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Abstract— In this paper, we have studied p-Sasakian Einstein manifold which satisfy the condition r -n(n - 1), a+ 2(n- )b =0 . e.

the constant scalar curvature r. also the p-Sasakian Einstein manifold satisfying div C =0 have studied. where ( is quasi-conformal

curvature tensor and r is the scalar curvature.
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1. PRELIMINARIES
Let M" be n-dimensional C* -manifold. If there exist a tensor field F of type (1, 1), a vector field £ and a 1-form n in
M" satisfying

1) X=X-nXg X=F(x), n@©=1
then M" is called an almost para contact manifold.
Let g be the Riemannian metric satisfying
(12)  9(X ¢ =n(X)
(1.3) n(F X)=0, FE =0, rank F=(n-1)
(14 9(FX, FY)=g(X, Y) -n(X)n(Y)
Then the set (F, &, n, g) satisfying (1.1), (1.2), (1.3) and (1.4) is called an almost para-contact Riemannian structure.

The manifold with such structure is called an almost p-contact Riemannian manifold [1].

If we define 'F(X, Y) = g(i, Y), then in addition to the above relations the following are satisfied:
(1.5)  F(X,Y) ="F(Y, X)
we)  FX Y)=FX, V)
Let us consider an n-dimensional differentiable manifold M with a positive definite metric g which admits 1-forms n
satisfying
@7 (Vxm)(Y) - (Vyn)(X) =0
And
(1.8)  (VxVym)(@) =-9(X, 2n(Y) - 9(X, Y)n(2) + 2n(X) n(Y)n(2)
Where, V denote the covariant differentiation with respect to g. Moreover, if we put,

(L9 n(X)=g(X, o) (vxe) =X
Then it can be easily verified that the manifold in consideration becomes an almost para-contact Riemannian manifold.
Such a manifold is called p-Saskian manifolds [2].
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For a p-Saskian manifold the following relations hold [4]:
(1.10) R(X, Y)E=n(X)Y -n(Y)X
(1.11)  R(E X)Y =n(Y)X-9(X, Y)E
(1.12)  R(E X)E=X-n(X)E
(1.13)  S(X, ) =-(n-1n(X)
(1.14) QE=-(n-1)§
(1.15)  n(R(X, Y)U) = g(X, Un(Y) - g(Y, Um(X)
(1.16) n(R(X, Y)§ =0
(1.17)  n(R(E X)Y) =n(X)n(Y) - 9(X, Y)
For any vector field X, Y, Zwhare R and S are the curvature tensor and Ricci tensor and Q is the Ricci operator.

2. AP-SASAKIAN EINSTEIN MANIFOLD SATISFYINGR=-n(n-1),a+2(n-1)b=0
a p-Sasakian manifold M" is said to be Einstein manifold, if its Ricci tensor S is of the form

(2.1)  S(X, Y)=kg(X, Y)

where K is constant.

Putting Y = € in (2.1), we get S(X, &) = kg(X, &)

Since S(X, &) = -(n - 1)n(X) and g(X, &) = n(X), we have

(22) k=-(n-1)

From (2.1) and (2.2), we get

(2.3)  S(X, Y)=-(n-1)9(X,Y)

Contracting (2.3), we get,

(24 QY=-(n-1)Y

Where S(X, Y) =g(QX, Y).

Let (M", g) be n-dimensional Riemannian manifold, the Quasi-conformal curvature tensor E is defined by [9].
s~ r a
25  C(X,Y)Z=aR(X, Y)Z+b[S(Y, 2)X - S(X, 2)Y +g(Y, 2)QX - g(X, 2)QY] - _(_1 +2b)[9(Y, 2)X - g(X, 2)Y]
nn-—
Using (2.3) and (2.4) in (2.5), we get

26 C(X, V)Z=aR(X, Y)Z-[2(n- )b+ i(i + 20)][9(Y, 2)X - g(X, 2)Y]

The endomorphism XAY and XAsY and the homeomorphism R(X, Q)E and E(X, E)R are defined by
2.7 XAY)Z=g(Y,DX-g(X, 2)Y
(2.8) (X AsY)Z=S(Y, )X -S(X, 2)Y

29 (R 9-C)u, 2w =R, &CU, 2W - CRX, U, W - C(U, R(X, ©23W - C(U, 2R(X, OHW
210) (Cx 9-R)U, W = C(x, 9RU, 2W - RC(X, ©U, W - R, (X, &C)w - R(U, 2)C(X, oHW

respectively, where X, Y, Z are vector fields of M.
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3. Main Results:
Theorem -1 An n-dimensional p-Sasakian Einstein manifold M with Quasi-conformal curvature tensor E satisfying r=-
n(n - 1), a +2(n -1)b # 0 then we have
R, 9-C)=Cex, 9. R
Proof : Substituting U and W by & in (2.9) yields

211) R 9.0 2e=RX, 5C¢ 2e-CRX, 92 2) ¢

-Ce R, 92) ¢ - Ce 2R, 98
From (2.6) we get by virtue of (1.2) and (1.12),

r

212) C( 2 e=(@+20n—1)b) [1+
n(n-1)

IIY -n(Y) &l

If r = -n(n — 1), provided a +2(n-1)b # 0 then from (2.12), we have (2.13) E(g, 2)E=0 and similarly

(2.14) i:ﬂj(Z, €)& =0, for any vector field Z.
Thus we have,
(215) R 9.0 2e=-CRx 95 2¢e-Ce R B¢
Using (1.12), we have
Crx9:2e=-C(x.2)¢
Cerx9e=-Ce2x
Thus we have from (2.15)
(2.16) R, 9.0@E2e=Cx2e+CE2x
On the other hand
217) (€% 9R € 2 e=Cix, 9RE 2 &-RECX 98 2 £ -RE 2%, ©0)e-R(e, 2Cx, B
Using (1.12, (1.15) and (2.14), we obtain the following equations
Cx. 9 RrRE 2e=Cx 9z
RCx 9 2g=0
R 2(x, ©C)e = Cx, 9z
RE 2CX, 8g=0
Using these equation in (2.17), we have
(2.18) Cx. 9R)IE 2E=0
Thus our condition satisfies the following equation
Rx, 8.0 2g=0
Therefore from (2.16), we have

Cx, 2e+C 2x=0
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Using (1.2), (1.11), (1.12) and (2.6), we have

(@+2(n—-1)b) [1+ r 1 1l2n(X)Z - ()X -g(X, 2)&] =0

Which true for r =-n(n-1), a +2(n — 1)b #0.

Hence the theorem is proved.

Theorem-2 : An n-dimensional p-Sasakian Einstein manifold M with Quasi-conformal curvature tensor (ﬂj satisfying r = -n(n —
1), a+2(n — 1)b #0 then we have
R(X, é).(ﬂj = L{(X~E€).C}, L £-1, where L is some function on M.
Proof: We denote the expression in the bracket on the right hand side of (2.9) by A, and we calculate it. Thus
219) A=L(x~8).0)& 28 = LLUx~90)E 28 - Cix~0)z 22 - e, x~9)2)5 - Ce X~ 0)8
Using (2.13), we have
x~8C( 25=0
Cix~95 205= Cex - n(0z 2z
=C %, 22100 Cee 298
=Cx, 2t
Cle(xrgz)e=0
Ce 2 (x~9gy =Ce 2x
From the above and using (2.16), we have
Cix, 25+ Ce 2x = L{-Cx, 25 - Ce 23
2200 @+U[Cx 2e+CeE x1=0

Using (1.2), (1.11), (1.12) and (2.6), we have

(2.21) (1+L)(a+2(n-1)b)[1+

' 292 n@)X - X, 2 =0

Since L #-1.
Thus which true for r = -n(n - 1), a +2(n — 1)b #0.

Hence the theorem is proved.

Theorem -3: An n-dimensional p-Sasakian Einstein manifold M with Quasi-conformal curvature tensor C, Satisfying r = -n(n —

(1-n)"
Proof: We denote the expression in the bracket on the right hand side of (2.9) by A, and we calculate it. Thus

222) R 9).0)E 2= H(X Al 9.0 22}

1), a+2(n -1) b #0 then we have R(X, g).(ﬂj =f{(X /\2 €).C}, f= where f is some function on M.

Where (X Al €) = S'(Y, 2)X - S"(X, 2)Y, And S"(Y, 2) = g(Q"X, Y)
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Then

A=H(X A 9.0 28 =X Al 9C( 22- QX AT 98, 2)¢
Ce (x Al 92)2-Ce 2((X AL 98

Using (2.13), we have

x Al 9C 2z=0

Cix AL 95 22 =[@-nI"Cx, 2%

Ce (X Al 922 =0

Ce (% Al 98 =[1-n"Cee, 2)X

From the above and using (2.16), we have

Cx, 2+ Cie, 2% = #[@-nI"Cx, 22 - [T 2%3
=-flu -mICx. 22 + Ce, 23

@+ 1+ -nNCx, 2+ Ce, 2x1 =0

Using (2.21), we have

(1 + I+ -nI")(@ +2(n - 1)b)[1+ 12n(X)Z - n(D)X-g(X, 2)&] =0

r

n(n-1)
1-n)"

Thus which true for r = -n(n — 1), a +2(n — 1)b #0.

Hence the theorem is proved.

Since f =

4. A p-Sasakian Einstein manifold satisfying (div E) xX,Y)Zz=0
We assume that
(4.1) divC=0

Where ‘div’ denotes the divergence.

Now differentiating (2.5) covariantly with respect to U, we get

42)  OL)(X Y)Z=aDR)(X Y)Z + b[(DuS)(Y, 2)X —
(DuS)(X, 2)Y — (n—1) Dfa(Y, )X} +

1
(n-1) DX, YN - — (% +2D)(Ounla(Y. 2X - g(X, 2)Y]
contraction of (4.2) with respect to X, we get
4.3) (div(ﬂj)(x, Y)Z = b(n — 1)(D,S)(Y, 2) - nT_l (% +2b)(g(Y, Z2))(Uy)

From (2.3), We have
(4.4) (DuS)(Y, 2) =0
Using (4.1) and (4.4) in (4.3), we obtain
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ML A ony (v 2) U) =0
n n-1

Since g(Y, Z) #0, then we have U, =0, a+2(n — 1)b #0.
Which gives r is covariant constant.

Again if r is covariant constant i.e. U, = 0, then from (4.3) and (4.4), we obtain
@ivC)(x, Y)z=0.
Hence we can state the following theorem.

Definition: A manifold Mn is said to be Quasi-Conformally conservative if div E =0][8].

Theorem 4: A p-Sasakian Einstein manifold is Quasi-Conformally conservative if and only if the scalar r is covariant constant,
a+2(n—1)b £0.
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