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Abstract- The purpose of this work is to present some existence results of solutions for a class of systems of mixed monotone 

mappings in partially ordered metric spaces. The results of this work are extensions and generalizations of known coupled and 

tripled fixed point results. The methods of proofs used in this work, show that most of new coupled and tripled fixed point 

results are merely reformulation of some fixed point results in the literature. As an interesting application of our results, we 

discuss the existence and uniqueness of solutions for a class of systems of nonlinear integral equations.  
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Finally, an example is presented to show the efficiency of our results. 

 
 
Keywords- System of Integral Equations, Mixed Monotone Property, Partially Ordered Set, Fixed Point. 
 
MSC 2010: 47H10, 54H25, 34B15. 
 

1. Introduction 
 
In 2004, Ran and Reurings published a fixed point theorem for contractive type mapping in partially ordered metric spaces [20] 

and Bhaskar and Lakshmikantham [9] introduced the concepts of coupled fixed point and mixed monotone property for 

contractive operators and established some interesting coupled fixed point theorems under a weak contractivity.                                                             

Definition 1.1. An element (x, y) ∈ X ×X is called a coupled fixed point of the mapping :f X X X    if   ( , )f x y x

and ( , ) yf y x  . 

Definition 1.2. Let (X, ≼) be a partially ordered set and  f:		X	 × 	X	 ⟶ 	X.  The mapping 		f  is said to has the mixed monotone 

property if f	is monotone nondecreasing in its first argument and is monotone nonincreasing in its second argument, that is, for 

any x, y ∈ X,                              

   xଵ, xଶ ∈ X, xଵ ≼ xଶ ⇒ f(xଵ, y) ≼ f(xଶ, y) 

   yଵ, yଶ ∈ X, yଵ ≼ yଶ ⇒ f(x, yଵ) ≽ f(x, yଶ) 

Recently, Harjani, López and Sadarangani [12], Amini-Harandi and Emami [5], Harjani and Sadarangani [13], Nieto and 

Rodŕiguez - Lóopez [17] proved some fixed point theorems for nondecreasing mappings in partially ordered metric spaces. 
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Lakshmikantham and Ćirić [15] extended the results of Bhaskar and Lakshmikantham for a mixed monotone linear contractive 

mapping and to generalize the notion of a mixed monotone mapping. 

Berinde [7] obtained the coupled fixed point theorems for mixed monotone operators which is essentially different and more 

natural. Luong and Thuan [16] presented some coupled fixed point theorems for a mixed monotone operator in a complete 

metric space endowed with a partial order by using altering distance functions. 

Also Borcut and Berinde [10], Amini-Harandi [4] introduced the concept of tripled fixed point for nonlinear mappings in 

partially ordered complete metric spaces and obtained some existence and uniqueness theorems for contractive type mappings. 

Karapinar and Berinde [14] obtained existence and uniqueness results for quadruple fixed points of operators F ∶ 	Xସ → X. Very 

recently, Berzig and Samet [8] introduced the concept of fixed point of n-order for mappings F ∶ X୬ → X, where n ≥ 2 and X is 

an ordered set endowed with a metric d and proved n-order fixed point theorems. For some other papers devoted to the same or 

related topics, see [3, 11, 18, 21]. On the other hand, authors illustrated these important results by proving the existence and 

uniqueness of the solution for a periodic boundary value problem of the form.                                                                           

x ′(t) = f൫t, x	(t)൯,                                                                         (1.1) 

and the general form of integral equations. 

  x(t) = ∫ G(t, s)୘
଴ ൣf൫s, u(s)൯ + λu(s)൧ds,                                               (1.2) 

(ݐ)ݔ   = ℎ	(ݐ) + ∫ ,ݐ)ଵܭ] (ݏ + ,ݐ)ଶܭ ்[(ݏ
଴ ൣ݂൫ݏ, ൯(ݏ)ݔ + ݃൫ݏ,  (1.3)                       .ݏ൯൧݀(ݏ)ݔ

In this work, we present some existence theorems for solution of a system of mixed monotone mappings in partially ordered 

metric spaces and the obtained results are extensions and generalizations of known coupled and tripled fixed point results in [4, 

10, 15, 20]. Finally, as an application, we investigate the problem of existence of solutions for the system of integral equations. 

(ݐ)௜ݔ = ƒ௜ ቀݔ,ݐଵ(ݐ), … , ∫,(ݐ)௡ݔ ݃௜൫ݐ, ,(ݏ)ଵݔ,ݏ … ൯ఉ೔(௧)(ݏ)௡ݔ,
௔  ቁ,                  (1.4)ݏ݀

where ∈ ℝ , ௜݂  , ݃௜ and ߚ௜satisfy in special conditions. 

 

 

 

2. Main Results 
 

In this section we introduce the concept of (ܤ,ܣ) - mixed monotone property for mappings of the form ܨ ∶ 	ܺ௡ → ܺ and present 

some existence theorems for solution of a system of mixed monotone mappings in partially ordered metric spaces. We start by 

introducing some definitions. Here after by the set ߗ௡	 we mean 

	௡ߗ = 	 ܣ|(ܤ,ܣ)} ∪ ܤ = {1,2, … , ܣ,{݊ ∩ ܤ = ∅},	for all n ∈ ℕ. 

Definition 2.1. Let (X,≼)	 be a partially ordered set and (A, B) ∈ Ω୬. We say that F ∶ X୬ 	→ X has the (A, B) -mixed monotone 

property if F is nondecreasing in the A argument and nonincreasing in the B argument, i, e., 

If (xଵ, xଶ, … , x୬) , (yଵ, yଶ, … , y୬) 	 ∈ 	X୬, x୧ ≼ y୧	for	i ∈ A	and	x୧ ≽ y୧ 	for		i ∈ B	 then we have 

F	(xଵ, xଶ, … , x୬) 	≤ F	(yଵ, yଶ, … , y୬)	. 

Note that if A = {1}, B = {2}, n = 2,	 then Definition 2.1 reduces to Definition 1.2. 
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Definition 2.2. Let (X,≼) be an ordered set and F ∶ X୬ 	→ X be a given mapping having the (A, B)	mixed monotone property, an 

element (xଵ, xଶ, … , x୬) 	 ∈ 	X୬ is an n-order fixed point of F ∶ X୬ 	→ X if there exist n maps ∅୧ :	{1 … , n} →	 {1 … , n} such that. 

⎩
⎨

⎧i ∈ A	 ൜∅୧
(A) = A																																

∅୧(B) = B																																

i ∈ B	 ൜∅୧
(A) ⊆ B																				(2.1)		

∅୧(B) ⊆ A																																

  

and 

F൫x∅౟(ଵ), x∅౟(ଶ), … , x∅౟(୬)൯ = x୧, for all 1 ≤ i ≤ n. Also an element x ∈ X is called a fixed point of F if F(x, x, … , x) = x. 

Definition 2.3. Let Φ denote all functions ∅ ∶ 	 [0,∞)୬ → [0,∞) which satisfy: 

(i) nondecreasing in each argument. 

(ii) ∅(xଵ + yଵ, … , x୬ + y୬) ≤ ∅(xଵ	, … , x୬) + ∅	(yଵ	, … , y୬), 

(iii) lim
୫→ஶ

∅(xଵ, m, … , x୬, m) 	= 0	 ⇔	x୧,୫ → 0	as	m	 → ∞	for	all	1 ≤ i ≤ n. 

For example, functions ∅ଵ(tଵ, … , t୬) = 	∑ t୧ 	and	∅ଶ(tଵ, … , t୬) =୬
୧ୀଵ max୧(t୧) satisfy in Definition 2.3. 

Definition 2.4. Let(X, d)	be a metric space and ∅ ∈ ઴. We define a function D∅: X୬ × X୬ → [0,∞) by 

D∅(X, Y) = 	D∅൫(xଵ, … , x୬), (yଵ, … , y୬)൯ = 	∅൫d(xଵ, yଵ), … , d(x୬, y୬)൯ 

such that X = (xଵ, … , x୬), Y = (yଵ, … , y୬) ∈ X୬	. 

Proposition 2.1. If (X, d) is a complete metric space and ∅ ∈ Φ then (X୬ , D∅)	is a complete metric space. 

Proof. The proof is obvious, we omit it. ■ 

Definition 2.5. Let (X,≼)be a partially ordered set. We say that X has a condition H if X has the following properties: 

(i) If (x୬)	is a nondecreasing sequence that is convergent to x then x୬ ≼ x	for all n, 

(ii) If	(y୬)	is a nonincreasing sequence that is convergent to y then y୬ ≽ y	for all n. 

Now, we are ready to give our first main result. The following fixed point theorem will help us to do it. Incidentally, our method 

of proof shows that how we can establish an n-order fixed point result from a fixed point result. 

Theorem 2.2. [20] Let (X,≼)be a partially ordered set and suppose there is a metric d on X such that (X	, d) is a complete 

metric space. Suppose f is a nondecreasing mapping with 

d(f	x, f	y) ≤ kd	(x, y),	for all x, y ∈ X, x ≼ y, where 0 < k < 1. Also suppose either: 

(a) f is continuous or, 

(b) If	(x୬)	is	a nondecreasing sequence that is convergent to x then x୬ ≼ x for all n. 

If there exists x଴ ∈ X with x଴ ≼ f	(x଴) then ƒ has a fixed point. 

Theorem 2.3. Let (X, d	,≼) be a complete partially ordered metric space, (A, B) ∈ 	Ω୬ and F୧ :	X୬ → X (i = 1, … n)be an 

operator such that F୧	is a (A, B) -mixed monotone property for i ∈ A, F୨	 is a (B, A)- mixed monotone property for j ∈ B	and 

d൫F୧(xଵ, … , x୬), F୧(yଵ, … , y୬)൯ ≤ kmax
୧

{d(x୧, y୧)},	                                (2.2) 

for all (xଵ, … , x୬), (yଵ, … , y୬) ∈ X୬ with x୧ ≼ y୧ for i ∈ A and x୧ ≽ y୧ for i ∈ B , where 0 < k < 1. Also suppose either: 

(a) F୧ is continuous, or 

(b) X has condition on H. 

If there exists x଴ = (xଵ଴, xଶ଴, … 		, x୬଴) 	 ∈ X୬ such that 

x୧଴ ≼ F୧(xଵ଴, … 		, x୬଴)	and	x୨଴ ≽		∈ F୨(xଵ଴, … 		, x୬଴),                                              (2.3) 
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for all i ∈ A and j ∈ B then there exist (xଵ∗ , xଶ∗ , … , x୬∗) ∈ 	X୬ such that for all1 ≤ i ≤ n 

F୧(xଵ∗, xଶ∗ , … , x୬∗) = x୧∗. 

Proof. We define G ∶ 	X୬ 	→ 	X୬	by 

G(xଵ, … , x୬) = 	 ൫Fଵ(xଵ, … , x୬), … , F୬(xଵ, … , x୬)൯                                     (2.4) 

It is straightforward to show that G has a fixed point in X୬ if and only if there exist (xଵ∗ , xଶ∗ , … , x୬∗) ∈ X୬ such that for all 

1 ≤ i ≤ n 

F୧(xଵ∗, xଶ∗ , … , x୬∗) = x୧∗. 

Consider D∅: X୬ 	× 	X୬ → [0, ∞)	 which is defined by Definition 2.4, ∅(tଵ … , t୬) = 	max୧(t୧). From Proposition 2.1, (X୬ , D∅) is 

a complete metric space. Now, we establish a new order ” ≼(୅,୆) ” on X୬ by 

(xଵ … , x୬) 	≼(୅,୆) (yଵ … , y୬) 		⇔ 	 ൜x୧ ≼ y୧											i ∈ A
x୧ ≽ y୧											i ∈ B 

It is easy to see that ൫X୬, D∅,≼(୅,୆)൯ is a complete partially ordered metric space. We show that G is a nondecreasing operator. 

To do this fix arbitrary (xଵ … , x୬), (yଵ … , y୬) ∈ X୬ such that (xଵ … , x୬) 	≼(୅,୆) (yଵ … , y୬) then we have 

(୶భ…,୶౤)	≼(ఽ,ా)(୷భ…,୷౤)	⇒	൜
୶౟≼୷౟											୧∈୅
୶౟≽୷౟											୧∈୆

																																																																⇒		൜
		୊౟(୶భ…,୶౤)	≼୊౟(୷భ…,୷౤)									୧∈୅
୊౟(୶భ…,୶౤)	≽୊౟(୷భ…,୷౤)											୧∈୆

																																									⇒	ୋ(୶భ…,୶౤)	≼ୋ(୷భ…,୷౤)

																																																	(2.6) 

 

It follows that G is a nondecreasing operator. Moreover, by (2.2) we have 

 

max
୧
൛d൫F୧(xଵ … , x୬), F୧(yଵ … , y୬)൯ൟ ≤ k	max

୧
{d(x୧, y୧)}.                                        (2.7) 

And D∅(G	X, G	Y) ≤ kD∅(X, Y),	for all X, Y ∈ X୬, X ≼(୅,୆) Y. Now, if there exists X଴ = (xଵ଴, xଶ଴, … , x୬଴) ∈ X୬ satisfying (2.3) 

then from (2.5) and definition of G we get X଴ ≼(୅,୆) G(X଴). 

Also, if F୧  is continuous, or X has condition H, then we have either (a) or (b) in Theorem 2.2. Since operator G satisfies all the 

conditions appearing in Theorem 2.2 so, G has a fixed point and the proof is complete. ■ 

In [17] the authors also considered some additional conditions to ensure the uniqueness of the fixed point. 

Theorem 2.4. [17] In addition to hypotheses of Theorem 2.2, suppose that for each x, y	 ∈ 	X there exists z	 ∈ 	X which is 

comparable to x and y, then f has a unique fixed point. 

Similarly, we can prove the following uniqueness theorem for n-order fixed points. 

Theorem 2.5. In addition to hypotheses of Theorem 2.3, suppose that for every X, Y	 ∈ 	 ൫X୬,≼(୅,୆)൯	(” ≼(୅,୆) ”) is given by 

(2.5)), there exists Z	 ∈ 	X୬ that is comparable to X, Y then F୧ has a unique n-order fixed point. 

Corollary 2.6. (Theorem 2.1, 2.2 of [9]) Let (X,≼) be a partially ordered set and suppose there exists a metric d on X such that 

(X, d) is a complete metric space. Let f: X × X → X be a mixed monotone property on X such that there exists a k	 ∈ 	 [0, 1) with 

d(f(x, y), f(u, v)) ≤
k
2

[d(x, u) + d(y, v)] 

For all x ≽ 	u and y ≼ 	v. Also suppose either: 

(a) f is continuous or, 

(b) X has the following properties: 
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(i) If (x୬) is a nondecreasing sequence that is convergent to x then x୬ ≼ x for all n, 

(ii) If (y୬) is a nonincreasing sequence that is convergent to y then y୬ ≽ y for all n. 

If there exist two elements x଴, y଴ ∈ X with x଴ ≼ f(x଴, y଴) and y଴ ≽ f(y଴, x଴) then there exist x, y	 ∈ 	X such that x	 = 	f(x, y) and 

y	 = 	f(y, x). 

Proof. In the special case n	 = 	2, Fଵ(x, y) 	= 	f(x, y), Fଶ(x, y) 	= 	f(y, x), A	 = 	 {1}	and	B	 = 	 {2}. Using assumptions of 

corollary there exists a k	 ∈ 	 [0, 1) with 

d(f(x, y), f(u, v)) ≤
k
2

[d(x, u) + d(y, v)] 

for all x	 ≽ 	u and y	 ≼ 	v	 , so 

d(Fଵ(x, y), Fଵ(u, v)) ≤
k
2

[d(x, u) + d(y, v)] ≤ 	k	max	{d(x, u), d(y, v)} 

for all x	 ≽ 	u and y	 ≼ 	v	 , Also, since 

d(f(y, x), f(v, u)) ≤
k
2

[d(u, x) + d(v, y)] 

for all x ≽ u and y ≼ v	 , so 

d(Fଶ(x, y), Fଶ(u, v)) ≤
k
2

[d(u, x) + d(v, y)] ≤ 	k	max	{d(x, u), d(y, v)} 

for all x	 ≽ u and y	 ≼ v which proves that f  verifies the contraction condition (2.2) in Theorem 2.3. Now, the proof follows 

from Theorem 2.3. ■ 

The following corollary generalized some main results appearing in [4, 20, 8]. 

Corollary 2.7. Let (X, d,≼) be a complete partially ordered matric space and (A, B) 	 ∈ 	Ω୬. Let F ∶ 	X୬ 	→ 	X be a mapping 

having the (A, B)-mixed monotone property such that 

d൫F(xଵ, … , x୬), F(yଵ, … , y୬)൯ ≤ kmax
୧

{d(x୧, y୧)},		                                    (2.8) 

for all (xଵ, … , x୬), (yଵ, … , y୬) 	 ∈ X୬	with x୧ ≼ y୧ for i	 ∈ A and x୧ ≽ y୧ for  i	 ∈ B , where 0	 < 	݇	 < 	1. Also suppose either: 

(a) F is continuous, or 

(b) X has condition H. 

If there exists X଴ = (xଵ଴, xଶ଴, . . . , x୬଴) ∈ X୬ such that 

x୧଴ ≼ F൫x∅౟(ଵ)
଴ , . . . , x∅౟(୬)

଴ ൯and	x୨଴ ≽ F ቀx∅ౠ(ଵ)
଴ , . . . , x∅ౠ(୬)

଴ ቁ,	                       (2.9) 

for all i	 ∈ 	A and j	 ∈ 	B	where  ∅୧ : {1⋯	 , n} → {1⋯	 , n} satisfy condition (2.1) for all 1	 ≤ 	i	 ≤ 	n then F has an n-order fixed 

point. 

Proof. We define F୧ : X୬ → X	 by F୧(xଵ, … , x୬) = F൫x∅౟(ଵ), … , x∅౟(୬)൯. 

Now, we show that F୧ is a (A, B)-mixed monotone mapping for all i ∈ A and F୧  is a (B, A)-mixed monotone mapping for all 

i ∈ B To do this fix arbitrary i଴ ∈ A and  (xଵ, … , x୬), (yଵ, … , y୬) ∈ X୬ such that (xଵ, … , x୬) ≼(୅,୆) (yଵ, … , y୬). Since i଴ ∈ A so 

by using (2.1) we have 
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(xଵ, … , x୬) ≼(୅,୆) (yଵ, … , y୬) ⇒ ൜x୧ ≼ y୧										i ∈ A
x୧ ≼ y୧										i ∈ B

																																			⇒ ቊ
∅୧బ(x୧) ≼ ∅୧బ(y୧)										i ∈ A
∅୧బ(x୧) ≽ ∅୧బ(y୧)										i ∈ B

																																																																								⇒ F(	∅୧బ(xଵ), … ,∅୧బ(x୬)) 	≼ F(	∅୧బ(yଵ), … ,∅୧బ(y୬))
																																					⇒ F୧౥(xଵ, … , x୬) ≼ F୧౥(yଵ, … , y୬)

 

Therefore F୧  is a (A, B)-mixed monotone mapping for all i ∈ A. By similar reasoning one can show that F୧ is a (B, A)	-mixed 

monotone mapping for all i	 ∈ 	B. It is easy to verify that (2.8) and (2.9) imply (2.2) and (2.3), respectively. Then the proof is 

completed. ■ 

Agarwal, El-Gebeily and O'Regan in [1] presented the following result for mappings satisfying a φ - contraction in the setting 

of complete partially ordered metric spaces. 

Theorem 2.8. Let (X,≼) be a partially ordered set and suppose there is a metric d on X such that (X, d) is a complete metric 

space. Suppose f	is a nondecreasing mapping with 

d(f	x, f	y) ≤ φ(d(x, y)), for all x, y	 ∈ 	X, x ≼ y, where φ ∶ 	 [0,∞) 	→	 [0,∞) is a nondecreasing and continious function such 

that φ(t) 	< for all  t 	ݐ	 > 	0 and	φ(0) = 0. Also, suppose either: 

(a) f is continuous or, 

(b) If	(x୬) is a nondecreasing sequence that is convergent to x then x୬ ≼ 	x for all n. 

If there exists x଴ ∈ X with x଴ ≼ f(x଴) then f has a fixed point. 

Besides, if for each x, y	 ∈ 	X there exists z	 ∈ 	X which is comparable to x and y, then f has a unique fixed point. 

Now, we present an n-order fixed point result for mappings satisfying a φ-contraction in the setting of complete partially 

ordered metric spaces. 

Theorem 2.9. Let (X, d,≼) be a complete partially ordered metric space, (A, B) ∈ Ω୬ and F୧ : X୬ → X	(i = 1,⋯ , n)	 be an 

operator such that F୧is a (A, B)-mixed monotone property for i ∈ A, F୨ is a (B, A)- mixed monotone property for j ∈ 	B and 

d൫F୧(xଵ, … , x୬), F୧(yଵ, … , y୬)൯ ≤ φቀmax
୧

{d(x୧ , y୧)}ቁ,                     (2.10) 

for all (xଵ, … , x୬), (yଵ, … , y୬) ∈ X୬ with x୧ ≼ y୧ for j ∈ 	A and x୧ ≽ y୧ for i ∈ 	B, where φ ∶ 	 [0,∞) 	→ 	 [0,∞)	is a nondecreasing 

and continious function such that φ(t) < for all  t 	ݐ > 0	ܽ݊݀	߮(0) 	= 0. Also, suppose either: 

(a) F୧is continuous, or 

(b) X has condition H. 

If there exists X଴ = (xଵ଴, xଶ଴,⋯ , x୬଴) ∈ X୬	 such that 

x୧଴ ≼ F୧(xଵ଴,⋯	 , x୬଴)	and	x୨଴ ≽ F୨(xଵ଴,⋯	 , x୬଴),	                            (2.11) 

for all i	 ∈ 	A and j	 ∈ 	B then there exist (xଵ∗ , xଶ∗ ,⋯ , x୬∗) ∈ X୬ 	 such that for all 1	 ≤ 	i	 ≤ 	n 

F୧(xଵ∗ , xଶ∗ ,⋯ , x୬∗) = x୧∗. 

Besides, if for each x, y ∈ X there exists zଵ, zଶ ∈ X such that zଵ ≼ 	x ≼ zଶ and zଵ ≼ 	y ≼ zଶ , then (xଵ∗ , xଶ∗ ,⋯ , x୬∗) is uniqueness. 

Proof. Define G ∶ 	X୬ →	X୬ 	as in the proof Theorem 2.3 by which is given by (2.4). We know that G has a fixed point in X୬ if 

and only if there exist (xଵ∗ , xଶ∗ ,⋯ , x୬∗) ∈ X୬ such that for all 1	 ≤ 	i	 ≤ 	n 

F୧(xଵ∗ , xଶ∗ ,⋯ , x୬∗) = x୧∗. 
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Consider D∅: X୬ × X୬ →	 [0,∞)	 which is defined by Definition 2.4, ∅(tଵ, … , t୬) = max୧(t୧) and ≼(୅,୆) by (2.5). From the 

assumptions we get 

D∅(G	X, G	Y) ≤ φቀD∅(X, Y)ቁ. 

Using Theorem 2.8 and in a manner similar to the proof of Theorem 2.3, we can prove that G has a fixed point. Also for the 

uniqueness of n-order fixed point the the proof is similar to the proof of Theorem 2.5. ■ 

In [2] Aghajani et al. proved that for every nondecreasing and upper semicontinuous function φ:ℝା → ℝା 	the following two 

conditions are equivalent: 

(I) φ(t) < for any t ,ݐ > 0. 

(II) lim୬→ஶ φ୬ (t) 	= 	0, for any  t > 0. 

Thus Theorem 2.9 is true if (I) is replaced by (II). Furthermore, notice that if ”	∑ ୢ(୶౟,୷౟)
౤
౟సభ

୬
	” be in place of ”max୧{d(x୧ , y୧)}”. 

Then Theorem 2.9 will still be true. 

Corollary 2.2 of [15] is a special case of the following corollary. 

Corollary 2.10. Let (X, d,≼) be a complete partially ordered metric space and (A, B) 	 ∈ 	Ω୬. Let F ∶ 	X୬ →	X୬ be a mapping 

having the (A, B)-mixed monotone property such that 

d൫F(xଵ, … , x୬), F(yଵ, … , y୬)൯ ≤ φ(max୧{d(x୧, y୧)}),                           (2.12) 

for all(xଵ, … , x୬), (yଵ, … , y୬) ∈ X୬ with x୧ 	≼ y୧  for i	 ∈ 	A and x୧ 	≽ y୧  for i	 ∈ 	B, where φ ∶ 	 [0,∞) 	→ [0,∞) is a 

nondecreasing and continuous function such that φ(t) < for all t ݐ > 0 and φ(0) = 0. Also, suppose either: 

a) F is continuous, or 

(b) X has condition H. 

If there exists X଴ = (xଵ଴, xଶ଴,⋯ , x୬଴) ∈ X୬	 such that 

x୧଴ ≼ F൫x∅౟(ଵ)
଴ ,⋯	 , x∅౟(୬)

଴ ൯	and	x୨଴ ≽ F ቀx∅ౠ(ଵ)
଴ ,⋯	 , x∅ౠ(୬)

଴ ቁ,	                       (2.13) 

for all i	 ∈ 	A and j	 ∈ 	B where ∅୧: {1⋯ , n} → {1⋯ , n} satisfy condition (2.1)  for all1 ≤ i ≤ n  then F has an n-order fixed 

point. 

Proof. The logic of the proof is similar to the proof of corollary 2.7. ■ 

 

3. Application 
In the following section, we considered the space X	 = 	C[a, b] of continuous function defined on [a, b] with the standard metric 

given by d(x, y) = sup
୲∈[ୟ,ୠ]

|x(t), y(t)|, for	x, y ∈ 	C[a, b]. 

This space can also be equipped with a partial order given by 

x, y ∈ 	C[a, b],			x ≼ y ⇔ x(t) ≤ y(t),			for	any	t ∈ [a, b]. 

Moreover, in [17] it is proved that (C[a, b],≼) with the above mentioned metric satisfies condition H. 

Now, we formulate our result. 

Theorem 3.1. Assume that the following conditions are satisfied: 

(i) β୧ ∶ 	 [a, b] 	→	 [a, b]	(i	 = 	1, 2,⋯	 , n) are continuous functions. 

(ii) f୧ ∶ 	 [a, b] × ℝ୬ × ℝ → ℝ	(i	 = 	1, 2,⋯	, n)  are continuous and nondecreasing on ℝ୬ and ℝ such that 
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|f୧(t, xଵ,⋯ , x୬, u) − f୧(t, yଵ,⋯ , y୬, v)| ≤ λ୧φ୧(max୧|x୧ − y୧|) + |u− v|,           (3.1) 

for all (xଵ,⋯ , x୬), (yଵ,⋯ , y୬) ∈ ℝ୬ with x୧ ≼ y୧ , where nondecreasing functions φ:ℝା →	ℝା satisfy the hypotheses of 

Theorem 2.9 and 0 < λଵ,⋯	 , λ୬ < 1. 

(iii) g୧: [a, b] × [a, b] × ℝ୬ → ℝ	(i	 = 	1, 2,⋯	, n)	 are nondecreasing on ℝ୬ such that 

|g୧(t, s, xଵ,⋯ , x୬) − g୧(t, s, yଵ,⋯ , y୬)| ≤ ξ୧ϑ୧(max୧|x୧ − y୧|),           (3.2) 

for all (xଵ,⋯ , x୬), (yଵ,⋯ , y୬) ∈ ℝ୬ with x୧ ≼ y୧ , where nondecreasing functions ϑ୧ ∶ 	 ℝା → 	 ℝା satisfy the hypotheses of 

Theorem 2.9 and 0 < ξଵ,⋯	 , ξ୬ ≤ 1. 

(iv) There exists x୧଴ ∈ C[a, b](i	 = 	1,⋯	 , n) such that 

x୧଴ ≼ f୧ ቀt, xଵ଴(t),⋯ , x୬଴(t),∫ g୧
ஒ౟(୲)
ୟ (t, s, xଵ଴(s),⋯ , x୬଴(s))dsቁ.                  (3.3) 

(v) For all 	i	 = 	1,⋯	 , n 

λ୧ + (b − a)ξ୧ ≤ 1.                                                      (3.4) 

Then the system of integral equations (1.4) has a unique solution in the space C[a, b]୬. 

Proof. We define the operators F୧: C[a, b]୬ → C[a, b]	by 

F୧(xଵ,⋯ , x୬)(t) = f୧ ቀt, xଵ(t),⋯ , x୬(t),∫ g୧
ஒ౟(୲)
ୟ

(t, s, xଵ(s),⋯ , x୬(s))dsቁ, 

for all t ∈ [a, b]	 and 1 ≤ i ≤ n. Let us fix arbitrarily1 ≤ i ≤ n. Since f୧, g୧, x୧ and β୧ are continuous, so F୧ is continuous operator 

from C[a, b]୬ to C[a, b]. Moreover, F୧ has the (A, B)-mixed monotone property such thst A	 = {1,⋯ , n} an B = ∅. Now, we 

show that F୧  satisfies the hypothesis (2.10) of Theorem 2.9. To do this, take x୨ , y୨ ∈ C[a, b] such that x୨ ≼ y୨ for all j	 = 	1,⋯ , n. 

Then we have 

d = d൫F୧(xଵ,⋯ , x୬), F୧(yଵ,⋯ , y୬)൯ 

= sup
୲∈[ୟ,ୠ]

|F୧(xଵ,⋯ , x୬)(t) − F୧(yଵ,⋯ , y୬)(t)| 

= sup
୲∈[ୟ,ୠ]

ቤf୧ ቆt, xଵ(t),⋯ , x୬(t),න g୧
ஒ౟(୲)

ୟ
(t, s, xଵ(s),⋯ , x୬(s))dsቇ 

−f୧ ቆt, yଵ(t),⋯ , y୬(t),න g୧
ஒ౟(୲)

ୟ
(t, s, yଵ(s),⋯ , y୬(s))dsቇቤ 

Due to (3.1), (3.2) and since φ୧and ϑ୧ are nondecreasing, we have 

d ≤ sup
୲∈[ୟ,ୠ]

λ୧φ୧ ቀmax
୧

|x୧(t) − y୧(t)|ቁ 

+ sup
୲∈[ୟ,ୠ]

ቤන g୧
ஒ౟(୲)

ୟ
(t, s, xଵ(s),⋯ , x୬(s))ds −න g୧

ஒ౟(୲)

ୟ
(t, s, yଵ(s),⋯ , y୬(s))dsቤ 

≤ λ୧φ୧ ቆmax
୧
‖x୧ − y୧‖+ sup

୲∈[ୟ,ୠ]
ቤන g୧

ஒ౟(୲)

ୟ
(t, s, xଵ(s),⋯ , x୬(s)) − g୧(t, s, yଵ(s),⋯ , y୬(s))dsቤቇ 

≤ λ୧φ୧ ቀmax
୧
‖x୧ − y୧‖ቁ +න ξ୧ϑ୧ ቀmax

୧
‖x୧ − y୧‖ቁ

ୠ

ୟ

ds 

 

≤ λ୧φ୧ ቀmax
୧
‖x୧ − y୧‖ቁ + (b − a)ξ୧ϑ୧ ቀmax

୧
‖x୧ − y୧‖ቁ. 

If we define φ = max{φଵ,⋯ ,φ୬, ϑଵ,⋯ , ϑ୬} then the last inequality and assumption (v) give us 
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d൫F୧(xଵ,⋯ , x୬), F୧(yଵ,⋯ , y୬)൯ ≤ φ ቀmax
୧
‖x୧ − y୧‖ቁ. 

Therefore, F୧  satisfies (2.10). Finally, let xଵ଴, xଶ଴,⋯ , x୬଴ be the functions appearing in assumption (iv), so by (iv), we get 

x୧଴ ≼ F୧(xଵ଴,⋯ , x୬଴) 

The conclusion follows now from Theorem 2.9. ■ 

 

Example 3.1. Consider the following system of functional integral equations 

⎩
⎪
⎪
⎪
⎨

⎪
⎪
⎪
⎧xଵ(t) =

tଶ

tସ + 1 lnቆ
|xଵ(t) + xଶ(t) + xଷ(t)|

3 + 1ቇ +
1

12
න seି୲
୲

଴

|xଵ(s) + xଶ(s) + xଷ(s)|
1 + |xଵ(s) + xଶ(s) + xଷ(s)| ds

xଶ(t) = e୲ +
3|xଶ(t)|

4 + 4|xଶ(t)| +න
s

16s + 1	
൫xଵ(s) + xଶ(s) + xଷ(s)൯ds

√୲

଴

																			

xଷ(t) = log(t) + න sଶln(|xଵ(s) + xଶ(s) + xଷ(s)| + 1)ds,
୲మ

଴

																							

	 

for t	 ∈ 	 [0,1]. Observe that Eq. (3.5) is a special case of Eq. (1.4) where 

βଵ(t) = t,βଶ(t) = √t,βଷ(t) = tଶ, 

fଵ(t, xଵ, xଶ, xଷ, y) =
tଶ

tସ + 1
ln ൬

1
3

|xଵ + xଶ + xଷ| + 1൰ + y 

fଶ(t, xଵ, xଶ, xଷ, y) = e୲ +
3|xଶ|

4|xଶ| + 4 + y, 

fଷ(t, xଵ, xଶ, xଷ, y) = logt + y, 

gଵ(t, s, xଵ, xଶ, xଷ) =
1

12 seି୲
|xଵ + xଶ + xଷ|

1 + |xଵ + xଶ + xଷ| 

gଶ(t, s, xଵ, xଶ, xଷ) =
s(xଵ + xଶ + xଷ)

16s + 1  

gଷ(t, s, xଵ, xଶ, xଷ) = sଶln(|xଵ + xଶ + xଷ| + 1) 

From the definitions of β୧ hypothesis (i) of Theorem 3.1 are obviously satisfied. Also, we have 

|fଵ(t, xଵ, xଶ, xଷ, u) − fଵ(t, yଵ, yଶ, yଷ, v)| ≤ 

≤ ቤ
tଶ

tସ + 1
ln ൬

1
3

|xଵ + xଶ + xଷ| + 1൰ + u−
tଶ

tସ + 1
ln ൬

1
3

|yଵ + yଶ + yଷ| + 1൰ − vቤ 

≤
tଶ

tସ + 1
ቤln ቆ

1
3

|xଵ + xଶ + xଷ| + 1
|yଵ + yଶ + yଷ| + 1

ቇቤ + |u− v| 

≤
1
2
ቤlnቆ

1
3

|xଵ + xଶ + xଷ|− |yଵ + yଶ + yଷ|
|yଵ + yଶ + yଷ| + 1 + 1ቇቤ+ |u− v| 

≤
1
2
ቤlnቆ

|xଵ − yଵ| + |xଶ − yଶ| + |xଷ − yଷ|
3 + 1ቇቤ+ |u− v| 

≤ ଵ
ଶ
	ln(max

୧
|x୧ − y୧| + 1)|u − v|. 

Similarly, 

fଶ(t, xଵ, xଶ, xଷ, u) − fଶ(t, yଵ, yଶ, yଷ, v) ≤
3					max

୧
|x୧ − y୧|

4max
୧

|x୧ − y୧| + 1 + |u − v| 
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|fଷ(t, xଵ, xଶ, xଷ, u) − fଷ(t, yଵ, yଶ, yଷ, v)| ≤ |u − v| 

|gଵ(t, s, xଵ, xଶ, xଷ) − gଵ(t, s, yଵ, yଶ, yଷ)| ≤
1							max

୧
|x୧ − y୧|

4	max
୧

|x୧ − y୧| + 1 

|gଶ(t, s, xଵ, xଶ, xଷ) − gଶ(t, s, yଵ, yଶ, yଷ)| ≤
3

16 	max
୧

|x୧ − y୧| 

|gଷ(t, s, xଵ, xଶ, xଷ) − gଷ(t, s, yଵ, yଶ, yଷ)| ≤ 	lnቀmax
୧

|x୧ − y୧| + 1ቁ. 

Thus, by taking 

φଵ(t) = ϑଷ(t) = ln(t + 1),φଶ(t) = ϑଵ(t) = ୲
୲ାଵ

,φଷ(t) = 0	,ϑଶ(t) = ଷ
ସ

t, λଵ = ଵ
ଶ

, λଶ = 	 ଷ
ସ

, λଷ = 0	, ξଵୀ
ଵ
ସ

, ξଶୀ
ଵ
ସ
	andξଷୀ1, the 

functions f୧  and g୧ satisfy assumptions (ii) and (iii) of Theorem 3.1 and the hypothesis (3.4) holds. Finally, if we consider 

xଵ(t) = xଶ(t) = xଷ(t) = 0	 then the hypothesis (3.3) holds. Hence by using Theorem 3.1 the system of integral equations (3.5) 

has a unique solution in the space C	[0,1]ଷ. 
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