EXPLICIT EXPRESSION FOR FIRST INTEGRAL OF A RATIONAL TYPE OF KOLMOGOROV SYSTEMS

KHALIL I.T. AL-DOSARY

Abstract

In this paper we cherecterize the integrability and introduce an explicit expression of first integral then consequently the non-existence of periodic orbits for rational type of the planar Kolmogorove systems of the form $$
\begin{aligned} & \dot{x}=x\left(\frac{P_{n_{1}}(x, y)}{P_{n_{2}}(x, y)}+\frac{R_{k_{1}}(x, y)}{R_{k_{2}}(x, y)}\right) \\ & \dot{y}=y\left(\frac{Q_{m_{1}}(x, y)}{Q_{m_{2}}(x, y)}+\frac{R_{k_{1}}(x, y)}{R_{k_{2}}(x, y)}\right) \end{aligned}
$$ where $n_{1}, n_{2}, m_{1}, m_{2}, k_{1}$, and k_{2} are positive integers and P_{i}, Q_{j}, and R_{k} are homogeneous polynomials of degree i, j and k respectively such that $n_{1}-n_{2}=$ $m_{1}-m_{2}$. We also present an example in order to illustrate the applicability of the result.

1. Introduction

A two dimensional rational vector field defined on the real plane is a vector field of the form

$$
\begin{equation*}
X(x, y)=P(x, y) \frac{\partial}{\partial x}+Q(x, y) \frac{\partial}{\partial y} \tag{1.1}
\end{equation*}
$$

where P, Q are rational functions means division of two homogeneous polynomials

$$
P(x, y)=\frac{P_{n_{1}}(x, y)}{P_{n_{2}}(x, y)}, \quad Q(x, y)=\frac{Q_{m_{1}}(x, y)}{Q_{m_{2}}(x, y)}
$$

and $P_{i}(x, y), Q_{j}(x, y)$ are homogeneous polynomials of degree i, j respectively, and $P(x, y), Q(x, y)$ are coprime in the ring $R[x, y]$.

Let U be an open subset of R^{2}. If there exists a non-constant C^{1} function H : $U \rightarrow R$, which is constant on all the solutions of X contained in U, then we say that H is a first integral of X on U, and that X is integrable on U. Means we have $\frac{\partial H}{\partial x} P+\frac{\partial H}{\partial y} Q=0$ on U. For more details about first integral see for instance $[1,2,4,5,6,7,11]$, see also the references quoted in those articles.

If $f \in R[x, y]$, then $f(x, y)=0$ is an algebraic curve. We say that $f=0$ is invariant if $X f=K f, K \in R[x, y]$. In this case K is called the cofactor of f. Its degree is lower than $n_{1}-n_{2}$. The expression which defines K is written as

$$
\begin{equation*}
\frac{\partial f}{\partial x} P+\frac{\partial f}{\partial y} Q=K f \tag{1.2}
\end{equation*}
$$

Recall that a limit cycle of system 1.1 is an isolated periodic solution in the set of all periodic solutions of the system. On the points of the algebraic curve

[^0]$f(x, y)=0$, one can see from 1.2 that the gradient of f is orthogonal to the vector field (P, Q). Hence at every point of $f=0$ the vector field (P, Q) is tangent to the curve $f=0$, so the curve $f=0$ is formed by trajectories of the vector field (P, Q).

In [10] the authors characterize the integrability and an explicit expression of first integral and the non-existence of periodic orbits for the 2-dimensional Kolmogorov systems of polynomial form

$$
\begin{align*}
\dot{x} & =x\left(P_{n}(x, y)+R_{m}(x, y)\right) \tag{1.3}\\
\dot{x} & =y\left(Q_{n}(x, y)+R_{m}(x, y)\right)
\end{align*}
$$

where n and m are positive integers and P_{n}, Q_{n} and R_{m} are homogeneous polynomials of degree n, n, and m respectively.

In this paper we extend these results to characterize integrability and presentan an explicit expression of first integral and then the non-existence of periodic orbits to systems with P_{n}, Q_{n} and R_{m} are not necessarily polynomials, but rational functions of the form

$$
\begin{align*}
\dot{x} & =x\left(\frac{P_{n_{1}}(x, y)}{P_{n_{2}}(x, y)}+\frac{R_{k_{1}}(x, y)}{R_{k_{2}}(x, y)}\right) \tag{1.4}\\
\dot{y} & =y\left(\frac{Q_{m_{1}}(x, y)}{Q_{m_{2}}(x, y)}+\frac{R_{k_{1}}(x, y)}{R_{k_{2}}(x, y)}\right)
\end{align*}
$$

with $n_{1}-n_{2}=m_{1}-m_{2}=n$ and $k_{1}-k_{2}=k$.
These systems, as mentioned in [10], are called Kolmogorov systems which appear in applications that the per unit of change $\frac{d x_{i}}{d t} / x_{i}$ of the dependent variables $x_{i}(t)$ are given functions $f_{i}\left(x_{i}, \ldots, x_{n}\right)$ of these variables at any time These systems are also called Lotka-Volterra systems because were started to be studied by them in [12] and in [14], respectively. Later on Kolmogorov came, giving some generalization in [8] and then some authors denote them by Kolmogorov systems. There are many natural phenomena which can be modeled by the Kolmogorov systems such as mathematical ecology and population dynamics [12], chemical reactions, plasma physics [9], hydrodynamics [3] economics, etc.

2. Mean Result

Before we present the Theorem, define the trigonometric functions

$$
\begin{align*}
F(\theta) & =\cos ^{2} x \frac{P_{n_{1}}(\cos \theta, \sin \theta)}{P_{n_{2}}(\cos \theta, \sin \theta)}+\sin ^{2} x \frac{Q_{m_{1}}(\cos \theta, \sin \theta)}{Q_{m_{2}}(\cos \theta, \sin \theta)} \tag{2.1}\\
G(\theta) & =\cos \theta \sin \theta\left[\frac{Q_{m_{1}}(\cos \theta, \sin \theta)}{Q_{m_{2}}(\cos \theta, \sin \theta)}-\frac{P_{n_{1}}(\cos \theta, \sin \theta)}{P_{n_{2}}(\cos \theta, \sin \theta)}\right] \\
R(\theta) & =\frac{R_{k_{1}}(\cos \theta, \sin \theta)}{R_{k_{2}}(\cos \theta, \sin \theta)}
\end{align*}
$$

Theorem 1. Consider system 1.4. Then the following statements hold.
(a) If $G(\theta) \neq 0$ and $n \neq k$, then system 1.4 has the first integral

$$
\begin{align*}
H(x, y)= & \left(x^{2}+y^{2}\right)^{\frac{k-n}{2}} \exp \left((k-n) \int^{\arctan \frac{y}{x}} J(s) d s\right)+ \tag{2.2}\\
& (k-n) \int^{\arctan \frac{y}{x}} K(u) \exp \left((k-n) \int^{u} J(s) d s\right) d u
\end{align*}
$$

where

$$
\begin{equation*}
J(\theta)=\frac{F(\theta)}{G(\theta)} \quad \text { and } \quad K(\theta)=\frac{R(\theta)}{G(\theta)} \tag{2.3}
\end{equation*}
$$

(b) If $G(\theta) \neq 0$ and $n=k$, then system 1.4 has the first integral

$$
\begin{equation*}
H(x, y)=\left(x^{2}+y^{2}\right)^{\frac{1}{2}} \exp \left(-\int^{\arctan \frac{y}{x}}(J(s)+K(s)) d s\right) \tag{2.4}
\end{equation*}
$$

(c) If $G(\theta) \equiv 0$, then system 1.4 has the first integral $H(x, y)=\frac{y}{x}$.
(d) System 1.4 has no periodic orbits.

Proof. (a)
System 1.4 in the polar coordinates $x=r \cos \theta, y=r \sin \theta$ is in the form

$$
\begin{align*}
\dot{r} & =r^{n+1} F(\theta)+r^{k+1} R(\theta) \tag{2.5}\\
\dot{\theta} & =r^{n} G(\theta)
\end{align*}
$$

where F, G and R are given in 2.1, $n=n_{1}-n_{2}=m_{1}-m_{2}$ and $k=k_{1}-k_{2}$.
Here we assume that $G(\theta) \neq 0$, then if we consider r as dependent variable of the independent variable θ, system 2.5 becomes the differential equation

$$
\begin{equation*}
\frac{d r}{d \theta}=r J(\theta)+r^{k+1-n} K(\theta) \tag{2.6}
\end{equation*}
$$

where $J(\theta)$ and $K(\theta)$ are given in 2.3 .
Equation 2.6 is a Bernoulli differential equation. Make use of the transformation $\rho=r^{n-k}$ in order to transform equation 2.6 to the following linear differential equation

$$
\frac{d \rho}{d \theta}-(n-k) J(\theta) \rho=(n-k) K(\theta)
$$

This equation has the first integral 2.2 given in the statement of the Theorem. Hence statement (a) of the Theorem is proved.

Proof. (b)
Suppose now that $G(\theta) \neq 0$ and $n=k$. Then the differential equation 2.6 becomes

$$
\frac{d r}{d \theta}=r[J(\theta)+K(\theta)]
$$

which has the first integral 2.4 given in the statement of the Theorem. Hence statement (b) of the Theorem is proved.

Proof. (c)
Now assume that $G(\theta) \equiv 0$. Then from 2.5 we have $\dot{\theta}=0$. So the straight lines through the origin of coordinates of the differential system 1.4 are invariant by the flow of this system. Hence $h=\frac{y}{x}$ is a first integral of the system. This completes the proof of statement (c).

Proof. (d)
Assume that system 1.4 has an equilibrium point a. Since the axes x and y are formed by trajectories of the system, surrounding the equilibrium located on the axes cannot be periodic orbit.

Suppose the equilibrium point a located off the axes x, y, means in one of the open quadrants.

Let γ be a periodic orbit surrounding the equilibrium point a. Let $H(\gamma)=h_{\gamma}$.
Assume that $G(\theta) \neq 0$ and $n \neq k$, then the curve $H=h$ with $h \in R$, which are formed by trajectories of the differential system 2.5 can be written as

$$
\begin{aligned}
r(\theta)= & {\left[h \exp \left((n-k) \int J(s) d s\right)-(k-n) \exp \left((n-k) \int^{\theta} J(s) d s\right)\right.} \\
& \left.{ }^{\theta} K(u) \exp \left((k-n) \int J(s) d s\right) d u\right]^{\frac{1}{n-k}}
\end{aligned}
$$

Hence the orbit γ is contained in the curve

$$
\begin{aligned}
r(\theta)= & {\left[h_{\gamma} \exp \left((n-k) \int^{\theta} J(s) d s\right)-(k-n) \exp \left((n-k) \int^{\theta} J(s) d s\right)\right.} \\
& \left.\quad{ }^{\theta} K(u) \exp \left((k-n) \int^{u} J(s) d s\right) d u\right]^{\frac{1}{n-k}}
\end{aligned}
$$

But this curve cannot contain the periodic orbit γ contained in one of the open quadrants because this curve has at most a unique point on every ray $\theta=\theta^{*}$ for all $\theta^{*} \in[0,2 \pi)$.

Now suppose that $G(\theta) \neq 0$ and $n=k$. From 2.4, the curves $H=h$ with $h \in R$ can be written as

$$
r(\theta)=h \exp \left(\int^{\theta}(J(s)+K(s)) d s\right)
$$

So the period orbit γ must be contained in the curve

$$
r(\theta)=h_{\gamma} \exp \left(\int^{\theta}(J(s)+K(s)) d s\right)
$$

Again this curve cannot contain the periodic orbit γ for same reason that in the previous case.

Finally assume that $G(\theta) \equiv 0$. Then since all the straight lines through the origin are formed by trajectories, clearly the system has no periodic orbits. This completes the proof of statement (d).

3. Example

The example is presented to illustrate the applicability of the Theorem 1. Consider the following differential system

$$
\begin{align*}
& \dot{x}=\frac{-x^{2}+y^{2}}{y^{2}} \tag{3.1}\\
& \dot{y}=\frac{-2 x}{y}
\end{align*}
$$

In order to rewrite the system 3.1 in the canonical form 1.4, we may write

$$
\begin{aligned}
& \dot{x}=x\left(\frac{x}{y^{2}}-\frac{2 x^{2}-y^{2}}{x y^{2}}\right) \\
& \dot{y}=y\left(\frac{-1}{x}-\frac{2 x^{2}-y^{2}}{x y^{2}}\right)
\end{aligned}
$$

Therefore

$$
\begin{aligned}
F(\theta)=\frac{\cos ^{2} \theta-\sin ^{2} \theta}{\sin ^{2} \theta \cos \theta}, & G(\theta)=\frac{-1}{\sin \theta} \\
J(\theta)=\frac{\sin ^{2} \theta-\cos ^{2} \theta}{\sin \theta \cos \theta}, &
\end{aligned}
$$

Here $n_{1}=1, n_{2}=2, m_{1}=0, m_{2}=1, k_{1}=2$, and $k_{2}=3$. So $n_{1}-n_{2}=$ $m_{1}-m_{2}=-1=n$, and $k_{1}-k_{2}=-1=k$, therefore $n=k$, so it is the case (b) of the Theorem.

Hence by Theorem(b) we conclude that

$$
\begin{aligned}
H(x, y) & =\left(x^{2}+y^{2}\right)^{\frac{1}{2}} \exp \left(-\int^{\arctan \frac{y}{x}}(J(s)+K(s)) d s\right) \\
& =\frac{x^{2}+y^{2}}{y}
\end{aligned}
$$

It is clear, by direct calculation, that

$$
\frac{d H}{d t}\left(=\frac{\partial H}{\partial x} \dot{x}+\frac{\partial H}{\partial y} \dot{y}\right)=0
$$

This justifies the applicability of the Theorem (b).
Acknowledgement 1. The author thanks the University of Sharjah for its support.

4. References

[1] O.I. Bogoyavlenskij, Itegrable Lotka-Volterra systems, Regol. Chaotic Dyn. 13 (2008) 543-556.
[2] O.I. Bogoyavlenskij, Y. Itoh, T. Yukawa, Lotka-Volterra systems integrable in quadratures, J. Math. Phys. 49 (2008), 053501, 6 pp.
[3] F.H. Busse, Transition to turbulence via the statistical limit cycle rout, Synergetic, Springer-Verlag, Belin, 1978, p. 39.
[4] L. Cairo, J. Llibre, Phase portrait of cubic polynomial vector fields of LotkaVolterra type having a rational first integral of degree 2, J. Phys. A 40 (2007) 6329-6348.
[5] L. Cairo, H. Giacomini, J. Llibre, Liouvillian first integrals for the planar Lotka-Volterra system,Rend.Circ. Mat. Palermo 2 (5) (2003) 389-418.
[6] P. Gao, Hamiltonian for the Lotka-Volterra systems, Phys.Lett. A 273 (2000) 85-96.
[7] R. Gladwin Pradeep, V.K. Chandrasekar, M. Senthilvelan, M. Lakshmanan, On certain new integrable second order nonlinear differential equations and their connection with two dimensional Lotka-Volterra system, J. Math. Phys. 51 (2010). 033519, 23 pp.
[8] A. Colmogorov, Sulla teoria di Volterra della lotta per l'esistenza, Giornale dell' Istituto Italiano degli Attuari 7 (1936) 74-80.
[9] G. Laval, R. Pellar, Plasma Physics, in: Proceedings of Summer School of Theoretical Physics, Gordon and Breach, New York, 1975.
[10] J. Llibre, T. Salhi, On the dynamics of a class of Kolmogorov systems, Applied Math. and Comp. 225 (2013) 242-245.
[11] J. Llibre, C. Valls, Global analytic first integrals for the real planar LotkaVolterra system, J. Math. Phys. 48 (2007). 033557, 13 pp.
[12] A.J. Lotka, Analytical note on certain rhythmic relations in organic systems, Pric. Natl. Acad. Sci. USA 6 (1920) 410-415.
[13] R.M. May, Stability and complexity in model Ecosystems, Priceton, New Jersey, 1974.
[14] V. Volterra, Lecons sur la Theorie Mathematique de la lutte pour la vie, Gauthier Villars, Paris, 1931.

College of Sciences, University of Sharjah, POBox 27272, Sharjah, United Arab Emirates.

E-mail address: dosary@sharjah.ac.ae

[^0]: Date: August 10, 2014.
 1991 Mathematics Subject Classification. 34C05, 34C07, 34C25.
 Key words and phrases. Intergability, Kolmogorov system, periodic orbit, rational function.

