Some New Divisor Cordial Graphs

A. Muthaiyan ${ }^{\# 1}$ and P. Pugalenthi ${ }^{* 2}$
\#* P.G. and Research Department of Mathematics, Govt. Arts College, Ariyalur - 621 713,Tamil Nadu, India.

Abstract - In this paper, the duplication of an arbitrary vertex by a new edge of cycle $\mathbf{C}_{\mathrm{n}}(\mathrm{n} \geq 3)$, the duplication of an arbitrary edge by a new vertex of cycle $C_{n}(n \geq 3),\left\langle S_{n}^{(1)}: S_{n}^{(2)}: S_{n}^{(3)}\right\rangle,\left\langle W_{n}^{(1)}: W_{n}^{(2)}: W_{n}^{(3)}\right\rangle$ and the graph obtained by joining two copies of S_{n} by a path $P_{k}(n \geq 4)$.
\section*{AMS subject classifications: 05C78}
Keywords - Cordial graph, divisor cordial labeling, divisor cordial graph.

I. Introduction

All graphs in this paper are simple, finite, connected and undirected graphs. Let $G=(V(G), E(G))$ be a graph with p vertices and q edges. For standard terminology and notations related to graph theory we refer to Harary [3] while for number theory we refer to Burton [2]. Graph labeling, where the vertices and edges are assigned real values or subsets of a set are subject to certain conditions. For a dynamic survey on various graph labeling problems we refer to Gallian []. The concept of cordial labeling was introduced by Cahit [1]. After this many labeling schemes are also introduced with minor variations in cordial theme. The concept of divisor cordial labeling was introduced by Varatharajan et al.[9]. In this paper [9], they have proved that path, cycle, wheel, star, $\mathrm{K}_{2, \mathrm{n}}$ and $\mathrm{K}_{3, \mathrm{n}}$ are divisor cordial graphs. The divisor cordial labeling of full binary trees, $\mathrm{G} * \mathrm{~K}_{2, \mathrm{n}}$, $\mathrm{G} * \mathrm{~K}_{3, \mathrm{n}},\left\langle\mathrm{K}_{1, \mathrm{n}}^{(1)}, \mathrm{K}_{1, \mathrm{n}}^{(2)}\right\rangle$ and $\left\langle\mathrm{K}_{1, \mathrm{n}}^{(1)}, \mathrm{K}_{1, \mathrm{n}}^{(2)}, \mathrm{K}_{1, \mathrm{n}}^{(3)}>\right.$ are reported by the same authors in [10]. Vaidya et.al. [7, 8] have proved that degree splitting graph of $B_{n, n}$, shadow graph of $B_{n, n}$, square graph of $B_{n, n}$, splitting graphs of star $K_{1, n}$, splitting graphs of bistar $B_{n, n}$, helm H_{n}, flower graph $F l_{n}$, Gear graph G_{n}, switching of a vertex in cycle C_{n}, switching of a rim vertex in wheel W_{n} and switching of the apex vertex in helm H_{n} are divisor cordial graphs. The divisor cordial labeling of some cycle related graphs are reported by Maya et.al [5]. Lawrence Rozario raj et.al [6] have proved that $\left\langle\mathrm{S}_{\mathrm{n}}^{(1)}: \mathrm{S}_{\mathrm{n}}^{(2)}\right\rangle,\left\langle\mathrm{W}_{\mathrm{n}}^{(1)}: \mathrm{W}_{\mathrm{n}}^{(2)}\right\rangle$, the graph obtained by joining two copies of W_{n} by a path $P_{k}(n \geq 3), G_{v} \odot K_{1}$, where G_{v} denotes graph obtained by switching of any vertex v of C_{n} $(n \geq 4)$ and $P l_{n}(n \geq 5)$ divisor cordial graphs. In this paper we had discussed divisor cordial labeling of the duplication of an arbitrary vertex by a new edge of cycle $C_{n}(n \geq 3)$, the duplication of an arbitrary edge by a new vertex of cycle $C_{n}(n \geq 3)$, $\left\langle\mathrm{S}_{\mathrm{n}}^{(1)}: \mathrm{S}_{\mathrm{n}}^{(2)}: \mathrm{S}_{\mathrm{n}}^{(3)}\right\rangle,\left\langle\mathrm{W}_{\mathrm{n}}^{(1)}: \mathrm{W}_{\mathrm{n}}^{(2)}: \mathrm{W}_{\mathrm{n}}^{(3)}>\right.$ and the graph obtained by joining two copies of S_{n} by a path $\mathrm{P}_{\mathrm{k}}(\mathrm{n} \geq 4$). We will provide brief summary of definitions and other information which are necessary for the present investigations.

Definition :1.1

A mapping $f: V(G) \rightarrow\{0,1\}$ is called binary vertex labeling of G and $f(v)$ is called the label of the vertex v of G under f.

Notation : 1.1

If for an edge $e=u v$, the induced edge labeling $f^{*}: E(G) \rightarrow\{0,1\}$ is given by $f^{*}(e)=|f(u)-f(v)|$. Then $v_{f}(i)=$ number of vertices of having label i under f and $e_{f}(i)=$ number of edges of having label i under f^{*}.

Definition :1.2

A binary vertex labeling f of a graph G is called a cordial labeling if $\left|v_{f}(0)-v_{f}(1)\right| \leq 1$ and $\left|e_{f}(0)-e_{f}(1)\right| \leq 1$. A graph G is cordial if it admits cordial labeling.

Definition :1.3

Let a and b be two integers. If a divides b means that there is a positive integer k such that $b=k a$. It is denoted by $a \mid b$. If a does not divide b , then we denote $\mathrm{a} \nmid \mathrm{b}$.

Definition :1.4

Let $G=(V(G), E(G))$ be a simple graph and $f: \rightarrow\{1,2, \ldots,|V(G)|\}$ be a bijection. For each edge $u v$, assign the label 1 if $f(u) \mid$ $f(v)$ or $f(v) \mid f(u)$ and the label 0 otherwise. The function f is called a divisor cordial labeling if $\left|e_{f}(0)-e_{f}(1)\right| \leq 1$. A graph with a divisor cordial labeling is called a divisor cordial graph.

Definition :1.5

The shell S_{n} is the graph obtained by taking $\mathrm{n}-3$ concurrent chords in cycle C_{n}. The vertex at which all the chords are concurrent is called the apex vertex.

Definition :1.6

A wheel graph W_{n} is a graph with $n+1$ vertices, formed by connecting a single vertex to all the vertices of cycle C_{n}. It is denoted by $\mathrm{W}_{\mathrm{n}}=\mathrm{C}_{\mathrm{n}}+\mathrm{K}_{1}$.

Definition :1.7

Duplication of a vertex v_{k} by a new edge $e=v^{\prime} v^{\prime \prime}$ in a graph G produces a new graph G^{\prime} such that $N\left(v^{\prime}\right)=\left\{v_{k}, v^{\prime \prime}\right\}$ and $N\left(\mathrm{v}^{\prime \prime}\right)=\left\{\mathrm{v}_{\mathrm{k}}, \mathrm{v}^{\prime}\right\}$.

Definition :1.8

Duplication of an edge $\mathrm{e}=\mathrm{v}_{\mathrm{i}} \mathrm{v}_{\mathrm{i}+1}$ by a vertex v^{\prime} in a graph G produces a new graph G^{\prime} such that $\mathrm{N}\left(\mathrm{v}^{\prime}\right)=\left\{\mathrm{v}_{\mathrm{i}}, \mathrm{v}_{\mathrm{i}+1}\right\}$.

Definition :1.9

Consider two copies of graph G namely G_{1} and G_{2}. Then the graph $G^{\prime}=\left\langle G_{1}: G_{2}\right\rangle$ is a graph obtained by joining the apex vertices of G_{1} and G_{2} by a new vertex x.

Definition :1.10

Consider k copies of graph G namely $G_{1}, G_{2}, \ldots, G_{k}$. Then the graph $G^{\prime}=\left\langle G_{1}: G_{2}: \ldots: G_{k}\right\rangle$ is a graph obtained by joining the apex vertices of each G_{p-1} and G_{p} by a new vertex x_{p-1}, where $2 \leq p \leq k$.

II. Main Theorems

Theorem : 2.1

The graph obtained by duplication of an arbitrary vertex by a new edge in cycle $\mathrm{C}_{\mathrm{n}}(\mathrm{n} \geq 3)$ is divisor cordial graph.

Proof.

Let C_{n} be cycle with n vertices $v_{1}, v_{2}, \ldots, v_{n}$ and n edges $e_{1}, e_{2}, \ldots, e_{n}$, where $n \geq 3$.
Without loss of generality we duplicate the vertex v_{2} by an edge e_{n+1} with end vertices as v^{\prime} and $v^{\prime \prime}$.
Let the graph so obtained is G. Then $|V(G)|=n+2$ and $|E(G)|=n+3$.
Define vertex labeling $\mathrm{f}: \mathrm{V}(\mathrm{G}) \rightarrow\{1,2, \ldots, \mathrm{n}+2\}$ as follows

$$
\mathrm{f}\left(\mathrm{v}^{\prime}\right)=\mathrm{n}+1 \text { and } \mathrm{f}\left(\mathrm{v}^{\prime \prime}\right)=\mathrm{n}+2
$$

Label the vertices $\mathrm{v}_{1}, \mathrm{v}_{2}, \ldots, \mathrm{v}_{\mathrm{n}-1}$ and v_{n} in the following order.

$$
\begin{array}{ccccc}
1, & 2, & 2^{2}, & \ldots, & 2^{k_{1}}, \\
3, & 3 \times 2 & 3 \times 2^{2} & \ldots, & 3 \times 2^{k_{2}}, \\
5, & 5 \times 2 & 5 \times 2^{2} & \ldots, & 5 \times 2^{k_{3}}, \\
\ldots & \ldots & \ldots & \ldots & \ldots, \\
\ldots & \ldots & \ldots & \ldots & \ldots
\end{array}
$$

where $(2 m-1) 2^{k_{m}} \leq n$ and $m \geq 1, k_{m} \geq 0$.
Also $(2 m-1) 2^{\text {a }}$ divides $(2 m-1) 2^{b}(\mathrm{a}<\mathrm{b})$ and $(2 \mathrm{~m}-1) 2^{\mathrm{k}_{\mathrm{i}}}$ does not divide $2 \mathrm{~m}+1$.
Interchange the labels of v_{1} and v_{2}.
The consecutive adjacent vertices having labels odd and even numbers contribute 1 to each edge. Similarly, the consecutive the above labeling, the consecutive adjacent vertices of $\mathrm{v}_{2}, \mathrm{v}_{3}, \ldots, \mathrm{v}_{\mathrm{n}}$ having the labels even numbers and cons adjacent vertices having the labels odd numbers and consecutive adjacent vertices having labels even and odd numbers contribute 0
to each edge. Also $f\left(v_{2}\right)\left|f\left(v_{1}\right), f\left(v_{n}\right) \nmid f\left(v_{1}\right)\left(f\left(v_{1}\right) \nmid f\left(v_{n}\right)\right), f\left(v_{2}\right)\right| f\left(v^{\prime}\right), f\left(v_{2}\right) \mid f\left(v^{\prime \prime}\right)$ and $f\left(v^{\prime}\right) \nmid f\left(v^{\prime \prime}\right)\left(f\left(v^{\prime \prime}\right) \nmid f\left(v^{\prime}\right)\right)$.
Thus, $e_{f}(0)=e_{f}(1)=\frac{n+3}{2}$, if n is odd.

$$
\mathrm{e}_{\mathrm{f}}(0)=\frac{\mathrm{n}+2}{2} \text { and } \mathrm{e}_{\mathrm{f}}(1)=\frac{\mathrm{n}+4}{2}, \text { if } \mathrm{n} \text { is even. }
$$

Therefore, $\left|\mathrm{e}_{\mathrm{f}}(0)-\mathrm{e}_{\mathrm{f}}(1)\right| \leq 1$.
Hence G is divisor cordial graph.

Example : 2.1

The graph obtained by duplicating vertex by an edge in cycle C_{8} and its divisor cordial labeling is given in Figure 2.1.

Figure 2.1

Theorem : 2.2

The graph obtained by duplication of an arbitrary edge by a new vertex in cycle $C_{n}(n \geq 3)$ is divisor cordial graph.
Proof.
Let C_{n} be cycle with n vertices $v_{1}, v_{2}, \ldots, v_{n}$ and n edges $e_{1}, e_{2}, \ldots, e_{n}$, where $n \geq 3$. Without loss of generality we duplicate the edge $v_{1} v_{2}$ by a vertex v^{\prime}. Let the graph so obtained is G. Then $|V(G)|=n+1$ and $|E(G)|=n+2$.

Define vertex labeling $\mathrm{f}: \mathrm{V}(\mathrm{G}) \rightarrow\{1,2, \ldots, \mathrm{n}+1\}$ as follows
Case 1:n=3
$\mathrm{f}\left(\mathrm{v}_{1}\right)=2, \mathrm{f}\left(\mathrm{v}_{2}\right)=3, \mathrm{f}\left(\mathrm{v}_{3}\right)=1, \mathrm{f}\left(\mathrm{v}^{\prime}\right)=4$.

Figure 2.2
Thus, $\mathrm{e}_{\mathrm{f}}(0)=0$ and $\mathrm{e}_{\mathrm{f}}(1)=3$.
Therefore $\left|e_{f}(0)-e_{f}(1)\right| \leq 1$.
Hence G is divisor cordial graph, for $\mathrm{n}=3$.
Case $2: \mathrm{n} \geq 4$

$$
\mathrm{f}\left(\mathrm{v}^{\prime}\right)=\mathrm{n}+1
$$

Label the vertices $\mathrm{v}_{1}, \mathrm{v}_{2}, \ldots, \mathrm{v}_{\mathrm{n}-1}$ and v_{n} in the following order.

$$
\begin{array}{ccccc}
1, & 2, & 2^{2}, & \ldots, & 2^{k_{1}}, \\
3, & 3 \times 2 & 3 \times 2^{2} & \ldots, & 3 \times 2^{k_{2}}, \\
5, & 5 \times 2 & 5 \times 2^{2} & \ldots, & 5 \times 2^{k_{3}}, \\
\ldots & \ldots & \ldots & \ldots & \ldots \\
\ldots & \ldots & \ldots & \ldots & \ldots
\end{array}
$$

where $(2 \mathrm{~m}-1) 2^{\mathrm{k}_{\mathrm{m}}} \leq \mathrm{n}$ and $\mathrm{m} \geq 1, \mathrm{k}_{\mathrm{m}} \geq 0$.
Also $(2 m-1) 2^{a}$ divides $(2 m-1) 2^{b}(a<b)$ and $(2 m-1) 2^{k_{i}}$ does not divide $2 m+1$.
Interchange the labels of v_{1} and v_{2}.
In the above labeling, the consecutive adjacent vertices of $\mathrm{v}_{2}, \mathrm{v}_{3}, \ldots, \mathrm{v}_{\mathrm{n}}$ having the labels even numbers and consecutive adjacent vertices having labels odd and even numbers contribute 1 to each edge. Similarly, the consecutive adjacent vertices having the labels odd numbers and consecutive adjacent vertices having labels even and odd numbers contribute 0 to each edge.

Also $f\left(v_{2}\right)\left|f\left(v_{1}\right), f\left(v_{n}\right) \nmid f\left(v_{1}\right)\left(f\left(v_{1}\right) \nmid f\left(v_{n}\right)\right), f\left(v_{2}\right)\right| f\left(v^{\prime}\right), f\left(v_{1}\right) \mid f\left(v^{\prime}\right)$ if n is odd and $f\left(v_{1}\right) \nmid f\left(v^{\prime}\right)$ if n is even.
Thus, $\mathrm{e}_{\mathrm{f}}(0)=\frac{\mathrm{n}+1}{2}$ and $\mathrm{e}_{\mathrm{f}}(1)=\frac{\mathrm{n}+3}{2}$, if n is odd.

$$
e_{f}(0)=e_{f}(1)=\frac{n+2}{2}, \text { if } n \text { is even. }
$$

Therefore, $\left|e_{f}(0)-e_{f}(1)\right| \leq 1$. Hence G is divisor cordial graph.

Example :2.2

The graph obtained by duplication of an edge by a vertex in C_{5} and its divisor cordial labeling is shown in Figure 2.3.

Figure 2.3

Theorem : 2.3

The graph $\mathrm{G}=\left\langle\mathrm{S}_{\mathrm{n}}^{(1)}: \mathrm{S}_{\mathrm{n}}^{(2)}: \mathrm{S}_{\mathrm{n}}^{(3)}\right\rangle$ is divisor cordial.

Proof.

Let $v_{1}^{(i)}, v_{2}^{(i)}, \ldots, v_{n}^{(i)}$ be the pendant vertices of $S_{n}^{(i)}$ and let $v_{1}^{(i)}$ be the apex vertex of $S_{n}^{(i)}$ for $i=1,2,3$. The apex vertices $v_{1}^{(1)}$ and $v_{1}^{(2)}$ are joined by an edge as well as to a new vertex x_{1} and the apex vertices $v_{1}^{(2)}$ and $v_{1}^{(3)}$ are joined by an edge as well as to a new vertex x_{2}. Let G be $\left\langle S_{n}^{(1)}: S_{n}^{(2)}: S_{n}^{(3)}\right\rangle$. Then $|V(G)|=3 n+2$ and $|E(G)|=6 n-5$.

Define vertex labeling $\mathrm{f}: \mathrm{V}(\mathrm{G}) \rightarrow\{1,2, \ldots, 3 \mathrm{n}+2\}$ as follows
$\mathrm{f}\left(\mathrm{v}_{1}^{(1)}\right)=1$,
$\mathrm{f}\left(\mathrm{v}_{1}^{(2)}\right)=2$,
$f\left(v_{1}^{(3)}\right)=3$,
For n is odd.
$\mathrm{f}\left(\mathrm{x}_{1}\right)=3 \mathrm{n}+1$,
$\mathrm{f}\left(\mathrm{x}_{2}\right)=3 \mathrm{n}+2$,
$f\left(v_{2}^{(1)}\right)=4$,
$f\left(v_{3}^{(1)}\right)=6$,
$\mathrm{f}\left(\mathrm{v}_{2 \mathrm{i}+2}^{(1)}\right)=6 \mathrm{i}-1 \quad$ for $1 \leq \mathrm{i} \leq \frac{\mathrm{n}-3}{2}$
$\mathrm{f}\left(\mathrm{v}_{2 \mathrm{i}+3}^{(1)}\right)=6 \mathrm{i}+1 \quad$ for $1 \leq \mathrm{i} \leq \frac{\mathrm{n}-3}{2}$
$\mathrm{f}\left(\mathrm{v}_{2 \mathrm{i}}^{(2)}\right)=6 \mathrm{i}+2 \quad$ for $1 \leq \mathrm{i} \leq \frac{\mathrm{n}-1}{2}$
$\mathrm{f}\left(\mathrm{v}_{2 \mathrm{i}+1}^{(2)}\right)=6 \mathrm{i}+4 \quad$ for $1 \leq \mathrm{i} \leq \frac{\mathrm{n}-3}{2}$
$\mathrm{f}\left(\mathrm{v}_{\mathrm{n}}^{(2)}\right)=3 \mathrm{n}-4$,
$\mathrm{f}\left(\mathrm{v}_{\mathrm{i}}^{(3)}\right)=3 \mathrm{i}+6, \quad$ for $1 \leq \mathrm{i} \leq \mathrm{n}-1$
$f\left(v_{n}^{(3)}\right)=3 n-2$.
For n is even.
$\mathrm{f}\left(\mathrm{x}_{1}\right)=3 \mathrm{n}+2$,
$\mathrm{f}\left(\mathrm{x}_{2}\right)=3 \mathrm{n}+1$,
$f\left(v_{2}^{(1)}\right)=4$,
$f\left(v_{3}^{(1)}\right)=6$,
$\mathrm{f}\left(\mathrm{v}_{2 \mathrm{i}+2}^{(1)}\right)=6 \mathrm{i}-1 \quad$ for $1 \leq \mathrm{i} \leq \frac{\mathrm{n}-2}{2}$
$f\left(v_{2 i+3}^{(1)}\right)=6 i+1$
for $1 \leq \mathrm{i} \leq \frac{\mathrm{n}-4}{2}$
$f\left(v_{2 i}^{(2)}\right)=6 i+2 \quad$ for $1 \leq i \leq \frac{n-2}{2}$
$\mathrm{f}\left(\mathrm{v}_{2 i+1}^{(2)}\right)=6 \mathrm{i}+4 \quad$ for $1 \leq \mathrm{i} \leq \frac{\mathrm{n}-2}{2}$
$\mathrm{f}\left(\mathrm{v}_{\mathrm{n}}^{(2)}\right)=3 \mathrm{n}-5$,
$\mathrm{f}\left(\mathrm{v}_{\mathrm{i}}^{(3)}\right)=3 \mathrm{i}+6, \quad$ for $1 \leq \mathrm{i} \leq \mathrm{n}-1$
$\mathrm{f}\left(\mathrm{v}_{\mathrm{n}}^{(3)}\right)=3 \mathrm{n}-1$.
In both case, $\mathrm{e}_{\mathrm{f}}(0)=3 n-2$ and $\mathrm{e}_{\mathrm{f}}(1)=3 n-3$.
Therefore $\left|e_{f}(0)-e_{f}(1)\right| \leq 1$.
Hence G is divisor cordial.

Example :2.3

The graph $\mathrm{G}=\left\langle\mathrm{S}_{\mathrm{n}}^{(1)}: \mathrm{S}_{\mathrm{n}}^{(2)}: \mathrm{S}_{\mathrm{n}}^{(3)}\right\rangle$ and its divisor cordial labeling is given in Figure 2.4.

Figure 2.4

Theorem : 2.4

The graph $\mathrm{G}=\left\langle\mathrm{W}_{\mathrm{n}}^{(1)}: \mathrm{W}_{\mathrm{n}}^{(2)}: \mathrm{W}_{\mathrm{n}}^{(3)}>\right.$ is divisor cordial.

Proof.

Let $v_{1}^{(i)}, v_{2}^{(i)}, \ldots, v_{n}^{(i)}$ be the pendant vertices of $W_{n}^{(i)}$ and let c_{i} be the apex vertex of $W_{n}^{(i)}$ for $i=1,2,3$. The apex vertices c_{1} and c_{2} are joined by an edge as well as to a new vertex x_{1} and the apex vertices c_{2} and c_{3} are joined by an edge as well as to a new vertex x_{2}.

Let G be $<\mathrm{W}_{\mathrm{n}}^{(1)}: \mathrm{W}_{\mathrm{n}}^{(2)}: \mathrm{W}_{\mathrm{n}}^{(3)}>$.
Then $|V(G)|=3 n+5$ and $|E(G)|=6 n+4$.
Define vertex labeling $\mathrm{f}: \mathrm{V}(\mathrm{G}) \rightarrow\{1,2, \ldots, 3 \mathrm{n}+5\}$ as follows
$\mathrm{f}\left(\mathrm{c}_{1}\right)=1$,
$\mathrm{f}\left(\mathrm{c}_{2}\right)=2$,
$\mathrm{f}\left(\mathrm{c}_{3}\right)=3$,
For n is even.
$\mathrm{f}\left(\mathrm{x}_{1}\right)=3 \mathrm{n}+4$,
$f\left(x_{2}\right)=6$,
$f\left(v_{1}^{(1)}\right)=4$,
$f\left(v_{2 i}^{(1)}\right)=5+6(i-1)$
for $1 \leq \mathrm{i} \leq \frac{\mathrm{n}}{2}$
$\mathrm{f}\left(\mathrm{v}_{2 \mathrm{i}+1}^{(\mathrm{l})}\right)=7+6(\mathrm{i}-1)$
for $1 \leq \mathrm{i} \leq \frac{\mathrm{n}-2}{2}$
$\mathrm{f}\left(\mathrm{v}_{2 \mathrm{i}-1}^{(2)}\right)=8+6(\mathrm{i}-1)$
for $1 \leq \mathrm{i} \leq \frac{\mathrm{n}}{2}$
$f\left(v_{2 i}^{(2)}\right)=10+6(i-1)$
for $1 \leq \mathrm{i} \leq \frac{\mathrm{n}-2}{2}$
$f\left(v_{n}^{(2)}\right)=3 n+1$,
$\mathrm{f}\left(\mathrm{v}_{\mathrm{i}}^{(3)}\right)=9+3(\mathrm{i}-1), \quad$ for $1 \leq \mathrm{i} \leq \mathrm{n}-1$
$f\left(v_{n}^{(3)}\right)=3 n+5$.
For n is odd.
$f\left(x_{1}\right)=3 n+5$,
$f\left(x_{2}\right)=6$,
$f\left(v_{1}^{(1)}\right)=4$,
$f\left(v_{2 i}^{(1)}\right)=5+6(i-1)$
for $1 \leq \mathrm{i} \leq \frac{\mathrm{n}-1}{2}$
$f\left(v_{2 i+1}^{(1)}\right)=7+6(i-1)$
for $1 \leq \mathrm{i} \leq \frac{\mathrm{n}-1}{2}$
$f\left(v_{2 i-1}^{(2)}\right)=8+6(i-1)$
for $1 \leq \mathrm{i} \leq \frac{\mathrm{n}-1}{2}$
$\mathrm{f}\left(\mathrm{v}_{2 \mathrm{i}}^{(2)}\right)=10+6(\mathrm{i}-1)$
for $1 \leq \mathrm{i} \leq \frac{\mathrm{n}-1}{2}$
$\mathrm{f}\left(\mathrm{v}_{\mathrm{n}}^{(2)}\right)=3 \mathrm{n}+2$,
$\mathrm{f}\left(\mathrm{v}_{\mathrm{i}}^{(3)}\right)=9+3(\mathrm{i}-1), \quad$ for $1 \leq \mathrm{i} \leq \mathrm{n}-1$
$f\left(v_{n}^{(3)}\right)=3 n+4$.
In both case, $\mathrm{e}_{\mathrm{f}}(0)=\mathrm{e}_{\mathrm{f}}(1)=3 \mathrm{n}+2$.
Therefore $\left|e_{f}(0)-e_{f}(1)\right| \leq 1$.
Hence G is divisor cordial.

Example :2.4

The graph $\mathrm{G}=\left\langle\mathrm{W}_{6}^{(1)}: \mathrm{W}_{6}^{(2)}: \mathrm{W}_{6}^{(3)}>\right.$ and its divisor cordial labeling is given in Figure 2.5.

Figure 2.5

Theorem :2.5

The graph obtained by joining two copies of S_{n} by path P_{k} admits divisor cordial labeling where $\mathrm{n} \geq 4$.

Proof.

Let G be the graph obtained by joining two copies of S_{n} by path P_{k}. Let $u_{1}, u_{2}, \ldots, u_{n}$ be the vertices of first copy of S_{n} and $v_{1}, v_{2}, \ldots, v_{n}$ be the vertices of second copy of S_{n}.

Let $\mathrm{w}_{1}, \mathrm{w}_{2}, \ldots, \mathrm{w}_{\mathrm{k}}$ be the vertices of path P_{k} with $\mathrm{u}_{1}=\mathrm{w}_{1}$ and $\mathrm{v}_{1}=\mathrm{w}_{\mathrm{k}}$.
Then $|\mathrm{V}(\mathrm{G})|=2 \mathrm{n}+\mathrm{k}-2$ and $|\mathrm{E}(\mathrm{G})|=4 \mathrm{n}+\mathrm{k}-7$.
Define vertex labeling $\mathrm{f}: \mathrm{V}(\mathrm{G}) \rightarrow\{1,2, \ldots, 2 \mathrm{n}+\mathrm{k}-2\}$ as follows

Label the vertices $\mathrm{w}_{\mathrm{k}}, \mathrm{w}_{\mathrm{k}-1}, \ldots, \mathrm{w}_{3}, \mathrm{w}_{2}$ in the following order.

```
2, 2
3, 3\times2 3\times2 2 _., 3\times2 每,
```



```
... ... ... ... ...,
... ... ... ... ...
```

where $(2 \mathrm{~m}-1) 2^{\mathrm{k}_{\mathrm{m}}} \leq \mathrm{k}-1$ and $\mathrm{m} \geq 1, \mathrm{k}_{\mathrm{m}} \geq 0$.
Also $(2 \mathrm{~m}-1) 2^{\mathrm{a}}$ divides $(2 \mathrm{~m}-1) 2^{\mathrm{b}}(\mathrm{a}<\mathrm{b})$ and $(2 \mathrm{~m}-1) 2^{\mathrm{k}_{\mathrm{i}}}$ does not divide $2 \mathrm{~m}+1$.
In the above labeling, the consecutive adjacent vertices of $w_{k}, w_{k-1}, \ldots, w_{3}, w_{2}$ having the labels even numbers and consecutive adjacent vertices having labels odd and even numbers contribute 1 to each edge. Similarly, the consecutive adjacent vertices having the labels odd numbers and consecutive adjacent vertices having labels even and odd numbers contribute 0 to each edge and $f\left(w_{1}\right) \mid f\left(w_{2}\right)$.

For k is odd

$$
\begin{array}{ll}
\mathrm{f}\left(\mathrm{u}_{\mathrm{i}}\right)=\mathrm{k}+2(\mathrm{i}-1), & 2 \leq \mathrm{i} \leq \mathrm{n}-1 \\
\mathrm{f}\left(\mathrm{v}_{\mathrm{i}}\right)=\mathrm{k}-1+2(\mathrm{i}-1), & 2 \leq \mathrm{i} \leq \mathrm{n}-1 \\
\mathrm{f}\left(\mathrm{u}_{\mathrm{n}}\right)=\mathrm{f}\left(\mathrm{u}_{\mathrm{n}-1}\right)+1, & \\
\mathrm{f}\left(\mathrm{v}_{\mathrm{n}}\right)=\mathrm{f}\left(\mathrm{v}_{\mathrm{n}-1}\right)+3 . &
\end{array}
$$

For k is even

$$
\begin{array}{ll}
\mathrm{f}\left(\mathrm{u}_{\mathrm{i}}\right)=\mathrm{k}-1+2(\mathrm{i}-1), & 2 \leq \mathrm{i} \leq \mathrm{n}-1 \\
\mathrm{f}\left(\mathrm{v}_{\mathrm{i}}\right)=\mathrm{k}+2(\mathrm{i}-1), & 2 \leq \mathrm{i} \leq \mathrm{n}-1 \\
\mathrm{f}\left(\mathrm{u}_{\mathrm{n}}\right)=\mathrm{f}\left(\mathrm{u}_{\mathrm{n}-1}\right)+3, & \\
\mathrm{f}\left(\mathrm{v}_{\mathrm{n}}\right)=\mathrm{f}\left(\mathrm{v}_{\mathrm{n}-1}\right)+1 . &
\end{array}
$$

Thus, $\mathrm{e}_{\mathrm{f}}(0)=\frac{4 \mathrm{n}+\mathrm{k}-6}{2}$ and $\mathrm{e}_{\mathrm{f}}(1)=\frac{4 \mathrm{n}+\mathrm{k}-8}{2}$, if k is odd

$$
\mathrm{e}_{\mathrm{f}}(0)=\mathrm{e}_{\mathrm{f}}(1)=\frac{4 \mathrm{n}+\mathrm{k}-7}{2}, \text { if } \mathrm{k} \text { is even. }
$$

Hence $\left|e_{f}(0)-e_{f}(1)\right| \leq 1$.
Hence G is divisor cordial graph.

Example :2.5

The graph G obtained by joining two copies of S_{6} by path P_{6} and its divisor cordial labeling is given in Figure 2.6.

Figure 2.6

III. CONCLUSIONS

In this paper, we prove that the duplication of an arbitrary vertex by a new edge of cycle $C_{n}(n \geq 3)$, the duplication of an arbitrary edge by a new vertex of cycle $\left.\mathrm{C}_{\mathrm{n}}(\mathrm{n} \geq 3),\left\langle\mathrm{S}_{\mathrm{n}}^{(1)}: \mathrm{S}_{\mathrm{n}}^{(2)}: \mathrm{S}_{\mathrm{n}}^{(3)}\right\rangle,<\mathrm{W}_{\mathrm{n}}^{(1)}: \mathrm{W}_{\mathrm{n}}^{(2)}: \mathrm{W}_{\mathrm{n}}^{(3)}\right\rangle$ and the graph obtained by joining two copies of S_{n} by a path $P_{k}(n \geq 4)$ are divisor cordial graph.

References

[1] I. Cahit, "Cordial graphs: A weaker version of graceful and harmonious graphs", Ars Combinatoria, Vol 23, pp. 201-207, 1987.
[2] David M. Burton, Elementary Number Theory, Second Edition, Wm. C. Brown Company Publishers, 1980.
[3] F. Harary, Graph Theory, Addison-Wesley, Reading, Mass, 1972.
[4] J. A. Gallian, A dynamic survey of graph labeling, The Electronic Journal of Combinatorics, 19, \# DS6, 2012.
[5] P.Maya and T.Nicholas, Some New Families of Divisor Cordial Graph, Annals of Pure and Applied Mathematics Vol. 5, No.2, pp. 125-134, 2014.
[6] P. Lawrence Rozario Raj and R. Valli, Some new families of divisor cordial graphs, International Journal of Mathematics Trends and Technology, Vol 7, No. 2, 2014.
[7] S. K. Vaidya and N. H. Shah, "Some Star and Bistar Related Divisor Cordial Graphs", Annals of Pure and Applied Mathematics, Vol 3, No.1, pp. 67-77, 2013.
[8] S. K. Vaidya and N. H. Shah, "Further Results on Divisor Cordial Labeling", Annals of Pure and Applied Mathematics, Vol 4, No.2, pp. 150-159, 2013.
[9] R. Varatharajan, S. Navanaeethakrishnan and K. Nagarajan, "Divisor cordial graphs", International J. Math. Combin., Vol 4, pp. 15-25, 2011.
[10] R. Varatharajan, S. Navanaeethakrishnan and K. Nagarajan, "Special classes of divisor cordial graphs", International Mathematical Forum, Vol 7, No. 35, pp. 1737-1749, 2012.

