# Quasi Conformal Curvature Tensor on a P-Sasakian Einstein Manifold 

Gajendra Nath Tripathi* ${ }^{1}$, Sudhir Dubey ${ }^{2}$, Dhruwa Narain ${ }^{3}$<br>Department of Mathematics and Statistics, D D U Gorakhpur University, Gorakhpur-273009,INDIA

Abstract-In this paper, we have studied p-Sasakian Einstein manifold which satisfy the condition r-n(n-1), a+2(n-1)b$=0$ i. e. the constant scalar curvature r. also the p-Sasakian Einstein manifold satisfying div $\tilde{C}=0$ have studied. where $\tilde{C}$ is quasi-conformal curvature tensor and $r$ is the scalar curvature.

Keywords-P-Sasakian manifold, Quasi-conformal curvature tensor, Einstein manifold.
2000 MSC-53C05, 53C25, 53C50.

## 1. PRELIMINARIES

Let $\mathrm{M}^{\mathrm{n}}$ be n -dimensional $\mathrm{C}^{\infty}$-manifold. If there exist a tensor field F of type (1, 1 ), a vector field $\xi$ and a 1 -form $\eta$ in $\mathrm{M}^{\mathrm{n}}$ satisfying

$$
\begin{equation*}
\overline{\bar{X}}=X-\eta(X) \xi \tag{1.1}
\end{equation*}
$$

$\overline{\mathrm{X}}=\mathrm{F}(\mathrm{X})$,
$\eta(\xi)=1$
then $\mathrm{M}^{\mathrm{n}}$ is called an almost para contact manifold.
Let $g$ be the Riemannian metric satisfying
(1.2) $\quad g(X, \xi)=\eta(X)$
(1.3) $\quad \eta(F, X)=0, \quad \operatorname{F} \xi=0, \quad \operatorname{rank} F=(n-1)$
(1.4) $\quad g(F X, F Y)=g(X, Y)-\eta(X) \eta(Y)$

Then the set $(\mathrm{F}, \xi, \eta, \mathrm{g})$ satisfying (1.1), (1.2), (1.3) and (1.4) is called an almost para-contact Riemannian structure. The manifold with such structure is called an almost p-contact Riemannian manifold [1].

If we define $\mathrm{F}(\mathrm{X}, \mathrm{Y})=\mathrm{g}(\overline{\mathrm{X}}, \mathrm{Y})$, then in addition to the above relations the following are satisfied:
(1.5) $\quad \mathrm{F}(\mathrm{X}, \mathrm{Y})=\mathrm{F}(\mathrm{Y}, \mathrm{X})$
(1.6) $\quad \mathrm{F}(\overline{\mathrm{X}}, \overline{\mathrm{Y}})=\mathrm{F}(\mathrm{X}, \mathrm{Y})$

Let us consider an $n$-dimensional differentiable manifold $M$ with a positive definite metric $g$ which admits 1 -forms $\eta$ satisfying
(1.7) $\quad\left(\nabla_{X} \eta\right)(Y)-\left(\nabla_{Y} \eta\right)(X)=0$

And
$\left(\nabla_{X} \nabla_{\mathrm{Y}} \eta\right)(\mathrm{Z})=-\mathrm{g}(\mathrm{X}, \mathrm{Z}) \eta(\mathrm{Y})-\mathrm{g}(\mathrm{X}, \mathrm{Y}) \eta(\mathrm{Z})+2 \eta(\mathrm{X}) \eta(\mathrm{Y}) \eta(\mathrm{Z})$
Where, $\nabla$ denote the covariant differentiation with respect to g . Moreover, if we put,
(1.9) $\quad \eta(X)=g(X, \xi), \quad\left(\nabla_{X} \xi\right)=\bar{X}$

Then it can be easily verified that the manifold in consideration becomes an almost para-contact Riemannian manifold. Such a manifold is called p-Saskian manifolds [2].

For a p-Saskian manifold the following relations hold [4]:
(1.10) $\quad R(X, Y) \xi=\eta(X) Y-\eta(Y) X$
(1.11) $R(\xi, X) Y=\eta(Y) X-g(X, Y) \xi$
(1.12) $R(\xi, X) \xi=X-\eta(X) \xi$
(1.13) $S(X, \xi)=-(n-1) \eta(X)$
(1.14) $\mathrm{Q} \xi=-(\mathrm{n}-1) \xi$
(1.15) $\quad \eta(R(X, Y) U)=g(X, U) \eta(Y)-g(Y, U) \eta(X)$
(1.16) $\quad \eta(R(X, Y) \xi)=0$
(1.17) $\quad \eta(R(\xi, X) Y)=\eta(X) \eta(Y)-g(X, Y)$

For any vector field $\mathrm{X}, \mathrm{Y}, \mathrm{Z}$ whare R and S are the curvature tensor and Ricci tensor and Q is the Ricci operator.

## 2. A P-SASAKIAN EINSTEIN MANIFOLD SATISFYING $R=-n(n-1), a+2(n-1) b \neq 0$

 a p-Sasakian manifold $\mathrm{M}^{\mathrm{n}}$ is said to be Einstein manifold, if its Ricci tensor S is of the form(2.1) $\quad \mathrm{S}(\mathrm{X}, \mathrm{Y})=\mathrm{kg}(\mathrm{X}, \mathrm{Y})$
where k is constant.
Putting $\mathrm{Y}=\xi$ in (2.1), we get $\mathrm{S}(\mathrm{X}, \xi)=\operatorname{kg}(\mathrm{X}, \xi)$
Since $S(X, \xi)=-(n-1) \eta(X)$ and $g(X, \xi)=\eta(X)$, we have
(2.2) $\mathrm{k}=-(\mathrm{n}-1)$

From (2.1) and (2.2), we get
(2.3) $\quad S(X, Y)=-(n-1) g(X, Y)$

Contracting (2.3), we get,
(2.4) $\quad \mathrm{QY}=-(\mathrm{n}-1) \mathrm{Y}$

Where $S(X, Y)=g(Q X, Y)$.
Let $\left(\mathrm{M}^{\mathrm{n}}, \mathrm{g}\right)$ be n -dimensional Riemannian manifold, the Quasi-conformal curvature tensor $\widetilde{\mathrm{C}}$ is defined by [9].
$\widetilde{\mathrm{C}}(\mathrm{X}, \mathrm{Y}) \mathrm{Z}=\mathrm{aR}(\mathrm{X}, \mathrm{Y}) \mathrm{Z}+\mathrm{b}[\mathrm{S}(\mathrm{Y}, \mathrm{Z}) \mathrm{X}-\mathrm{S}(\mathrm{X}, \mathrm{Z}) \mathrm{Y}+\mathrm{g}(\mathrm{Y}, \mathrm{Z}) \mathrm{QX}-\mathrm{g}(\mathrm{X}, \mathrm{Z}) \mathrm{QY}]-\frac{\mathrm{r}}{\mathrm{n}}\left(\frac{\mathrm{a}}{\mathrm{n}-1}+2 \mathrm{~b}\right)[\mathrm{g}(\mathrm{Y}, \mathrm{Z}) \mathrm{X}-\mathrm{g}(\mathrm{X}, \mathrm{Z}) \mathrm{Y}]$
Using (2.3) and (2.4) in (2.5), we get
$\widetilde{\mathrm{C}}(\mathrm{X}, \mathrm{Y}) \mathrm{Z}=\mathrm{aR}(\mathrm{X}, \mathrm{Y}) \mathrm{Z}-\left[2(\mathrm{n}-1) \mathrm{b}+\frac{\mathrm{r}}{\mathrm{n}}\left(\frac{\mathrm{a}}{\mathrm{n}-1}+2 \mathrm{~b}\right)\right][\mathrm{g}(\mathrm{Y}, \mathrm{Z}) \mathrm{X}-\mathrm{g}(\mathrm{X}, \mathrm{Z}) \mathrm{Y}]$
The endomorphism $X \wedge Y$ and $X \wedge{ }_{S} Y$ and the homeomorphism $R(X, \xi) \widetilde{\mathrm{C}}$ and $\widetilde{\mathrm{C}}(\mathrm{X}, \xi) \mathrm{R}$ are defined by
(2.7) $\quad(\mathrm{X} \wedge \mathrm{Y}) \mathrm{Z}=\mathrm{g}(\mathrm{Y}, \mathrm{Z}) \mathrm{X}-\mathrm{g}(\mathrm{X}, \mathrm{Z}) \mathrm{Y}$
(2.8) $\quad\left(X \wedge_{s} Y\right) Z=S(Y, Z) X-S(X, Z) Y$
(2.9) $\quad(\mathrm{R}(\mathrm{X}, \xi) \cdot \widetilde{\mathrm{C}})(\mathrm{U}, \mathrm{Z}) \mathrm{W}=\mathrm{R}(\mathrm{X}, \xi) \widetilde{\mathrm{C}}(\mathrm{U}, \mathrm{Z}) \mathrm{W}-\widetilde{\mathrm{C}}(\mathrm{R}(\mathrm{X}, \xi) \mathrm{U}, \mathrm{Z}) \mathrm{W}-\widetilde{\mathrm{C}}(\mathrm{U}, \mathrm{R}(\mathrm{X}, \xi) \mathrm{Z}) \mathrm{W}-\widetilde{\mathrm{C}}(\mathrm{U}, \mathrm{Z}) \mathrm{R}(\mathrm{X}, \xi) \mathrm{W}$
(2.10) $(\widetilde{\mathrm{C}}(X, \xi) \cdot R)(U, Z) W=\widetilde{\mathrm{C}}(X, \xi) R(U, Z) W-R(\widetilde{\mathrm{C}}(X, \xi) U, Z) W-R(U, Z(X, \xi) \widetilde{\mathrm{C}}) \mathrm{W}-\mathrm{R}(\mathrm{U}, \mathrm{Z}) \widetilde{\mathrm{C}}(X, \xi) \mathrm{W}$ respectively, where $\mathrm{X}, \mathrm{Y}, \mathrm{Z}$ are vector fields of M .

## 3. Main Results:

Theorem -1 An n-dimensional p-Sasakian Einstein manifold $M$ with Quasi-conformal curvature tensor $\widetilde{\mathbf{C}}$, satisfying $\mathrm{r}=-$ $n(n-1), a+2(n-1) b \neq 0$ then we have

$$
(\mathrm{R}(\mathrm{X}, \xi) \cdot \widetilde{\mathrm{C}})=\widetilde{\mathrm{C}}(\mathrm{X}, \xi) \cdot \mathrm{R}
$$

Proof : Substituting U and W by $\xi$ in (2.9) yields

$$
\begin{equation*}
(\mathrm{R}(\mathrm{X}, \xi) \cdot \widetilde{\mathrm{C}})(\xi, \mathrm{Z}) \xi=\mathrm{R}(\mathrm{X}, \xi) \widetilde{\mathrm{C}}(\xi, \mathrm{Z}) \xi-\widetilde{\mathrm{C}}(\mathrm{R}(\mathrm{X}, \xi) \xi, \mathrm{Z}) \xi \tag{2.11}
\end{equation*}
$$

$$
-\tilde{\mathrm{C}}_{(\xi, \mathrm{R}(\mathrm{X}, \xi) \mathrm{Z})} \xi-\tilde{\mathrm{C}}_{( }(\xi, \mathrm{Z}) \mathrm{R}(\mathrm{X}, \xi) \xi
$$

From (2.6) we get by virtue of (1.2) and (1.12),

$$
\begin{equation*}
\widetilde{\mathrm{C}}(\xi, \mathrm{Z}) \xi=(\mathrm{a}+2(\mathrm{n}-1) \mathrm{b})\left[1+\frac{\mathrm{r}}{\mathrm{n}(\mathrm{n}-1)}\right][\mathrm{Y}-\eta(\mathrm{Y}) \xi] \tag{2.12}
\end{equation*}
$$

If $r=-n(n-1)$, provided $a+2(n-1) b \neq 0$ then from (2.12), we have $(2.13) \widetilde{C}(\xi, Z) \xi=0 \quad$ and similarly

$$
\begin{equation*}
\widetilde{\mathrm{C}}(\mathrm{Z}, \xi) \xi=0, \quad \text { for any vector field } \mathrm{Z} . \tag{2.14}
\end{equation*}
$$

Thus we have,
(2.15) $\quad(\mathrm{R}(\mathrm{X}, \xi) . \widetilde{\mathrm{C}})(\xi, \mathrm{Z}) \xi=-\widetilde{\mathrm{C}}(\mathrm{R}(\mathrm{X}, \xi) \xi, \mathrm{Z}) \xi-\widetilde{\mathrm{C}}(\xi, \mathrm{Z}) \mathrm{R}(\mathrm{X}, \xi) \xi$

Using (1.12), we have

$$
\begin{aligned}
& \widetilde{\mathrm{C}}(\mathrm{R}(\mathrm{X}, \xi) \xi, \mathrm{Z}) \xi=-\widetilde{\mathrm{C}}(\mathrm{X}, \mathrm{Z}) \xi \\
& \widetilde{\mathrm{C}}(\xi, \mathrm{Z}) \mathrm{R}(\mathrm{X}, \xi) \xi=-\widetilde{\mathrm{C}}(\xi, \mathrm{Z}) \mathrm{X}
\end{aligned}
$$

Thus we have from (2.15)

$$
\begin{equation*}
(\mathrm{R}(\mathrm{X}, \xi) \cdot \widetilde{\mathrm{C}})(\xi, \mathrm{Z}) \xi=\widetilde{\mathrm{C}}(\mathrm{X}, \mathrm{Z}) \xi+\widetilde{\mathrm{C}}(\xi, \mathrm{Z}) \mathrm{X} \tag{2.16}
\end{equation*}
$$

On the other hand

Using (1.12, (1.15) and (2.14), we obtain the following equations

$$
\begin{aligned}
& \widetilde{\mathrm{C}}_{(\mathrm{X}, \xi) \mathrm{R}(\xi, \mathrm{Z}) \xi=}=\widetilde{\mathrm{C}}_{(\mathrm{X}, \xi) \mathrm{Z}} \\
& \mathrm{R}\left(\widetilde{\mathrm{C}}_{(\mathrm{X}, \xi) \xi, \mathrm{Z}) \xi=0}\right. \\
& \mathrm{R}\left(\xi, \mathrm{Z}(\mathrm{X}, \xi) \widetilde{\mathrm{C}}^{2}\right) \xi=\widetilde{\mathrm{C}}_{(\mathrm{X}, \xi) \mathrm{Z}} \\
& \mathrm{R}(\xi, \mathrm{Z}) \widetilde{\mathrm{C}}_{(\mathrm{X}, \xi) \xi}=0
\end{aligned}
$$

Using these equation in (2.17), we have

$$
\begin{equation*}
\left(\widetilde{\mathbf{C}}_{(X, \xi)}, R\right)(\xi, Z) \xi=0 \tag{2.18}
\end{equation*}
$$

Thus our condition satisfies the following equation

$$
(\mathrm{R}(\mathrm{X}, \xi) \cdot \widetilde{\mathbf{C}})(\xi, \mathrm{Z}) \xi=0
$$

Therefore from (2.16), we have

$$
\widetilde{\mathrm{C}}(\mathrm{X}, \mathrm{Z}) \xi+\widetilde{\mathrm{C}}(\xi, \mathrm{Z}) \mathrm{X}=0
$$

Using (1.2), (1.11), (1.12) and (2.6), we have

$$
(a+2(n-1) b)\left[1+\frac{r}{n(n-1)}\right][2 \eta(X) Z-\eta(Z) X-g(X, Z) \xi]=0
$$

Which true for $r=-n(n-1), a+2(n-1) b \neq 0$.
Hence the theorem is proved.
Theorem-2 : An n-dimensional p-Sasakian Einstein manifold M with Quasi-conformal curvature tensor $\widetilde{\mathbf{C}}$, satisfying $\mathrm{r}=-\mathrm{n}(\mathrm{n}-$ 1), $a+2(n-1) b \neq 0$ then we have

$$
\mathrm{R}(\mathrm{X}, \xi) \cdot \widetilde{\mathrm{C}}=\mathrm{L}\{(\mathrm{X} \wedge \xi) \cdot \mathrm{C}\}, \mathrm{L} \neq-1, \text { where } \mathrm{L} \text { is some function on } \mathrm{M} \text {. }
$$

Proof: We denote the expression in the bracket on the right hand side of (2.9) by A, and we calculate it. Thus
(2.19) $\mathrm{A}=\mathrm{L}((\mathrm{X} \wedge \xi) \cdot \widetilde{\mathrm{C}})(\xi, \mathrm{Z}) \xi=\mathrm{L}\{((\mathrm{X} \wedge \xi) \widetilde{\mathrm{C}})(\xi, \mathrm{Z}) \xi-\widetilde{\mathrm{C}}((\mathrm{X} \wedge \xi) \xi, \mathrm{Z}) \xi-\widetilde{\mathrm{C}}(\xi,(\mathrm{X} \wedge \xi) \mathrm{Z}) \xi-\widetilde{\mathrm{C}}(\xi, \mathrm{Z})(\mathrm{X} \wedge \xi) \xi\}$

Using (2.13), we have

$$
\begin{aligned}
& (\mathrm{X} \wedge \xi) \widetilde{\mathrm{C}}(\xi, \mathrm{Z}) \xi=0 \\
& \left.\widetilde{\mathrm{C}}((\mathrm{X} \wedge \xi) \xi, \mathrm{Z}) \xi=\widetilde{\mathrm{C}}_{(\mathrm{X}}-\eta(\mathrm{X}) \xi, \mathrm{Z}\right) \xi \\
& =\widetilde{\mathbf{C}}(\mathrm{X}, \mathrm{Z}) \xi-\eta(\mathrm{X}) \widetilde{\mathrm{C}}(\xi, \mathrm{Z}) \xi \\
& =\widetilde{\mathrm{C}}(\mathrm{X}, \mathrm{Z}) \xi \\
& \widetilde{\mathrm{C}}(\xi,(\mathrm{X} \wedge \xi) \mathrm{Z}) \xi=0 \\
& \widetilde{\mathrm{C}}(\xi, \mathrm{Z})(\mathrm{X} \wedge \xi) \xi\}=\widetilde{\mathrm{C}}(\xi, \mathrm{Z}) \mathrm{X}
\end{aligned}
$$

From the above and using (2.16), we have

$$
\widetilde{\mathrm{C}}(\mathrm{X}, \mathrm{Z}) \xi+\widetilde{\mathrm{C}}(\xi, \mathrm{Z}) \mathrm{X}=\mathrm{L}\{-\widetilde{\mathrm{C}}(\mathrm{X}, \mathrm{Z}) \xi-\widetilde{\mathrm{C}}(\xi, \mathrm{Z}) \mathrm{X}\}
$$

$$
\begin{equation*}
(1+\mathrm{L})[\widetilde{\mathbf{C}}(\mathrm{X}, \mathrm{Z}) \xi+\widetilde{\mathrm{C}}(\xi, \mathrm{Z}) \mathrm{X}]=0 \tag{2.20}
\end{equation*}
$$

Using (1.2), (1.11), (1.12) and (2.6), we have

$$
\begin{equation*}
(1+L)(a+2(n-1) b)\left[1+\frac{r}{n(n-1)}\right][2 \eta(X) Z-\eta(Z) X-g(X, Z) \xi]=0 \tag{2.21}
\end{equation*}
$$

Since $\mathrm{L} \neq-1$.
Thus which true for $r=-n(n-1), a+2(n-1) b \neq 0$.
Hence the theorem is proved.
Theorem -3: An n-dimensional p-Sasakian Einstein manifold M with Quasi-conformal curvature tensor $\widetilde{\mathbf{C}}$, Satisfying $r=-n(n-$ 1), $\mathrm{a}+2(\mathrm{n}-1) \mathrm{b} \neq 0$ then we have $\mathrm{R}(\mathrm{X}, \xi) \cdot \widetilde{\mathrm{C}}=\mathrm{f}\left\{\left(\mathrm{X} \wedge_{s}^{n} \xi\right) \cdot \mathrm{C}\right\}, \mathrm{f}=\frac{-1}{(1-\mathrm{n})^{n}}$, where f is some function on M .

Proof: We denote the expression in the bracket on the right hand side of (2.9) by A, and we calculate it. Thus
(2.22) $\quad(\mathrm{R}(\mathrm{X}, \xi) . \widetilde{\mathrm{C}})(\xi, \mathrm{Z}) \xi=\mathrm{f}\left\{\left(\left(\mathrm{X} \wedge_{s}^{n} \xi\right) . \mathrm{C}\right)(\xi, \mathrm{Z}) \xi\right\}$

Where $\left(\mathrm{X} \wedge_{s}^{n} \xi\right)=\mathrm{S}^{\mathrm{n}}(\mathrm{Y}, \mathrm{Z}) \mathrm{X}-\mathrm{S}^{\mathrm{n}}(\mathrm{X}, \mathrm{Z}) \mathrm{Y}$, And $\mathrm{S}^{\mathrm{n}}(\mathrm{Y}, \mathrm{Z})=\mathrm{g}\left(\mathrm{Q}^{\mathrm{n}} \mathrm{X}, \mathrm{Y}\right)$

Then
$\mathrm{A}=\mathrm{f}\left\{\left(\left(\mathrm{X} \wedge_{s}^{n} \xi\right) \cdot \widetilde{\mathrm{C}}\right)(\xi, \mathrm{Z}) \xi\right\}=\mathrm{f}\left\{\left(\mathrm{X} \wedge_{s}^{n} \xi\right) \widetilde{\mathrm{C}}(\xi, \mathrm{Z}) \xi-\widetilde{\mathrm{C}}\left(\left(\mathrm{X} \wedge_{s}^{n} \xi\right) \xi, \mathrm{Z}\right) \xi\right.$

$$
\left.-\tilde{\mathbf{C}}_{(\xi,}\left(\mathrm{X} \wedge_{s}^{n} \xi\right) \mathrm{Z}\right) \xi-\tilde{\mathrm{C}}_{\left.(\xi, \mathrm{Z})\left(\mathrm{XX} \wedge_{s}^{n} \xi\right) \xi\right\}}
$$

Using (2.13), we have
$\left(\mathrm{X} \wedge_{s}^{n} \xi\right) \widetilde{\mathrm{C}}(\xi, \mathrm{Z}) \xi=0$
$\widetilde{\mathbf{C}}_{\left(\left(\mathrm{X} \wedge_{s}^{n} \xi\right) \xi, \mathrm{Z}\right) \xi=[(1-\mathrm{n})]^{n} \widetilde{\mathbf{C}}_{(\mathrm{X}}(\mathrm{Z}) \xi}$
$\widetilde{\mathrm{C}}\left(\xi,\left(\mathrm{X} \wedge_{s}^{n} \xi\right) \mathrm{Z}\right) \xi=0$
$\left.\widetilde{\mathrm{C}}_{(\xi, \mathrm{Z})}\left(\mathrm{X} \wedge_{s}^{n} \xi\right) \xi\right]=[(1-\mathrm{n})]^{\tilde{\mathrm{C}}}(\xi, \mathrm{Z}) \mathrm{X}$
From the above and using (2.16), we have
$\widetilde{\mathbf{C}}(X, Z) \xi+\widetilde{\mathbf{C}}(\xi, Z) X=f\left\{-[(1-n)]^{n} \widetilde{C}(X, Z) \xi-[(1-n)]^{n} \widetilde{C}(\xi, Z) X\right\}$

$$
\left.=-\mathrm{fl}(1-\mathrm{n})]^{n}\left\{\widetilde{\mathbf{C}}_{(\mathrm{X}}, \mathrm{Z}\right) \xi+\tilde{\mathbf{C}}_{(\xi, \mathrm{Z}) \mathrm{X}\}}\right\}
$$

$\left(1+\mathrm{f}[+(1-\mathrm{n})]^{\mathrm{n}}\right)[\widetilde{\mathrm{C}}(\mathrm{X}, \mathrm{Z}) \xi+\widetilde{\mathrm{C}}(\xi, \mathrm{Z}) \mathrm{X}]=0$
Using (2.21), we have

$$
\left(1+f[+(1-n)]^{n}\right)(a+2(n-1) b)\left[1+\frac{r}{n(n-1)}\right][2 \eta(X) Z-\eta(Z) X-g(X, Z) \xi]=0
$$

Since $f=\frac{-1}{(1-n)^{n}}$.
Thus which true for $\mathrm{r}=-\mathrm{n}(\mathrm{n}-1), \mathrm{a}+2(\mathrm{n}-1) \mathrm{b} \neq 0$.
Hence the theorem is proved.
4. A p-Sasakian Einstein manifold satisfying (div $\widetilde{\mathbf{C}})(X, Y) Z=0$

We assume that

$$
\begin{equation*}
\operatorname{div} \widetilde{\mathbf{C}}=0 \tag{4.1}
\end{equation*}
$$

Where 'div' denotes the divergence.
Now differentiating (2.5) covariantly with respect to $U$, we get

$$
\begin{align*}
&\left(D_{u} \widetilde{C}\right)(X, Y) Z= a\left(D_{u} R\right)(X, Y) Z+b\left[\left(D_{u} S\right)(Y, Z) X-\right.  \tag{4.2}\\
&\left(D_{u} S\right)(X, Z) Y-(n-1) D_{u}\{g(Y, Z) X\}+ \\
&\left.(n-1) D_{u}\{g(X, Z) Y\}\right]-\frac{1}{n}\left(\frac{a}{n-1}+2 b\right)\left(D_{u} r\right)[g(Y, Z) X-g(X, Z) Y] .
\end{align*}
$$

contraction of (4.2) with respect to X , we get

$$
\begin{equation*}
(\operatorname{div} \widetilde{\mathrm{C}})(\mathrm{X}, \mathrm{Y}) \mathrm{Z}=\mathrm{b}(\mathrm{n}-1)\left(\mathrm{D}_{\mathrm{u}} \mathrm{~S}\right)(\mathrm{Y}, \mathrm{Z})-\frac{\mathrm{n}-1}{\mathrm{n}}\left(\frac{\mathrm{a}}{\mathrm{n}-1}+2 \mathrm{~b}\right)\left(\mathrm{g}(\mathrm{Y}, \mathrm{Z})\left(\mathrm{U}_{\mathrm{r}}\right)\right. \tag{4.3}
\end{equation*}
$$

From (2.3), We have

$$
\begin{equation*}
\left(\mathrm{D}_{\mathrm{u}} \mathrm{~S}\right)(\mathrm{Y}, \mathrm{Z})=0 \tag{4.4}
\end{equation*}
$$

Using (4.1) and (4.4) in (4.3), we obtain

$$
\frac{\mathrm{n}-1}{\mathrm{n}}\left(\frac{\mathrm{a}}{\mathrm{n}-1}+2 \mathrm{~b}\right)(\mathrm{g}(\mathrm{Y}, \mathrm{Z}))\left(\mathrm{U}_{\mathrm{r}}\right)=0
$$

Since $g(Y, Z) \neq 0$, then we have $U_{r}=0, a+2(n-1) b \neq 0$.
Which gives $r$ is covariant constant.
Again if $r$ is covariant constant i.e. $U_{r}=0$, then from (4.3) and (4.4), we obtain

$$
(\operatorname{div} \widetilde{\mathrm{C}})(\mathrm{X}, \mathrm{Y}) \mathrm{Z}=0 .
$$

Hence we can state the following theorem.
Definition: A manifold Mn is said to be Quasi-Conformally conservative if $\operatorname{div} \widetilde{\mathbf{C}}=0$ [8].
Theorem 4: A p-Sasakian Einstein manifold is Quasi-Conformally conservative if and only if the scalar $r$ is covariant constant, $a+2(n-1) b \neq 0$.

## REFERENCES

[1] I. Sato, On a structure similar to almost contact structure I, Tensor N. S., 30, 1976, 219-224.
[2] T. Adati and T. Miyazawa, Some properties of p-Sasakian manifolds, TRU, Maths, 13(1), 1997, 33-42.
[3] S. I. and Matsumoto, K, On p-Sasakian manifold satisfying Certain conditions, Tensor N. S., 33, 1979, 173 - 178.
[4] C. Ozgur and M. M. Tripathi, On p-Sasakian manifold Satisfying certain conditions on the concircular curvature tensor, Turk J. Math., 30, 2006, 1-9.
[5] M. C. Chaki and M. Tarafdar, On a type of Sasakian manifold Serdica J. math, 16, 1990, 23-28.
[6] D. Narain and P. R. Singh, On $\eta$-einstein p-Sasakian manifold, Tensor N. S., 61, 1999, 158-163.
[7] S. Abosos Ali, U. C. De and T. Q. Binch, On K-contact-Einstein manifolds, steps in Differential Geometry, Proceedings of Coll. on Differential Geometry, 2000, 311-315.
[8] Hicks, N.J., Notes on differential geometry,Affiliated East West Press pvt. Ltd., 1969, 95.
[9] Yano, K. and Sasaki, S: Riemannian manifolds admitting a Conformal transformation group, J. Diff, Geom-2, 1968, 161.

