International Journal of Mathematics Trends and Technology – Volume 12 Number 2 – Aug 2014

# Some New Divisor Cordial Graphs

A. Muthaiyan<sup>#1</sup> and P. Pugalenthi<sup>\*2</sup>

#\* P.G. and Research Department of Mathematics, Govt. Arts College, Ariyalur – 621 713, Tamil Nadu, India.

Abstract - In this paper, the duplication of an arbitrary vertex by a new edge of cycle  $C_n$   $(n \ge 3)$ , the duplication of an arbitrary edge by a new vertex of cycle  $C_n$   $(n \ge 3)$ ,  $< S_n^{(1)} : S_n^{(2)} : S_n^{(3)} > , < W_n^{(1)} : W_n^{(2)} : W_n^{(3)} >$  and the graph obtained by joining two copies of  $S_n$  by a path  $P_k$   $(n \ge 4)$ .

AMS subject classifications : 05C78 Keywords - Cordial graph, divisor cordial labeling, divisor cordial graph.

#### I. INTRODUCTION

All graphs in this paper are simple, finite, connected and undirected graphs. Let G = (V(G), E(G)) be a graph with p vertices and q edges. For standard terminology and notations related to graph theory we refer to Harary [3] while for number theory we refer to Burton [2]. Graph labeling, where the vertices and edges are assigned real values or subsets of a set are subject to certain conditions. For a dynamic survey on various graph labeling problems we refer to Gallian []. The concept of cordial labeling was introduced by Cahit [1]. After this many labeling schemes are also introduced with minor variations in cordial theme. The concept of divisor cordial labeling was introduced by Varatharajan et al.[9]. In this paper [9], they have proved that path, cycle, wheel, star,  $K_{2,n}$  and  $K_{3,n}$  are divisor cordial graphs. The divisor cordial labeling of full binary trees,  $G * K_{2,n}$ ,  $G * K_{3,n}$ ,  $< K_{1,n}^{(1)}$ ,  $K_{1,n}^{(2)} > and < K_{1,n}^{(2)}$ ,  $K_{1,n}^{(3)} > are reported by the same authors in [10]. Vaidya et.al. [7, 8] have proved that$  $degree splitting graph of <math>B_{n,n}$ , shadow graph of  $B_{n,n}$ , square graph of  $B_{n,n}$ , splitting graphs of star  $K_{1,n}$ , splitting graphs of bistar

 $B_{n,n}$ , helm  $H_n$ , flower graph  $Fl_n$ , Gear graph  $G_n$ , switching of a vertex in cycle  $C_n$ , switching of a rim vertex in wheel  $W_n$  and switching of the apex vertex in helm  $H_n$  are divisor cordial graphs. The divisor cordial labeling of some cycle related graphs are reported by Maya et.al [5]. Lawrence Rozario raj et.al [6] have proved that  $\langle S_n^{(1)} : S_n^{(2)} \rangle$ ,  $\langle W_n^{(1)} : W_n^{(2)} \rangle$ , the graph obtained by joining two copies of  $W_n$  by a path  $P_k$  ( $n \ge 3$ ),  $G_v \Theta K_1$ , where  $G_v$  denotes graph obtained by switching of any vertex v of  $C_n$  ( $n \ge 4$ ) and  $Pl_n$  ( $n \ge 5$ ) divisor cordial graphs. In this paper we had discussed divisor cordial labeling of the duplication of an arbitrary vertex by a new edge of cycle  $C_n$  ( $n \ge 3$ ), the duplication of an arbitrary edge by a new vertex of cycle  $C_n$  ( $n \ge 3$ ),  $\langle S_n^{(1)} : S_n^{(2)} : S_n^{(3)} \rangle$ ,  $\langle W_n^{(1)} : W_n^{(2)} : W_n^{(3)} \rangle$  and the graph obtained by joining two copies of  $S_n$  by a path  $P_k$  ( $n \ge 4$ ). We will provide brief summary of definitions and other information which are necessary for the present investigations.

# Definition :1.1

A mapping  $f:V(G) \rightarrow \{0,1\}$  is called binary vertex labeling of G and f(v) is called the label of the vertex v of G under f.

# Notation: 1.1

If for an edge e = uv, the induced edge labeling  $f^* : E(G) \rightarrow \{0,1\}$  is given by  $f^*(e) = |f(u) - f(v)|$ . Then  $v_f(i) =$  number of vertices of having label i under f and  $e_f(i) =$  number of edges of having label i under f\*.

#### **Definition :1.2**

A binary vertex labeling f of a graph G is called a cordial labeling if  $|v_f(0) - v_f(1)| \le 1$  and  $|e_f(0) - e_f(1)| \le 1$ . A graph G is cordial if it admits cordial labeling.

#### **Definition :1.3**

Let a and b be two integers. If a divides b means that there is a positive integer k such that b = ka. It is denoted by  $a \mid b$ . If a does not divide b, then we denote  $a \nmid b$ .

#### **Definition :1.4**

Let G = (V(G), E(G)) be a simple graph and  $f : \rightarrow \{1, 2, ..., |V(G)|\}$  be a bijection. For each edge uv, assign the label 1 if  $f(u) \mid f(v)$  or  $f(v) \mid f(u)$  and the label 0 otherwise. The function f is called a divisor cordial labeling if  $|e_f(0) - e_f(1)| \le 1$ . A graph with a divisor cordial labeling is called a divisor cordial graph.

#### **Definition :1.5**

The shell  $S_n$  is the graph obtained by taking n - 3 concurrent chords in cycle  $C_n$ . The vertex at which all the chords are concurrent is called the apex vertex.

### **Definition :1.6**

A wheel graph  $W_n$  is a graph with n+1 vertices, formed by connecting a single vertex to all the vertices of cycle  $C_n$ . It is denoted by  $W_n = C_n + K_1$ .

#### **Definition :1.7**

Duplication of a vertex  $v_k$  by a new edge e = v'v'' in a graph G produces a new graph G' such that  $N(v') = \{v_k, v''\}$  and  $N(v'') = \{v_k, v'\}$ .

#### **Definition :1.8**

Duplication of an edge  $e = v_i v_{i+1}$  by a vertex v' in a graph G produces a new graph G' such that  $N(v') = \{v_i, v_{i+1}\}$ .

### **Definition :1.9**

Consider two copies of graph G namely  $G_1$  and  $G_2$ . Then the graph  $G' = \langle G_1:G_2 \rangle$  is a graph obtained by joining the apex vertices of  $G_1$  and  $G_2$  by a new vertex x.

#### **Definition :1.10**

Consider k copies of graph G namely  $G_1, G_2, ..., G_k$ . Then the graph  $G' = \langle G_1: G_2:...:G_k \rangle$  is a graph obtained by joining the apex vertices of each  $G_{p-1}$  and  $G_p$  by a new vertex  $x_{p-1}$ , where  $2 \le p \le k$ .

#### **II. MAIN THEOREMS**

#### Theorem: 2.1

The graph obtained by duplication of an arbitrary vertex by a new edge in cycle  $C_n$  (n $\geq$ 3) is divisor cordial graph. **Proof.** 

Let  $C_n$  be cycle with n vertices  $v_1, v_2, ..., v_n$  and n edges  $e_1, e_2, ..., e_n$ , where  $n \ge 3$ .

Without loss of generality we duplicate the vertex  $v_2$  by an edge  $e_{n+1}$  with end vertices as v' and v''.

Let the graph so obtained is G. Then |V(G)| = n+2 and |E(G)| = n+3.

Define vertex labeling  $f : V(G) \rightarrow \{1, 2, ..., n+2\}$  as follows

f(v') = n+1 and f(v'') = n+2

Label the vertices  $v_1, v_2, ..., v_{n-1}$  and  $v_n$  in the following order.

| 1, | 2,           | $2^{2}$ ,      | , | $2^{k_1}$ ,          |
|----|--------------|----------------|---|----------------------|
| 3, | $3 \times 2$ | $3 \times 2^2$ | , | $3 \times 2^{k_2}$ , |
| 5, | $5 \times 2$ | $5 \times 2^2$ | , | $5 \times 2^{k_3}$ , |
|    |              |                |   | ,                    |
|    |              |                |   |                      |

where  $(2m-1)2^{k_m} \le n$  and  $m \ge 1$ ,  $k_m \ge 0$ .

 $Also \ (2m-1)2^a \ divides \ (2m-1)2^b \ (a < b) \ and \ (2m-1)2^{k_i} \ does \ not \ divide \ 2m+1.$ 

Interchange the labels of  $v_1$  and  $v_2$ .

The consecutive adjacent vertices having labels odd and even numbers contribute 1 to each edge. Similarly, the consecutive the above labeling, the consecutive adjacent vertices of  $v_2$ ,  $v_3$ , ...,  $v_n$  having the labels even numbers and cons adjacent vertices having the labels odd numbers and consecutive adjacent vertices having labels even and odd numbers contribute 0

to each edge. Also  $f(v_2)|f(v_1), f(v_n) \nmid f(v_1)(f(v_1) \nmid f(v_n)), f(v_2)|f(v'), f(v_2)|f(v'') and f(v') \nmid f(v'')(f(v'') \nmid f(v')).$ Thus  $e_1(0) = e_1(1) = \frac{n+3}{2}$  if n is odd

$$e_{f}(0) = \frac{n+2}{2}$$
 and  $e_{f}(1) = \frac{n+4}{2}$ , if n is even.

Therefore,  $|e_f(0) - e_f(1)| \le 1$ .

Hence G is divisor cordial graph.

### Example: 2.1

The graph obtained by duplicating vertex by an edge in cycle  $C_8$  and its divisor cordial labeling is given in Figure 2.1.



#### Theorem: 2.2

The graph obtained by duplication of an arbitrary edge by a new vertex in cycle  $C_n$  ( $n \ge 3$ ) is divisor cordial graph. Proof.

Let  $C_n$  be cycle with n vertices  $v_1$ ,  $v_2$ , ...,  $v_n$  and n edges  $e_1$ ,  $e_2$ , ...,  $e_n$ , where  $n \ge 3$ . Without loss of generality we duplicate the edge  $v_1v_2$  by a vertex v'. Let the graph so obtained is G. Then |V(G)| = n+1 and |E(G)| = n+2.

Define vertex labeling  $f: V(G) \rightarrow \{1, 2, ..., n+1\}$  as follows

Case 1 : n = 3

$$f(v_1) = 2$$
,  $f(v_2) = 3$ ,  $f(v_3) = 1$ ,  $f(v') = 4$ .



Figure 2.2

Thus,  $e_f(0) = 0$  and  $e_f(1) = 3$ . Therefore  $|e_{f}(0) - e_{f}(1)| \le 1$ . Hence G is divisor cordial graph, for n = 3.

Case 2 :  $n \ge 4$ 

```
f(v') = n+1
```

Label the vertices  $v_1, v_2, ..., v_{n-1}$  and  $v_n$  in the following order.

| 1, | 2,           | $2^{2}$ ,      | , | $2^{k_1}$ ,          |
|----|--------------|----------------|---|----------------------|
| 3, | $3 \times 2$ | $3 \times 2^2$ | , | $3 \times 2^{k_2}$ , |
| 5, | $5 \times 2$ | $5 \times 2^2$ | , | $5 \times 2^{k_3}$ , |
|    |              |                |   | ,                    |
|    |              |                |   |                      |

where  $(2m-1)2^{k_m} \le n$  and  $m \ge 1$ ,  $k_m \ge 0$ .

Also  $(2m-1)2^a$  divides  $(2m-1)2^b$  (a < b) and  $(2m-1)2^{k_i}$  does not divide 2m+1.

Interchange the labels of  $v_1$  and  $v_2$ .

In the above labeling, the consecutive adjacent vertices of  $v_2$ ,  $v_3$ , ...,  $v_n$  having the labels even numbers and consecutive adjacent vertices having labels odd and even numbers contribute 1 to each edge. Similarly, the consecutive adjacent vertices having the labels odd numbers and consecutive adjacent vertices having labels even and odd numbers contribute 0 to each edge.

Also  $f(v_2)|f(v_1), f(v_n) \nmid f(v_1)(f(v_1) \nmid f(v_n)), f(v_2)|f(v'), f(v_1)|f(v')$  if n is odd and  $f(v_1) \nmid f(v')$  if n is even. Thus,  $e_f(0) = \frac{n+1}{2}$  and  $e_f(1) = \frac{n+3}{2}$ , if n is odd.  $e_f(0) = e_f(1) = \frac{n+2}{2}$ , if n is even.

Therefore,  $|e_f(0) - e_f(1)| \le 1$ . Hence G is divisor cordial graph.

### Example :2.2

The graph obtained by duplication of an edge by a vertex in  $C_5$  and its divisor cordial labeling is shown in Figure 2.3.





# Theorem: 2.3

The graph  $G = \langle S_n^{(1)} : S_n^{(2)} : S_n^{(3)} \rangle$  is divisor cordial.

# Proof.

Let  $v_1^{(i)}$ ,  $v_2^{(i)}$ ,...,  $v_n^{(i)}$  be the pendant vertices of  $S_n^{(i)}$  and let  $v_1^{(i)}$  be the apex vertex of  $S_n^{(i)}$  for i = 1, 2, 3. The apex vertices  $v_1^{(1)}$  and  $v_1^{(2)}$  are joined by an edge as well as to a new vertex  $x_1$  and the apex vertices  $v_1^{(2)}$  and  $v_1^{(3)}$  are joined by an edge as well as to a new vertex  $x_1$  and the apex vertices  $v_1^{(2)}$  and  $v_1^{(3)}$  are joined by an edge as well as to a new vertex  $x_1$  and the apex vertices  $v_1^{(2)}$  and  $v_1^{(3)}$  are joined by an edge as well as to a new vertex  $x_2$ . Let G be  $\langle S_n^{(1)} : S_n^{(2)} : S_n^{(3)} \rangle$ . Then |V(G)| = 3n+2 and |E(G)| = 6n - 5.

Define vertex labeling f : V(G) 
$$\rightarrow$$
 {1, 2, ..., 3n+2} as follows

| Define vertex labeling f :   | $V(G) \rightarrow \{1, 2,, 3n+2\}$ |  |  |  |  |  |
|------------------------------|------------------------------------|--|--|--|--|--|
| $f(v_1^{(1)}) = 1,$          |                                    |  |  |  |  |  |
| $f(v_1^{(2)}) = 2,$          | $f(v_1^{(2)}) = 2,$                |  |  |  |  |  |
| $f(v_1^{(3)}) = 3,$          |                                    |  |  |  |  |  |
| For n is odd.                |                                    |  |  |  |  |  |
| $f(x_1) = 3n+1,$             |                                    |  |  |  |  |  |
| $f(x_2) = 3n+2,$             |                                    |  |  |  |  |  |
| $f(v_2^{(1)}) = 4,$          |                                    |  |  |  |  |  |
| $f(v_3^{(1)}) = 6,$          |                                    |  |  |  |  |  |
|                              | n−3                                |  |  |  |  |  |
| $f(v_{2i+2}^{(1)}) = 6i - 1$ | for $1 \le i \le \frac{n-3}{2}$    |  |  |  |  |  |
| f((1)) = f(1)                | n-3                                |  |  |  |  |  |
| $f(v_{2i+3}^{(1)}) = 6i + 1$ | for $1 \le i \le \frac{n-3}{2}$    |  |  |  |  |  |
| $f(v_{2i}^{(2)}) = 6i + 2$   | for $1 \le i \le \frac{n-1}{2}$    |  |  |  |  |  |
| $1(v_{2i}) = 01 + 2$         | $1011 \leq 1 \leq \frac{1}{2}$     |  |  |  |  |  |
| $f(v_{2i+1}^{(2)}) = 6i + 4$ | for $1 \le i \le \frac{n-3}{2}$    |  |  |  |  |  |
|                              | 2                                  |  |  |  |  |  |
| $f(v_n^{(2)}) = 3n - 4,$     |                                    |  |  |  |  |  |
| $f(v_i^{(3)}) = 3i + 6,$     | for $1 \le i \le n - 1$            |  |  |  |  |  |
| $f(v_n^{(3)}) = 3n - 2.$     |                                    |  |  |  |  |  |
| For n is even.               |                                    |  |  |  |  |  |
| $f(x_1) = 3n+2,$             |                                    |  |  |  |  |  |
| $f(x_2) = 3n+1$ ,            |                                    |  |  |  |  |  |
| $f(v_2^{(1)}) = 4,$          |                                    |  |  |  |  |  |
| $f(v_3^{(1)}) = 6,$          |                                    |  |  |  |  |  |
|                              | n – 2                              |  |  |  |  |  |
| $f(v_{2i+2}^{(1)}) = 6i - 1$ | for $1 \le i \le \frac{n-2}{2}$    |  |  |  |  |  |
| $c(1) \rightarrow c + 1$     | $f_{n-4}$                          |  |  |  |  |  |
| $f(v_{2i+3}^{(1)}) = 6i + 1$ | for $1 \le i \le \frac{n-4}{2}$    |  |  |  |  |  |
|                              |                                    |  |  |  |  |  |

$$\begin{split} f(\ v_{2i}^{(2)}) &= 6i+2 & \text{for } 1 \leq i \leq \frac{n-2}{2} \\ f(\ v_{2i+1}^{(2)}) &= 6i+4 & \text{for } 1 \leq i \leq \frac{n-2}{2} \\ f(\ v_n^{(2)}) &= 3n-5, \\ f(\ v_n^{(3)}) &= 3i+6, & \text{for } 1 \leq i \leq n-1 \\ f(\ v_n^{(3)}) &= 3n-1. \\ \text{In both case, } e_f(0) &= 3n-2 \text{ and } e_f(1) = 3n-3. \\ \text{Therefore } |e_f(0)-e_f(1)| \leq 1. \\ \text{Hence $G$ is divisor cordial.} \end{split}$$

# Example :2.3

The graph  $G = \langle S_n^{(1)} : S_n^{(2)} : S_n^{(3)} \rangle$  and its divisor cordial labeling is given in Figure 2.4.



Figure 2.4

# Theorem: 2.4

The graph  $G = \langle W_n^{(1)} : W_n^{(2)} : W_n^{(3)} \rangle$  is divisor cordial.

# Proof.

Let  $v_1^{(i)}$ ,  $v_2^{(i)}$ ,...,  $v_n^{(i)}$  be the pendant vertices of  $W_n^{(i)}$  and let  $c_i$  be the apex vertex of  $W_n^{(i)}$  for i = 1, 2, 3. The apex vertices  $c_1$  and  $c_2$  are joined by an edge as well as to a new vertex  $x_1$  and the apex vertices  $c_2$  and  $c_3$  are joined by an edge as well as to a new vertex  $x_2$ .

| $f(v_n^{(2)}) = 3n+1,$                   |                                 |  |  |  |
|------------------------------------------|---------------------------------|--|--|--|
| $f(v_i^{(3)}) = 9 + 3(i-1),$             | for $1 \le i \le n - 1$         |  |  |  |
| $f(v_n^{(3)}) = 3n+5.$                   |                                 |  |  |  |
| For n is odd.                            |                                 |  |  |  |
| $f(x_1) = 3n+5,$                         |                                 |  |  |  |
| $f(x_2) = 6,$                            |                                 |  |  |  |
| $f(v_1^{(1)}) = 4,$                      |                                 |  |  |  |
| $f(v_{2i}^{(1)}) = 5 + 6(i-1)$           | for $1 \le i \le \frac{n-1}{2}$ |  |  |  |
| $f(v_{2i+1}^{(1)}) = 7 + 6(i-1)$         | for $1 \le i \le \frac{n-1}{2}$ |  |  |  |
| $f(v_{2i-1}^{(2)}) = 8 + 6(i-1)$         | for $1 \le i \le \frac{n-1}{2}$ |  |  |  |
| $f(v_{2i}^{(2)}) = 10 + 6(i-1)$          | for $1 \le i \le \frac{n-1}{2}$ |  |  |  |
| $f(v_n^{(2)}) = 3n+2,$                   |                                 |  |  |  |
| $f(v_i^{(3)}) = 9 + 3(i-1),$             | for $1 \leq i \leq n-1$         |  |  |  |
| $f(v_n^{(3)}) = 3n+4.$                   |                                 |  |  |  |
| In both case, $e_f(0) = e_f(1) = 3n+2$ . |                                 |  |  |  |
| Therefore $ e_f(0) - e_f(1)  \le 1$ .    |                                 |  |  |  |

Therefore  $|e_f(0) - e_f(1)| \le 1$ . Hence G is divisor cordial.

# Example :2.4

The graph  $G = \langle W_6^{(1)} : W_6^{(2)} : W_6^{(3)} \rangle$  and its divisor cordial labeling is given in Figure 2.5.



# Theorem :2.5

The graph obtained by joining two copies of  $S_n$  by path  $P_k$  admits divisor cordial labeling where  $n \ge 4$ . **Proof.** 

Let G be the graph obtained by joining two copies of  $S_n$  by path  $P_k$ . Let  $u_1, u_2, ..., u_n$  be the vertices of first copy of  $S_n$  and  $v_1, v_2, ..., v_n$  be the vertices of second copy of  $S_n$ .

Let  $w_1, w_2,..., w_k$  be the vertices of path  $P_k$  with  $u_1 = w_1$  and  $v_1 = w_k$ . Then |V(G)| = 2n + k - 2 and |E(G)| = 4n + k - 7. Define vertex labeling  $f : V(G) \rightarrow \{1, 2, ..., 2n+k-2\}$  as follows

Label the vertices  $w_k$ ,  $w_{k-1}$ , ...,  $w_3$ ,  $w_2$  in the following order.

where  $(2m-1)2^{k_m} \le k-1$  and  $m \ge 1$ ,  $k_m \ge 0$ .

Also  $(2m-1)2^a$  divides  $(2m-1)2^b$  (a < b) and  $(2m-1)2^{k_i}$  does not divide 2m+1.

In the above labeling, the consecutive adjacent vertices of  $w_k$ ,  $w_{k-1}$ , ...,  $w_3$ ,  $w_2$  having the labels even numbers and consecutive adjacent vertices having labels odd and even numbers contribute 1 to each edge. Similarly, the consecutive adjacent vertices having the labels odd numbers and consecutive adjacent vertices having labels even and odd numbers contribute 0 to each edge and  $f(w_1)|$   $f(w_2)$ .

For k is odd  $f(u_i) = k + 2(i-1),$  $2 \le i \le n-1$  $f(v_i) = k - 1 + 2(i-1),$  $2 \le i \le n-1$  $f(u_n) = f(u_{n-1}) + 1$ ,  $f(v_n) = f(v_{n-1}) + 3.$ For k is even  $f(u_i) = k - 1 + 2(i-1), \qquad 2 \le i \le n - 1$  $2 \le i \le n-1$  $f(v_i) = k + 2(i-1),$  $f(u_n) = f(u_{n-1}) + 3$ ,  $f(v_n) = f(v_{n-1}) + 1.$ Thus,  $e_f(0) = \frac{4n+k-6}{2}$  and  $e_f(1) = \frac{4n+k-8}{2}$ , if k is odd  $e_f(0) = e_f(1) = \frac{4n + k - 7}{2}$ , if k is even. Hence  $|e_f(0) - e_f(1)| \le 1$ . Hence G is divisor cordial graph.

# Example :2.5

The graph G obtained by joining two copies of S<sub>6</sub> by path P<sub>6</sub> and its divisor cordial labeling is given in Figure 2.6.



**III.** CONCLUSIONS

In this paper, we prove that the duplication of an arbitrary vertex by a new edge of cycle  $C_n$  ( $n \ge 3$ ), the duplication of an arbitrary edge by a new vertex of cycle  $C_n$  ( $n \ge 3$ ),  $\langle S_n^{(1)} : S_n^{(2)} : S_n^{(3)} \rangle$ ,  $\langle W_n^{(1)} : W_n^{(2)} : W_n^{(3)} \rangle$  and the graph obtained by joining two copies of  $S_n$  by a path  $P_k$  ( $n \ge 4$ ) are divisor cordial graph.

#### International Journal of Mathematics Trends and Technology – Volume 12 Number 2 – Aug 2014

#### References

- I. Cahit, "Cordial graphs: A weaker version of graceful and harmonious graphs", Ars Combinatoria, Vol 23, pp. 201-207, 1987. [1]
- David M. Burton, Elementary Number Theory, Second Edition, Wm. C. Brown Company Publishers, 1980. [2]
- [3] F. Harary, Graph Theory, Addison-Wesley, Reading, Mass, 1972.
- J. A. Gallian, A dynamic survey of graph labeling, The Electronic Journal of Combinatorics, 19, # DS6, 2012. [4]
- P.Maya and T.Nicholas, Some New Families of Divisor Cordial Graph, Annals of Pure and Applied Mathematics Vol. 5, No.2, pp. 125-134, 2014. [5]
- P. Lawrence Rozario Raj and R. Valli, Some new families of divisor cordial graphs, International Journal of Mathematics Trends and Technology, Vol 7, [6] No. 2, 2014.
- S. K. Vaidya and N. H. Shah, "Some Star and Bistar Related Divisor Cordial Graphs", Annals of Pure and Applied Mathematics, Vol 3, No.1, pp. 67-77, [7] 2013.
- S. K. Vaidya and N. H. Shah, "Further Results on Divisor Cordial Labeling", Annals of Pure and Applied Mathematics, Vol 4, No.2, pp. 150-159, 2013. [8]
- [9] R. Varatharajan, S. Navanaeethakrishnan and K. Nagarajan, "Divisor cordial graphs", International J. Math. Combin., Vol 4, pp. 15-25, 2011.
  [10] R. Varatharajan, S. Navanaeethakrishnan and K. Nagarajan, "Special classes of divisor cordial graphs", International Mathematical Forum, Vol 7, No. 35, pp. 1737-1749, 2012.