440058874693779998334

66837554778 

0.7983219416119012529800

3100237539 

0.600227869457970715850

05618744525 

0.8634439739122054759444

9834346440 

0.726692368470184133408

24109257588 

 

Therefore each of the three rules 푄 = 푅 푓; 푡 , 푟 , 푗 = 6,7,8 is 

a thirteenth degree rule requiring nine function evaluations. 

  

IV. NUMERICAL EXPERIMENTS AND CONCLUSION 

          For the purpose of numerical verification the two 

following integrals 퐼  and 퐼  are considered. 

퐼 = 푒 푑푧																																																																													 

			= 0.152170648331146 + 1.664009370491679푖, 

퐼 = 푠푖푛푧 푑푧																																																																								 

		= −1.198992981888516	+ 	2.063000093388935푖 

where 퐿  and 퐿  are directed line segments from 0.5− 푖/2 to 

0.6 + 푖/2 and from 1 + 푖 to 1 + 2푖 respectively. The integrals 

퐼 	and	퐼  have been computed by the rules 푄 , 푗 = 1(1)8 , 

푄  for 푡 = 푟 = (3 7⁄ ) .  and the maximum accuracy 

derivative free formula 푄  due to Milovanovic [5]. It is 

noteworthy that the rule 푄  due to Acharya, Acharya and 

Nayak [4] has maximum accuracy for 푡 = 푟 = (3 7⁄ ) . . It is 

also noteworthy that the rule 푄  for 푡 = 푟 = (3 7⁄ ) .  can be 

regarded as a modification of the rule due to Tosic [2]. The 

computed values of the absolute errors associated with the 

evaluation of the integrals 퐼 	and	퐼  by all these rules have been 

appended in Table-4. 

Table-4 

Rules |푬풓풓풐풓| in 

Computation of 푰ퟏ 

|푬풓풓풐풓| in 

Computation of 푰ퟐ 

푄  6.471 × 10  8.142 × 10  

푄  3.173 × 10  4.000 × 10  

푄  2.950 × 10  3.972 × 10  

푄  3.401 × 10  2.483 × 10  

푄  1.724 × 10  2.483 × 10  

푄  8.496 × 10  9.930 × 10  

푄  1.923 × 10  2.308 × 10  

푄  1.223 × 10   1.542 × 10  

푄  1.460 × 10  1.831 × 10  

푄  9.159 × 10  1.897 × 10  
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          The computed values exhibit that the rule 푄  is slightly 

more accurate than the formula 푄  due to Milovanovic [5]. 
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