Cycle Related Divisor Cordial Graphs

A.Nellai Murugan and G.Devakiruba
Department of Mathematics, V.O.Chidambaram College, Tuticorin, Tamilnadu (INDIA)

Abstract

A divisor cordial labeling of graph G with vertex set V is bijection from V to $\{1,2, \ldots \ldots \ldots \mathrm{~V}(\mathrm{G})\}$ such that if each edge $u v$ is assigned the label 1 if $f(u) / f(v)$ or $f(v) / f(u)$ and 0 otherwise, then the number of edges labeled with 0 and the number of edges labeled with 1 differ by atmost 1 .

A graph which admits divisor cordial labeling is the divisor cordial graph.
In this paper, it is proved that $\operatorname{Shell}\left(\mathrm{F}_{\mathrm{n}}\right), \operatorname{Umberlla}(\mathrm{U}(\mathrm{n}, 3)), \mathrm{Wheel}\left(\mathrm{W}_{\mathrm{n}}\right), \mathrm{Globe}(\mathrm{Gl}(\mathrm{n})$) are divisor cordial graphs.
Keywords:Divisor cordial labeling, Divisor cordial graph 2010 Mathematics subject classification Number: 05C78

1. Introduction:

A graph G is a finite non empty set of objects called vertices together with a set of pairs of distinct vertices of G which is called edges. Each $e=\{u v\}$ of vertices in E is called an edge or a line of G.

2. Preliminaries:

Definition:2.1

Let Gbe a graph and we define the concept of divisor cordial labeling as follows:
A divisor cordial labeling of a graph G with vertex set V is a bijection from V to $\{1,2, \ldots . \mathrm{V}(\mathrm{G})\}$ such that if each edge $u v$ is assigned the label 1 if $f(u) / f(v)$ or $f(v) / f(u)$ and 0 otherwise, then
the number of edges labeled with 0 and the number of edges labeled with 1 differ by atmost 1 .
A graph which admits divisor cordial labeling is the divisor cordial graph.

Definition:2.2

A $\mathbf{F}_{\mathbf{n}}$ (shell) is a graph obtained by taking n-3 chords in cycle $\mathbf{C}_{\mathbf{n}}$. The vertex at which all chords are concurrent is called the apex vertex.

Definition:2.3

A graph obtained from a path $\mathbf{P}_{\mathbf{n}}$ by joining each vertex of $\mathbf{P}_{\mathbf{n}}$ to a pendent vertex is called a fan $\mathbf{F}_{\mathbf{n}}$.
A graph obtained from a fan by joining a path of length $m, \mathbf{P}_{\mathrm{m}}$ to a middle vertex of a path $\mathbf{P}_{\mathbf{n}}$ in fan $\mathbf{F}_{\mathbf{n}}$. It is denoted by $\mathbf{U}(\mathbf{m}, \mathbf{n})$ and it is called anUmberlla.

Definition:2.4

A wheel on $n(n \geq 4)$ vertices is a graph obtained from a cycle $\mathbf{C}_{\mathbf{n}}$ by adding a new vertex and edges joining it to all the vertices of the cycle; the new edges are called the spokes of the wheel. Also, $\mathbf{W}_{\mathbf{n}}=\mathbf{C}_{\mathbf{n}}+\mathbf{u},(\mathrm{n} \geq 4)$.

Definition:2.5

A globe is a graph obtained from two isolated vertex are joined by n paths of length two. It is denoted by $\mathbf{G l}(\mathbf{n})$.

3. Main Results

THEOREM:3.1

Shell $\left(F_{n}\right), n \geq 4$ is a divisor cordial graph.

Proof:

Let $\mathrm{V}\left(\mathrm{F}_{\mathrm{n}}\right)=\left\{\mathrm{u},\left[\mathrm{u}_{\mathrm{i}}: 1 \leq \mathrm{i} \leq \mathrm{n}\right]\right\}$
Let $E\left(F_{n}\right)=\left\{\left(\mathrm{uu}_{1}\right) \mathrm{U}\left[\left(\mathrm{u}_{\mathrm{i}} \mathrm{u}_{\mathrm{i}+1}\right): 1 \leq \mathrm{i}<\mathrm{n}-1\right] \mathrm{U}\left(\mathrm{u}_{\mathrm{n}-1} \mathrm{u}\right) \mathrm{U}\left[\left(\mathrm{uu}_{\mathrm{i}}\right): 2 \leq \mathrm{i}<\mathrm{n}-1\right]\right.$
Define f: $V\left(F_{n}\right) \rightarrow\{1,2,3 \ldots \ldots \ldots . n\}$
The vertex labeling are
$\mathrm{f}(\mathrm{u})=1$
$\mathrm{f}\left(\mathrm{u}_{\mathrm{i}}\right)=\mathrm{i}+1, \quad 1 \leq \mathrm{i}<\mathrm{n}$
The induced edge labeling are,
$\mathrm{f}^{*}\left(\mathrm{uu}_{1}\right)=1$
$\mathrm{f}^{*}\left(\mathrm{u}_{\mathrm{i}} \mathrm{u}_{\mathrm{i}+1}\right)=0, \quad 1 \leq \mathrm{i}<\mathrm{n}-1$
$f^{*}\left(u_{n-1} u\right)=1$
$\mathrm{f}^{*}\left(\mathrm{uu}_{\mathrm{i}}\right)=1, \quad 2 \leq \mathrm{i} \leq \mathrm{n}-2$
Here, $e_{f}(1)=e_{f}(0)+1$
Clearly, it satisfies the conditions $\left|e_{f}(1)-e_{f}(0)\right| \leq 1$
Hence, the induced edge labeling shows that Shell $\left(\mathrm{F}_{\mathrm{n}}\right)$ is a divisor cordial graph.
For Example, F_{5} is a divisor cordial graph as shown in the figure 3.2

Figure 3.2

THEOREM:3.3

Umbrella $U(n, 3)$ is a divisor cordial graph.

Proof:

Case 1: when n is odd.
Let $\mathrm{V}(\mathrm{U}(\mathrm{n}, 3))=\left[\mathrm{u}, \mathrm{v}, \mathrm{w}, \mathrm{u}_{\mathrm{i}}: 1 \leq \mathrm{i} \leq \mathrm{n}\right]$
Let $\mathrm{E}(\mathrm{U}(\mathrm{n}, 3))=\left[\left\{\left(\mathrm{uu}_{\mathrm{i}}\right): 1 \leq \mathrm{i} \leq \mathrm{n}\right\} \mathrm{U}\left(\mathrm{u}_{(\mathrm{n}+1) / 2} \mathrm{v}\right) \mathrm{U}(\mathrm{vw}) \mathrm{U}\left\{\left(\mathrm{u}_{\mathrm{i}} \mathrm{u}_{\mathrm{i}+1}\right): 1 \leq \mathrm{i}<\mathrm{n}\right\}\right]$
Define f: $V(\mathrm{U}(\mathrm{n}, 3)) \rightarrow\{1,2,3 \ldots$ $. . n+3\}$

The vertex labeling are
$f(u)=1$
$\mathrm{f}\left(\mathrm{u}_{\mathrm{i}}\right)=\mathrm{i}+1, \quad 1 \leq \mathrm{i} \leq \mathrm{n}$
$\mathrm{f}(\mathrm{v})=\mathrm{n}+2$
$\mathrm{f}(\mathrm{w})=\mathrm{n}+3$
The induced edge labeling are
$\mathrm{f}^{*}\left(\mathrm{uu}_{\mathrm{i}}\right)=1, \quad 1 \leq \mathrm{i} \leq \mathrm{n}$
$\mathrm{f}^{*}\left(\mathrm{u}_{(\mathrm{n}+1) / 2} \mathrm{v}\right)=0$
$f^{*}(v w)=0$
$\mathrm{f}^{*}\left(\mathrm{u}_{\mathrm{i}} \mathrm{u}_{\mathrm{i}+1}\right)=0, \quad 1 \leq \mathrm{i}<\mathrm{n}$
Here, $e_{f}(1)=e_{f}(0)-1$
Clearly, it satisfies the conditions $\left|\mathrm{e}_{\mathrm{f}}(1)-\mathrm{e}_{\mathrm{f}}(0)\right| \leq 1$.
Case 2: when n is even.
Let $\mathrm{V}(\mathrm{U}(\mathrm{n}, 3))=\left[\mathrm{u}, \mathrm{v}, \mathrm{w}, \mathrm{u}_{\mathrm{i}}: 1 \leq \mathrm{i} \leq \mathrm{n}\right]$

Let $\mathrm{E}(\mathrm{U}(\mathrm{n}, 3))=\left[\left\{\left(\mathrm{uu}_{\mathrm{i}}\right): 1 \leq \mathrm{i} \leq \mathrm{n}\right\} \mathrm{U}\left(\mathrm{u}_{\mathrm{n} / 2} \mathrm{v}\right) \mathrm{U}(\mathrm{vw}) \mathrm{U}\left\{\left(\mathrm{u}_{\mathrm{i}} \mathrm{u}_{\mathrm{i}+1}\right): 1 \leq \mathrm{i} \leq \mathrm{n}\right\}\right]$
Define f: V(U(n,3)) $\rightarrow\{1,2,3$, .n+3\}

The vertex labeling are
$\mathrm{f}(\mathrm{u})=1$
$\mathrm{f}\left(\mathrm{u}_{\mathrm{i}}\right)=\mathrm{i}+1, \quad 1 \leq \mathrm{i} \leq \mathrm{n}$
$\mathrm{f}(\mathrm{v})=\mathrm{n}+2$
$f(w)=n+3$
The induced edge labeling are
$\mathrm{f} *\left(\mathrm{uu}_{\mathrm{i}}\right)=1, \quad 1 \leq \mathrm{i} \leq \mathrm{n}$
$f^{*}\left(u_{i} u_{i+1}\right)=0, \quad 1 \leq i<n$
$\mathrm{f}^{*}\left(\mathrm{u}_{\mathrm{n} / 2} \mathrm{v}\right)=1$
$\mathrm{f}^{*}(\mathrm{vw})=0$
Here, $e_{f}(1)=e_{f}(0)+1$
Clearly, it satisfies the conditions $\left|\mathrm{e}_{\mathrm{f}}(1)-\mathrm{e}_{\mathrm{f}}(0)\right| \leq 1$.
Hence, the induced edge labeling shows that $\operatorname{UmberllaU(n,3)}$ is a divisor cordial graph.
For Example, when n is odd.
$\mathrm{U}(5,3)$ is a divisor cordial graph as shown in the figure 3.4 and
When n is even, $\mathrm{U}(6,3)$ is a divisor cordial graph as shown in the figure 3.5

Figure 3.4

Figure 3.5.

THEOREM: 3.6

Wheel $W_{n}=C_{n}+u$ is a divisor cordial graph.

Proof:

Let $\mathrm{V}\left(\mathrm{W}_{\mathrm{n}}\right)=\left[\mathrm{u}, \mathrm{u}_{\mathrm{i}}: 1 \leq \mathrm{i} \leq \mathrm{n}\right]$
Let $\mathrm{E}\left(\mathrm{W}_{\mathrm{n}}\right)=\left[\left(\mathrm{u}_{1} \mathrm{u}_{\mathrm{n}}\right) \mathrm{U}\left\{\left(\mathrm{un}_{\mathrm{i}}\right): 1 \leq \mathrm{i} \leq \mathrm{n}\right\} \mathrm{U}\left\{\left(\mathrm{u}_{\mathrm{i}} \mathrm{u}_{\mathrm{i}+1}\right): 1 \leq \mathrm{i}<\mathrm{n}\right\}\right]$
Define $\mathrm{f}: \mathrm{V}\left(\mathrm{W}_{\mathrm{n}}\right) \rightarrow\{1,2,3 \ldots \ldots \ldots . \mathrm{n}+1\}$
The vertex labeling are
Case 1: when n is even
$\mathrm{f}(\mathrm{u})=1$
$\mathrm{f}\left(\mathrm{u}_{1}\right)=\mathrm{n}$
$\mathrm{f}\left(\mathrm{u}_{\mathrm{i}}\right)=\mathrm{i}, \quad 1<\mathrm{i}<\mathrm{n}$
$\mathrm{f}\left(\mathrm{u}_{\mathrm{n}}\right)=\mathrm{n}+1$
Case 2: when n is odd.
$f(u)=1$
$\mathrm{f}\left(\mathrm{u}_{\mathrm{i}}\right)=\mathrm{i}+1, \quad 1 \leq \mathrm{i} \leq \mathrm{n}$
The induced edge labeling in both cases are
$\mathrm{f}^{*}\left(\mathrm{uu}_{\mathrm{i}}\right)=1, \quad 1 \leq \mathrm{i} \leq \mathrm{n}$
$\mathrm{f}^{*}\left(\mathrm{u}_{\mathrm{i}} \mathrm{u}_{\mathrm{i}+1}\right)=0, \quad 1 \leq \mathrm{i}<\mathrm{n}$
$f^{*}\left(u_{1} u_{n}\right)=0$
Here, $\mathrm{e}_{\mathrm{f}}(1)=\mathrm{e}_{\mathrm{f}}(0)$
Clearly, it satisfies the conditions $\left|e_{f}(1)-e_{f}(0)\right| \leq 1$.
Hence, the induced edge labeling shows that wheel $\left(W_{n}=C_{n}+u\right)$ is a divisor cordial graph.
For Example, when n is odd, W_{5} is a divisor cordial graph as shown in the figure 3.7 and
When n is even, W_{6} is a divisor cordial graph as shown in the figure 3.8

Figure 3.7

Figure 3.8

THEOREM: 3.9

Globe $\mathrm{Gl}(\mathrm{n})$ is a divisor cordial graph.

Proof:

Let $\mathrm{V}(\mathrm{Gl}(\mathrm{n}))=\left[\mathrm{u}, \mathrm{v}, \mathrm{w}_{\mathrm{i}}: 1 \leq \mathrm{i} \leq \mathrm{n}\right]$
Let $\mathrm{E}(\mathrm{Gl}(\mathrm{n}))=\left[\left\{\left(\mathrm{uw}_{\mathrm{i}}\right): 1 \leq \mathrm{i} \leq \mathrm{n}\right\} \mathrm{U}\left\{\left(\mathrm{vw}_{\mathrm{i}}\right): 1 \leq \mathrm{i} \leq \mathrm{n}\right\}\right]$
Define f: $\mathrm{V}(\mathrm{Gl}(\mathrm{n})) \rightarrow\{1,2,3 \ldots \ldots \ldots . \mathrm{n}+2\}$
The vertex labeling are
Case 1: $n \equiv 1 \bmod 2$
Subcase 1a: when $n \neq 6 k+1, k \in N$
$f(u)=1$
$f(v)=n+2$
$\mathrm{f}\left(\mathrm{w}_{\mathrm{i}}\right)=\mathrm{i}+1, \quad 1 \leq \mathrm{i} \leq \mathrm{n}$
Subcase 1 b : when $\mathrm{n}=6 \mathrm{k}+1, \mathrm{k} \in N$
$\mathrm{f}(\mathrm{u})=1$
$\mathrm{f}(\mathrm{v})=\mathrm{n}$

$$
\mathrm{f}\left(\mathrm{w}_{\mathrm{i}}\right)=\left\{\begin{array}{l}
\mathrm{i}+1, \mathrm{l} \leq \mathrm{i} \leq \mathrm{n}-2 \\
\mathrm{i}+2, \mathrm{n}-1 \leq \mathrm{i} \leq \mathrm{n}
\end{array}\right.
$$

Case $2 \dot{\underline{i}} n \equiv 0 \bmod 2$
Subcase 2a: when $n \neq 6 k+2, k \in N$
$\mathrm{f}(\mathrm{u})=1$
$f(v)=n+1$

$$
\mathbf{f}\left(\mathbf{w}_{\mathrm{i}}\right)=\left\{\begin{array}{l}
\mathbf{i}+\mathbf{1}, \quad \mathbf{1} \leq \mathbf{i}<\mathbf{n} \\
\mathbf{i}+2, \quad \mathbf{i}=\mathbf{n}
\end{array}\right.
$$

Subcase 2b: If $n=6 k+2, k \in N$
$f(u)=1$
$f(v)=n-1$

$$
\mathbf{f}\left(\mathbf{w}_{\mathbf{i}}\right)=\left\{\begin{array}{l}
\mathbf{i}+\mathbf{1}, \mathbf{1} \leq \mathbf{i} \leq \mathbf{n}-\mathbf{3} \\
\mathbf{i}+\mathbf{2}, \mathbf{n}-\mathbf{2} \leq \mathbf{i} \leq \mathbf{n}
\end{array}\right.
$$

The induced edge labeling in both cases are
$\mathrm{f}^{*}\left(\mathrm{uw}_{\mathrm{i}}\right)=1, \quad 1 \leq \mathrm{i} \leq \mathrm{n}$
$\mathrm{f}^{*}\left(\mathrm{VW}_{\mathrm{i}}\right)=0, \quad 1 \leq \mathrm{i} \leq \mathrm{n}$
Here , $\mathrm{e}_{\mathrm{f}}(1)=\mathrm{e}_{\mathrm{f}}(0)$
Clearly, it satisfies the conditions $\left|e_{f}(1)-e_{f}(0)\right| \leq 1$.
Hence, the induced edge labeling shows that Globe $\mathrm{Gl}(\mathrm{n})$ is a divisor cordial graph.
For Example, $\mathrm{Gl}(5)$ is a divisor cordial graph as shown in the figure 3.10

Figure 3.10
$\mathrm{Gl}(7)$ is a divisor cordial graph as shown in the figure 3.11

Figure 3.11
$\mathrm{Gl}(4)$ is a divisor cordial graph as shown in the figure 3.12

Figure 3.12
$\mathrm{Gl}(8)$ is a divisor cordial graph as shown in the figure 3.13

Figure 3.13

4. References

1. Gallian. J.A,A Dynamic Survey of Graph Labeling, The Electronic Journal of Combinotorics 6(2001)\#DS6.
2. Harary, F., Graph Theory, Addision - Wesley Publishing Company Inc, USA, 1969.
3. A.NellaiMurugan, Studies in Graph theory-Some Labeling Problems in Graphs and Related topics, Ph.D Thesis, September 2011.
4. A.Nellai Murugan and V.Baby Suganya, Cordial labeling of path related splitted graphs, Indian Journal of Applied Research, ISSN 2249 -555X, Vol.4, Issue 3, Mar. 2014, PP 1-8.
5. A.Nellai Murugan and M. Taj Nisha, A study on divisor cordial labelling of star attached paths and cycles, Indian Journal of Research ISSN 2250 - 1991,Vol.3, Issue 3, Mar. 2014, PP 12-17.
6. A.Nellai Murugan and V.Brinda Devi, A study on path related divisor cordial graphs International Journal of Scientific Research, ISSN 2277-8179,Vol.3, Issue 4, April. 2014, PP 286-291.
7. A.Nellai Murugan and A Meenakshi Sundari, On Cordial Graphs International Journal of Scientific Research, ISSN 22778179,Vol.3, Issue 7 ,July. 2014, PP 54-55.
8. A.Nellai Murugan and A Meenakshi Sundari, Results on Cycle related product cordial graphs, International Journal of Innovative Science, Engineering \& Technology, ISSN 2348-7968, Vol.I, Issue 5 ,July. 2014, PP 462-467.
9. A.Nellai Murugan and P.Iyadurai Selvaraj, Cycle and Armed Cup cordial graphs, International Journal of Innovative Science, Engineering \& Technology, ISSN 2348-7968, Vol.I, Issue 5 ,July. 2014, PP 478-485.
10. A.Nellai Murugan and G.Esther, Some Results on Mean Cordial Labelling, International Journal of Mathematics Trends and Technology ,ISSN 2231-5373,Volume 11, Number 2,July 2014,PP 97-101.
11. A.Nellai Murugan and P. Iyadurai Selvaraj, Path Related Cup Cordial graphs, Indian Journal of Applied Research, ISSN 2249 555X,Vol.4, Issue 8, August. 2014, PP 433-436.
12. A.Nellai Murugan and A Meenakshi Sundari, Path related product cordial graphs, International Journal of Innovation in Science and Mathematics Engineering \& Technology, ISSN 2347-9051,Vol 2., Issue 4 ,Augest 2014, PP 381-383
