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Abstract 
We will study the integral of Aumann when the values of 
multifunctions are subsets of a quasy-Banach separable space. 
Initially we will see the extension of the Aumann integral in the case 
of multifunctions with values in quasy-normed spaces and in some 
instances of its existence illustrating with examples.  
We will see the following relation between measurable and 
integrable of multifunctions according to Aumann and some various 
operations which do not bring us out of class by Aumann integrable 
multifunctions. Here we can mention that, if the union action of 
integrable multifunctions by Aumann is again integrable, for cutting 
can’t say the same thing. We see also that is true the property of 
linearity of the Aumann׳s  integral.  
Finally we are shifting focus to the limit and note that there is a 
rather interesting statement that in the case when the space X which 
defines sequence of multifunctions F  is finite measure allows us to 
say that: Not only the limit of a sequence of integrable multifunctions 
by Aumann is the integrable multifunction but it’s true the equality 
∫Fdµ = lim → ∫F dµ. This assertion is also based on a similar 
theorem known Fatou theorem, which noted that, can be extended to 
our case. 
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Introduction 
A relation F: XY is a subset of XY. Otherwise, F can be 
considered as a function of X in all subsets of the set of Y. 
Domain of F is the set Dom (F) = {푥 ∈ 푋:퐹(푥) ≠ ∅}, the 
image of F is the union of the images F(x) when x ranges over 
X, Rang (F) = ⋃ 퐹(푥)∈ ( )  while graph of F is the set 
Graph (F) = {(푥, 푡): 푡 ∈ 퐹(푥),푥 ∈ 퐷표푚(퐹)}.  
If we want to emphasize the properties of F as a subset of 
XY, referring to it’s graph [1].  
A multifunction is a relation with domain X. We denote it 
F:X	⇉ Y or F:X2Y . 
 
Let X and Y be topological spaces. 
(i) A multifunction F:X2Y is called with closed, open or 
compact valued if, for every xX, F (x) is respectively, a 
closed, open or compact set in Y. Moreover, if Y is a 
topological vector space and for every xX, F (x) is a convex 
set on Y, then F is called with convex values.  
(ii) A multifunction F:X2Y is called closed, open or 
compact if the Graph(F) is respectively, a closed, open or 
compact set according to the product topology of XY. 

Moreover, if X and Y are topological vector spaces, then F is 
called convex if its graph is a convex set by product topology 
XY. 
 
In multifunctios  (relations) collection determined various 
mathematical operations. 
Let's say we have the operation * that is defined as follows: F1 
* F2: x F1(x) * F2(x). In this way we can determine F1 F2 , 
F1 F2 , F1+ F2 (in vector space), F1 F2 etc. Similarly, if the 
function : 2Y2Y determine (F):x(F(x)). For example, 
will use the notation 퐹, for  the multifunction x퐹(푥) where, 
퐹(푥)  is denoted the closure of set F(x). 
 
Also for multifunctions as for functions, we study continuity, 
their measurement and integration. 
 
There are two ways to define the inverse image of a subset M 
by a multifunction F. 

(i) 	퐹 (푀) = {푥 ∈ 푋:퐹(푥) ∩푀 ≠ ∅} 
(ii) 	퐹 (푀) = {푥 ∈ 푋:퐹(푥) ⊂ 푀} 

The subset 	퐹 (푀) is called the invers image of M by F and 
	퐹 (푀) is called the core of M by F. 
 
A relation (multifunction) is called measurable (weakly 
measurable, B-measurable, K-measurable) only  when the 
inverse image F (B) is measurable for every closed set 
(respectively open set, Borel’s set and compact set) B of Y. 
 
Let 퐹 :푋 → 2  be a sequence of multifunctions. Easily shown 
that, for every subset AY is true the equality (⋃ 퐹 ) (퐴) =
⋃ 퐹 (퐴). 
So, the following proposition is true: 
Proposition 1 
If 퐹 :푋 → 2  are measurable (weakly measurable, B-
measurable, K-measurable) multifunctions then ⋃ 퐹 :푋 →
2  is also a measurable (weakly measurable,B-measurable,K-
measurable) multifunction. 
 
We note also that a similar statement is true for the cutting of 
multifunctions. 
Proposition 2 
If 퐹 :푋 → 2  are measurable (weakly measurable, B-
measurable, K-measurable) multifunctions then  the 
multifunction ⋂ 퐹 :푋 → 2  is also a measurable (weakly 
measurable,  B-measurable,  K-measurable) multifunction. 
Proof 
Easily shown that, for every AY we can write  
(⋂ 퐹 ) (퐴) = ⋂ 퐹 (퐴) (1). 
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On the other hand, for every nN is true the equality 
퐹 (퐴) = 푋\퐹 (푌\퐴) (2).  
Since for every nN the multifunction 퐹  is measurable 
(weakly measurable, B-measurable, K-measurable) then 
퐹 (푀) is measurable for every closed (open, Borel’s set) 
subset MY.  
From equality (2) it follows that for every nN the set 
퐹 (푌\푀) is measurable. The set	푌\푀 is open (closed, Borel’s 
set) and the equality (1) allows us to say that the set 
(⋂ 퐹 ) (퐴) is measurable for every open (closed, Borel’s 
set) subset AY.  
Applying equality (2) for the multifunction ⋂ 퐹  conclude 
that, the set	(⋂ 퐹 ) (퐴) is measurable for every closed 
(open,Borel’set) subset AY. 
 
Measurable of multifunctions is closely associated with the 
concept of measurable of his selections. 
For a given multifunction F:X2Y,called selection a function 
f:XY such that f(x)F(x) almost everywhere in X. 
 
Let (X,,) be a complete -finite measure space and Y a 
separable quasy-Banach space.We denote by ℱ the set of all 
integrable selections of F, so  
 

ℱ = {f ∈ L (X, Y, ): f(x) ∈ F(x)		a. e	in	X	} 
(a.e is used for cutting of expression almost everywhere) 
A multifunction F:X2  is called integrably bounded if there 
exists a nonnegative function 푓(푥) ∈ 퐿 (푋,푅,) such that 
퐹(푥) ⊂ 푓(푥)퐵 almost everywhere in X, where is denoted B 
the unit ball on Y [2]. 
 
Aumann did suggest definition of the integral of a 
multifunction in the following way: 
 
The integral of F on X is the set of integrals of integrable 
selections of F: 

Fd = fd : f ∈ ℱ  

 
(Integrals in this set are Bochner integrals of the function f. 
Remember that: Every measurable function f:XY is called 
Bochner integrable if there is a sequence of simple functions 
f : X → Y  such that lim

→
∫ ‖f (x) − f(x)‖dµ(x) = 0. In this 

case the Bochner integral of f on E is defined by the equation 
∫ fdµ = lim

→
∫ f dµ. Bochner integral extends to 

functions valued in the quasy-normed spaces. This is 
accomplished by following a path similar to the construction 
of this integral in the case of functions  valued in normed 
spaces. Easily shown that the Bochner integral for functions 
valued in quasy normed spaces is linear.) 
 
In the following we will say that F is integrable multifunction 
by Aumann if the set ∫ fd : f ∈ ℱ  is not empty. 
Referring to Aumann [7], the proposition is true 

Proposition 3  
If 퐹:푇 → 2  where, T = [0,1] and 퐸 	is an n-dimensional 
Euclidean space, is Borel measurable and integrably bounded 
multifunction then 퐹:푇 → 2  is integrable by Aumann. 
Terminology and preliminaries 
The following (X,,) will be a complete finite measurable 
space and (Y, ||.||) will be a quasy-Banach space. Let D be a 
subset of X, define diam (D) = 푠푢푝 , ∈ ‖푥 − 푦‖   as the 
diameter set D.    
Remember that:for every quasi-norm in Y there is a 
equivalent p-norm (Aoki-Rolewics theorem                [4]). 
Therefore, the above constant p corresponds to the equivalent 
p-norm. 
Let's be + family of set A  with a positive measure  and 
	   the collection of subsets of A that are part of +. 
Definition 4 
The multifunction F:X2  satisfies the property (P) if for 
every ε> 0 and for every A+ there are B	  and  DX 
with diameter diam (D) ≤ ε such that F (x) ∩ D ≠ ∅ for every 
xB (ie B퐹 (D)). 
 
As in the case of normed space [1] note that the following 
proposition is true: 
 
Proposition 5 
Let F:X2  be a multifunction. The following propositions 
are true: 
(i) If it is a multifunction G:X2  that satisfies the property 
(P) and G(x)  F(x) almost everywhere according  on X, 
then F satisfies the property (P). 
(ii) If F has a measurable selection then F satisfies the 
property (P). 
 
Basic theorems on the existence of measurable selectors are 
Kuratowski-Ryll Nardzewski theorem and the Aumann 
theorem. 
 
Theorem 6 (Kuratowski-Ryll Nardzewski)[3] 
If (X,) is a measurable space, Y is a metric space separable, 
F:X2  is a weakly measurable multifunction, with closed 
values in Y then the multifunction F has a measurable 
selection f. 
 
Theorem 7 (Aumann) [6] 
If (X,) is a  finite measurable space, Y a Borel subset of a 
Polish space and F:X2  is a multifunction with separable 
graph then there is a measurable function f:X Y such that 
f(x)F(x) for x  X almost everywhere according  on X.  
 
Given the fact that there are quasy-normed separable spaces, 
moreover any quasi-Banach separable space (X,q) with 
constant of quasy-norm (modul of concavity) C is linearly 

homeomorfe with quotient space ℓ p [0,1] where C =2  [5], 
we conclude that the theorem of Kuratowski-Ryll Nardzewski 
remains true even when the space Y is quasy-Banach 
separable space.  
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A Polish space is a separable completely metrizable 
topological space. On the other hand, every quasy- Banach 
separable space is a separable completely metrizable space. 
So, Aumann theorem remains true even when the space Y is 
quasy-Banach separable space. 
 
The Results 
Immediately from the definition of the Aumann’s integrable 
multifunction note that: 
  In the case of the function f:XY, so when values 
of multifunction are set with an element, note that the 
Aumann integral of f coincides with its Bochner integral. So, 
every function f:XY Aumann integrable is measurable. 
  Each of integrable multifunction according 
Aumann has Bochner integrable selections, then there is 
measurable selections of it. 
  Let there be (X,,) a complete finite measurable 
space and F:X2  a Aumann integrable multifunction. From 
proposition 5 (ii) we conclude that the multifunction F 
satisfies the property (P) of the definition 4.    
 
Let us give an example of an integrable multifunction 
according to Aumann. 
Example 8 
Every constant multifunction F:X2  is integrable according 
to Aumann. 
Proof 
Since the multifunction F is constant, then for every x  X we 
have F (x) = B, where B  Y is a fixed subset. So, enough to 
take a constant selection f: X  Y such that for every x  X 
we have f(x) = y ∈ B. These selections can be seen as simple 
functions of the form f(x) = y χ  where A is a measurable 
subset of X that contains x-in along with a neighbourhood. 
This ends the proof. 
 
Based on the properties of Bochner integral of a function 
according to a measure  easily shown that the propositions 
are true: 
Proposition 9  [2]  
If the multifunction F:X2  is with convex valued then also 
the integral ∫ 퐹푑 a is convex set. 
Proposition 10 [2] 
If the multifunction F:X2  is integrable according to 
Aumann and R then the multifunction F:X2  is also 
integrable according to Aumann and ∫ 휆퐹푑휇 = 휆 ∫ 퐹푑휇. 
 
The quasy-normed space is also a vectorial topological space . 
So, we can affirm that: 
 
Propostion 11  
If  the multifunctions 퐹 ,퐹 :푋 → 2  are integrable according 
to Aumman then the multifunction  퐹 + 퐹  is integrable 
according to Aumman and ∫ (퐹 + 퐹 )(x)dµ =

∫ F (x) dµ + ∫ F (x) dµ. 
 

Proof 
Since the multifunctions 퐹  and 퐹  are integrable according to 
Aumman then there are the functions 푓 , 푓 :푋 → 푌 that are 
respectively the selections of 퐹  and 퐹 .  
Denote 퐴 = {푥 ∈ 푋: 푓 (푥) ∈ 퐹 (푥)} and 퐵 = {푥 ∈ 푋:푓 (푥) ∈
퐹 (푥)}.  
By way of selecting functions 푓  and 푓  note that 휇(푋 ∖
푓 (퐴)) = 0 and  휇(푋 ∖ 푓 (퐵)) = 0. 
Thus, the equalities 
푋 ∖ 푓 (퐴) ∪ 푋 ∖ 푓 (퐵)

= (푋 ∩ (푓 (퐴)) ) ∪ (푋 ∩ (푓 (퐵)) ) = 
= 푋 ∩ ((푓 (퐴)) ∪ (푓 (퐵)) )

= 푋 ∩ 푓 (퐴) ∩ 푓 (퐵)
= 푋 ∖ 푓 (퐴)∩ 푓 (퐵)  

lead us to the conclusion 휇 푋 ∖ (푓 (퐴) ∩ 푓 (퐵)) = 0. 
On the other hand, for every x푓 (퐴) ∩ 푓 (퐵) is true the 
relation (푓 (푥) + 푓 (푥)) ∈ (퐹 + 퐹 )(x).  
Therefore the function g:XY such that g(x) = 푓 (푥) + 푓 (푥) 
is a selection of multifunction 퐹 + 퐹  and more than the 
function g is integrable according to Bochner. So we have 
shown that the multifunction 퐹 + 퐹  is integrable according 
to Aumann.  
Denote respectively ℱ ,ℱ ,ℱ  sets of integrable according to 
Bochner selection for multifunctions 퐹 ,퐹 ,퐹 + 퐹 . From the 
above reasoning it is clear that ℱ + ℱ = ℱ .  
In these conditions by definition of Aumann integral and 
linearity of the Bochner integral conclude that ∫ (퐹 +

퐹 )(x)dµ = ∫ F (x) dµ + ∫ F (x) dµ.  
 
Now see how we can formulate a similar proposition to 3 in 
our case. 
Initially, we note that it is true that lemma: 
Lemma 12 
Let (X,,) be a measurable space with finite measure. If 
F:X2  is an integrably bounded multifunction that has 
measurable selections then F:X2  is integrable according to 
Aumann. 
Proof 
Since F is an integrably bounded multifunction then there is a 
nonnegative function  푓(푥) ∈ 퐿 (푋,푅, ) such that 퐹(푥) ⊂
푓(푥)퐵 almost everywhere according  on X (B is denoted 
unit ball in Y). On the other hand under the assumption of 
Lemma, there is a measurable selection g of F. So, g(x)f(x)B 
almost everywhere according  on X. This fact tells us that 
||g(x)||  f(x) almost everywhere according  on X and 
therefore the real value function||g(x)|| is integrable according 
to Lebesgue. 
Since g is a measurable function then there is a sequence of 
simple functions (푔 ) ∈  such that  lim → 푔 = 푔 almost 
everywhere according  on X. Therefore, for every  > 0 there 
is a 푛 ∈ 푁 such that for every 푛 ≥ 푛  is true the inequality 
‖푔 (푥) − 푔(푥)‖ < 휀.      
From the third property of quasy norm we have: ‖푔 (푥)‖ ≤
퐾‖푔 (푥)− 푔(푥)‖+퐾‖푔(푥)‖ < 퐾휀 + 퐾푓(푥) almost 
everywhere according  on X. The function K( + f(x)) is also 
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non-negative integrable and since (‖푔 (푥)‖) ∈  is a sequence 
of real valued functions then from the Lebesgue integration 
theory we conclude that the sequence (‖푔 (푥)‖) ∈  is 
integrable according to Lebesgue. 
 
On the other hand inequality ‖푔 (푥) − 푔(푥)‖ ≤ 퐾‖푔 (푥)‖ +
퐾‖g(x)‖ and integrable according to Lebesgue of functions 
‖푔 (푥)‖ and ‖g(x)‖ guarantee integrable according to 
Lebesgue of functions ‖푔 (푥)− 푔(푥)‖ for any nN.  
 
So is true the inequality ∫ ‖푔 (푥)− 푔(푥)‖푑휇 < 휀휇(푋) =
휀′	where 휀′ can be a positive number however small while the 
measure of X is finite. Therefore we conclude that the 
function g is Bochner-integrable, which is the same as the fact 
that F is integrable by Aumann. 
 
By Lema above and Kuratowski-Ryll Nardzewski theorem it 
follows that the proposition is true: 
 
Proposition 13 
Let (X,,) be a measurable space with finite measure. If 
F:X2  is a weakly measurable multifunction with closed 
valued and integrably bounded then it is integrable according 
to Aumann. 
 
Also Lemma 12 and Aumann theorem on the existence of a 
measurable selection of multifunction allow us to affirm that: 
 
Proposition 14 
Let (X,,) be a measurable space with finite measure and Y 
a Borel subset of a Polish space. If F:X2  is a multifunction 
with separable graph and integrably bounded then it is 
integrable according to Aumann. 
 
It is true the following proposition: 
Proposition 15 
If G:X2  is integrable according to Aumann and  G(x)  
F(x) almost everywhere according  on X then the 
multifunction F is also integrable according to Aumann. 
The proof is immediate from the fact that the integrable 
according to Aumann multifunctions are multifunctions that 
have integrable according to Bochner selections and 
construction of F colection.  
 
Corollary 16 
a) If F:X2  is integrable according to Aumann then 
퐹: X2  is also integrable according to Aumann. 
b) If the sequence 퐹 : X2  consisting of integrable 
according to Aumann multifunctions then ⋃ 퐹∈  is also 
integrable according to Aumann. 
 
Note that the cutting operation of two integrable according to 
Aumann multifunctions it can draw us out of this class 
multifunctions. 
Example 17 
Let 퐹 ,퐹 : [0,1] → 2  be two multifunctions such that: 

퐹 (푥) =
{3}																			푥 ∈ 퐴 ∩ 퐶
[3,5[		푥 ∈ [0,1] ∖ 퐴 ∩ 퐶     and   퐹 (푥) =

	{3}			푥 ∈ [0,1] ∖ 퐴
]2,3]											푥 ∈ 퐴  where A is a immeasurable set according 

to Lebesgue measure and C is Cantor set.   
Note that (퐹 ∩ 퐹 )(푥) = {3} for every x[0,1] and the 
function f(x) = 3 for every x[0,1] serves as a integrable 
selection of each of them, therefore these multifunctions are 
integrable according to Aumann in [0,1]. So we built an 
example when cutting two of integrable multifunctions is also 
integrable. 
 

Take 퐹 (푥) =
{3}																				푥 ∈ 퐴 ∩ 퐶

(0,2)		푥 ∈ [0,1] ∖ (퐴 ∩ 퐶) and 퐹 (푥) =

	{2}			푥 ∈ [0,1] ∖ 퐴
]1,4]											푥 ∈ 퐴  where A is a immeasurable set according 

to Lebesgue measure and C is Cantor set. Note that the 
functions f(x) = 3 and g(x) = 2 for every x[0,1] serve 
respectively as Bochner integrable selections, and hence are 
integrable according to Aumann.   

Note that (퐹 ∩ 퐹 )(푥) =
{3}													푥 ∈ 퐴 ∩ 퐶
(1,2)			푥 ∈ 퐴 ∖ 퐴 ∩퐶
∅							푥 ∈ [0,1] ∖ 퐴

 and however 

constructed a function f :[0,1]R such that f(x)	(퐹 ∩
퐹 )(푥)	almost everywhere according to Lebesgue measure in 
R, it is true that 푓 (−∞, 2) = 퐴 ∖ (퐴 ∩ 퐶). The set 퐴 ∖ (퐴 ∩
퐶) is immeasurable according to Lebesgue measure and so the 
function f is not Bochner integrable. Therefore 퐹 ∩ 퐹 	 is not 
integrable according to Aumann. 
 
Aumann [7] has shown that, if the multifunctions 퐹 :푇 → 2  
where, T = [0,1] and 퐸  is an n-dimensional Euclidean space, 
are bounded from the same integrable function then 
∫ 푙푖푚푠푢푝퐹 푑휇 ⊃ 푙푖푚푠푢푝 ∫퐹 푑휇.    
In our case, we notice that this proposition is true: 
Proposition 18 
If 퐹 :푋2  is a sequence of integrable according to Aumann 
multifunctions and Aumann integral of 푙푖푚푠푢푝퐹  exists then 
we have ∫ 푙푖푚푠푢푝퐹 푑휇 ⊇ 푙푖푚푠푢푝 ∫퐹 푑휇.  
Proof 
Starting from the equation 
푙푖푚푠푢푝퐹 (푥) = ⋂ (⋃ 퐹 (푥))∈  and the fact that not 
always the cutting of two integrable multifunctions is again 
integrable is clear that, there is not always Aumann's integral 
of the 푙푖푚푠푢푝퐹 . 
So, firstly we show that if ∫ 푙푖푚푠푢푝퐹 푑휇 = ∅ then 
푙푖푚푠푢푝 ∫퐹 푑휇 = ∅. 
Suppose that ∫ 푙푖푚푠푢푝퐹 푑휇 = ∅, so there is no function 
f:XY that is integrable according to Bochner such that 
f(x)∈푙푖푚푠푢푝퐹 (푥) almost everywhere according to µ on X.  
Therefore, for any Bochner integrable function f:XY there 
is a subset AX with positive measure whose points satisfy 
the condition 	푓(푥) ∉ 푙푖푚푠푢푝퐹 (푥). So, for every xA have 
that: found 푛 ∈ 푁 such that for every k 푛  it is true the 
relation 푓(푥) ∉ 퐹 (푥). 
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Assuming that	푙푖푚푠푢푝 ∫ 퐹 푑휇 ≠ ∅ we have found a function 
f0:XY that is integrable according to Bochner such that: for 
every nN there is 푘 ∈ 푁 such that 푘 ≥ 푛 and ∫푓 푑휇 ∈
∫퐹 푑휇. So, integrable function f0 satisfies the relation 
푓 (푥) ∈ 퐹 (푥) for 푘 ≥ 푛 almost everywhere according to µ 
on X. Therefore for 푛 ∈ 푁 we find 푘 ≥ 푛  such that 
푓 (푥) ∈ 퐹 (푥) almost everywhere according to µ on X or in 
other words, we find a point in the set A for which 푓 (푥) ∈
퐹 (푥). 
The latter, by the above, contradicts the fact that 
∫ 푙푖푚푠푢푝퐹 푑휇 = ∅. Thus we have shown that, if 
∫ 푙푖푚푠푢푝퐹 푑휇 = ∅ then 푙푖푚푠푢푝 ∫퐹 푑휇 = ∅.  
Let us turn now to the case when ∫ 푙푖푚푠푢푝퐹 푑휇 ≠ ∅.  
Take the function f:XY such that ∫ 푓 푑휇 ∈
푙푖푚푠푢푝 ∫퐹 푑휇		and we can show that 
∫푓 푑휇 ∈ ∫ 푙푖푚푠푢푝퐹 푑휇. 
By reasoning in paragraph above we conclude that under 
Bochner integrable function f:XY we have that for every 
nN there is 푘 ∈ 푁 such that 푘 ≥ 푛 and 푓(푥) ∈ 퐹 (푥) 
almost everywhere according to 휇 on X. In these conditions 
푓(푥) ∈ 푙푖푚푠푢푝퐹 (푥) = ⋂ (⋃ 퐹 (푥))∈  almost 
everywhere according to 휇 on X and the function f is 
integrable according to Bochner. 
So we have shown that ∫푓 푑휇 ∈ ∫ 푙푖푚푠푢푝퐹 푑휇. 
  
Similarly to the proof of the claim above show a similar 
proposition with Fatou theorem. 
Proposition 19 
If 퐹 :푋2  is a sequence of integrable according to Aumann 
multifunctions and Aumann integral of 푙푖푚푖푛푓퐹 	exists then 
we have ∫ 푙푖푚푖푛푓퐹 푑휇 ⊆ 푙푖푚푖푛푓 ∫퐹 푑휇. 
 
Remark 20 
We can find sequences of integrable according to Aumann 
multifunctions for which there is Aumann integral of 
푙푖푚푖푛푓퐹  and 푙푖푚푠푢푝퐹  but are not true the relations 
∫ 푙푖푚푠푢푝퐹 푑휇 ⊆ 푙푖푚푠푢푝 ∫퐹 푑휇 and ∫ 푙푖푚푖푛푓퐹 푑휇 ⊆
푙푖푚푖푛푓 ∫퐹 푑휇 . 
Take the sequence of multifunctions 퐹 : [0,1] → 푅 such that: 

F (x) =
{1}																		x ∈ 0,

1
n

0,
1
n ∪ {1}					x ∈

1
n , 1 	

 

where R is equipped with Lebesgue measure. 
The function f(x) = 1 for every x[0,1] serves as the Bochner 
integrable selection for any multifunction F . So every 
multifunction 퐹  is integrable according to Aumann. 
Find now 푙푖푚푠푢푝퐹 (푥) = ⋂ (⋃ 퐹 (푥))∈  and 
푙푖푚푖푛푓퐹 (푥) = ⋃ (⋂ 퐹 (푥))∈ .  
If x = 0 then for every nN the set 퐹 (푥) = {1}. So that  
푙푖푚푠푢푝퐹 (푥) = {1} and 푙푖푚푖푛푓퐹 (푥) = {1}. 
If x = 1 then for every kN the set 퐹 (푥) = 0, ∪ {1}. So 

that are true the equalities ⋃ 퐹 (푥) = 0, ∪ {1} and 

⋂ 퐹 (푥) = {0,1}. Therefore we have 푙푖푚푠푢푝퐹 (푥) =
푙푖푚푖푛푓퐹 (푥) = {0,1}. 
Let us take x(0,1) and to find 푙푖푚푠푢푝퐹 (푥) and 
푙푖푚푖푛푓퐹 (푥). For these x there is 푛 (푥) ∈ 푁  such that for 
every 푛 ≥ 푛 (푥) is real inequality < 푥. So are true the 

equalities⋃ 퐹 (푥) = 0,
( )

∪ {1} and ⋂ 퐹 (푥) =

{0,1}. Therefore we have 푙푖푚푠푢푝퐹 (푥) = 0,
( )

∪ {1} 
because of 푛 (푥) is a constant and 푙푖푚푖푛푓퐹 (푥) = {0,1}. So 
finally have: 
 

푙푖푚푠푢푝퐹 (푥) =

{1}																				푥 = 0
0,

( )
∪ {1}					푥 ∈ ]0,1[

{0,1}																	푥 = 1
  and  

푙푖푚푖푛푓퐹 (푥) =
{1}													푥 = 0
{0,1}					푥 ∈ ]0,1] 

Thus the function f (x) = 0 for all x[0,1] is an Bochner 
integrable selection of 푙푖푚푠푢푝퐹 (푥) and 푙푖푚푖푛푓퐹 (푥). On the 
other hand ∫ 푓푑휇 ∉ 푙푖푚푠푢푝 ∫퐹 푑휇 because this function is 
not a selection for none of multifunctions 퐹  (Because the 
points of the segment 0,  where f (x) does not included in 
the set  퐹 (푥) have positive measure).   
 
Corollary 21 
Let (X,,) be a measurable space with finite measure. If 
퐹 :X2  is a sequence of weakly measurable mulifunctions 
with closed valued and integrably bounded from the same 
function f:XR  such that converges to multifunction 
F:X2  almost everywhere according to 휇 on X then F is 
integrable according to Aumann and 
∫퐹푑휇 = lim → ∫퐹 푑휇.  
Proof 
By proposition 13 note that the multifunctions F  are 
integrable according to Aumann. Also from propositions 1 
and 2 it follows that  푙푖푚푖푛푓퐹  and 푙푖푚푠푢푝퐹  are weakly 
measurable. On the other hand, since multifunctions 퐹  are 
integrably bounded from the same function f:XR then the 
equalities 푙푖푚푠푢푝퐹 (푥) = ⋂ (⋃ 퐹 (푥))∈  and  
푙푖푚푖푛푓퐹 (푥) = ⋃ (⋂ 퐹 (푥))∈  tell us that the 
multifunctions 푙푖푚푖푛푓퐹  and 푙푖푚푠푢푝퐹  are also integrably 
bounded form function f:XR.  
Since the sequence of multifunctions 퐹 :X2  converges to 
multifunction F:X2  almost everywhere according to 휇 on 
X then it true that 푙푖푚푠푢푝퐹 (푥) = 푙푖푚푖푛푓퐹 (푥) =
퐹(푥)		almost everywhere according to 휇 on X.  
Also, for every nN the multifunction ⋂ 퐹 (푥) is weakly 
measurable and with closed valued. This multifunction is also 
integrably bounded from the function f:XR. So from the 
proposition 13 we conclude that the multifunction ⋂ 퐹 (푥) 
is integrable according to Aumann. The Corollary 16 allows 
us to say that the multifunction 
푙푖푚푖푛푓퐹 (푥) = ⋃ (⋂ 퐹 (푥))∈  is integrable according to 
Aumann. So multifunction F(x) to which converges the 
sequence of multifunctions 퐹  is integrable according to 
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Aumann.With a similar reasoning as in Theorem 5 of [7] 
noted that in these conditions is true the equality ∫퐹푑휇 =
lim → ∫퐹 푑휇.  
More specifically, from propositions 18 and 19 we write: 

푙푖푚푠푢푝 퐹 (푥)푑휇 ⊆ 푙푖푚푠푢푝 퐹 (푥)푑휇 = 퐹푑휇

= 푙푖푚푖푛푓퐹 (푥)푑휇 ⊆ 푙푖푚푖푛푓 퐹 (푥)푑휇 

Therefore it is clear that we have shown the equality 
푙푖푚푖푛푓 ∫퐹 (푥)푑휇 = 푙푖푚푠푢푝 ∫퐹 (푥)푑휇 which guarantees us 
the existence of the limit of integrals sequence ∫퐹 (푥)푑휇 and 
for more ∫퐹푑휇 = lim → ∫퐹 푑휇.  
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