Some New Divisor Cordial Graphs

A. Muthaiyan^{#1} and P. Pugalenthi^{*2}

** P.G. and Research Department of Mathematics, Govt. Arts College, Ariyalur – 621 713, Tamil Nadu, India.

Abstract - In this paper, the duplication of an arbitrary vertex by a new edge of cycle C_n $(n \ge 3)$, the duplication of an arbitrary edge by a new vertex of cycle C_n $(n \ge 3)$, $(S_n^{(1)}: S_n^{(2)}: S_n^{(3)})$, $(S_n^{(1)}: S_n^{(3)})$, and the graph obtained by joining two copies of S_n by a path P_k $(n \ge 4)$.

AMS subject classifications: 05C78

Keywords - Cordial graph, divisor cordial labeling, divisor cordial graph.

I. INTRODUCTION

All graphs in this paper are simple, finite, connected and undirected graphs. Let G = (V(G), E(G)) be a graph with p vertices and q edges. For standard terminology and notations related to graph theory we refer to Harary [3] while for number theory we refer to Burton [2]. Graph labeling, where the vertices and edges are assigned real values or subsets of a set are subject to certain conditions. For a dynamic survey on various graph labeling problems we refer to Gallian []. The concept of cordial labeling was introduced by Cahit [1]. After this many labeling schemes are also introduced with minor variations in cordial theme. The concept of divisor cordial labeling was introduced by Varatharajan et al.[9]. In this paper [9], they have proved that path, cycle, wheel, star, $K_{2,n}$ and $K_{3,n}$ are divisor cordial graphs. The divisor cordial labeling of full binary trees, $G*K_{2,n}$, $G*K_{3,n}\,, <\!K_{1,n}^{(1)}\,,\;\;K_{1,n}^{(2)}\!> \text{and}\; <\!K_{1,n}^{(1)}\,,\;\;K_{1,n}^{(2)}\,,\;K_{1,n}^{(3)}> \text{are reported by the same authors in [10]}.\;\;Vaidya\;\text{et.al.}\;[7,\,8]\;\text{have proved that the provential of the provential$ $degree\ splitting\ graph\ of\ B_{n,n},\ shadow\ graph\ of\ B_{n,n},\ square\ graph\ of\ B_{n,n},\ splitting\ graphs\ of\ star\ K_{1,n}\ ,\ splitting\ graphs\ of\ bistar$ $B_{n,n}$, helm H_n , flower graph Fl_n , Gear graph G_n , switching of a vertex in cycle C_n , switching of a rim vertex in wheel W_n and switching of the apex vertex in helm H_n are divisor cordial graphs. The divisor cordial labeling of some cycle related graphs are reported by Maya et.al [5]. Lawrence Rozario raj et.al [6] have proved that $\langle S_n^{(1)} : S_n^{(2)} \rangle$, $\langle W_n^{(1)} : W_n^{(2)} \rangle$, the graph obtained by joining two copies of W_n by a path P_k ($n \ge 3$), $G_v \odot K_1$, where G_v denotes graph obtained by switching of any vertex v of C_n $(n \ge 4)$ and Pl_n $(n \ge 5)$ divisor cordial graphs. In this paper we had discussed divisor cordial labeling of the duplication of an arbitrary vertex by a new edge of cycle C_n ($n \ge 3$), the duplication of an arbitrary edge by a new vertex of cycle C_n ($n \ge 3$), $<S_n^{(1)}:S_n^{(2)}:S_n^{(3)}>$, $<W_n^{(1)}:W_n^{(2)}:W_n^{(3)}>$ and the graph obtained by joining two copies of S_n by a path P_k ($n \ge 4$). We will provide brief summary of definitions and other information which are necessary for the present investigations.

Definition:1.1

A mapping $f:V(G) \rightarrow \{0,1\}$ is called binary vertex labeling of G and f(v) is called the label of the vertex v of G under f.

Notation: 1.1

If for an edge e = uv, the induced edge labeling $f^* : E(G) \to \{0,1\}$ is given by $f^*(e) = |f(u) - f(v)|$. Then $v_f(i) =$ number of vertices of having label i under f and $e_f(i) =$ number of edges of having label i under f^* .

Definition: 1.2

A binary vertex labeling f of a graph G is called a cordial labeling if $|v_f(0) - v_f(1)| \le 1$ and $|e_f(0) - e_f(1)| \le 1$. A graph G is cordial if it admits cordial labeling.

Definition: 1.3

Let a and b be two integers. If a divides b means that there is a positive integer k such that b = ka. It is denoted by a | b. If a does not divide b, then we denote a \nmid b.

Definition: 1.4

Let G = (V(G), E(G)) be a simple graph and $f : \rightarrow \{1, 2, ..., |V(G)|\}$ be a bijection. For each edge uv, assign the label 1 if f(u) | f(v) or f(v) | f(u) and the label 0 otherwise. The function f is called a divisor cordial labeling if $|e_f(0) - e_f(1)| \le 1$. A graph with a divisor cordial labeling is called a divisor cordial graph.

Definition: 1.5

The shell S_n is the graph obtained by taking n-3 concurrent chords in cycle C_n . The vertex at which all the chords are concurrent is called the apex vertex.

Definition: 1.6

A wheel graph W_n is a graph with n+1 vertices, formed by connecting a single vertex to all the vertices of cycle C_n . It is denoted by $W_n = C_n + K_1$.

Definition: 1.7

Duplication of a vertex v_k by a new edge e = v'v'' in a graph G produces a new graph G' such that $N(v') = \{v_k, v''\}$ and $N(v'') = \{v_k, v'\}$.

Definition: 1.8

Duplication of an edge $e = v_i v_{i+1}$ by a vertex v' in a graph G produces a new graph G' such that $N(v') = \{v_i, v_{i+1}\}$.

Definition: 1.9

Consider two copies of graph G namely G_1 and G_2 . Then the graph $G' = \langle G_1 : G_2 \rangle$ is a graph obtained by joining the apex vertices of G_1 and G_2 by a new vertex x.

Definition: 1.10

Consider k copies of graph G namely $G_1, G_2, ..., G_k$. Then the graph $G' = \langle G_1 : G_2 : ... : G_k \rangle$ is a graph obtained by joining the apex vertices of each G_{p-1} and G_p by a new vertex x_{p-1} , where $2 \le p \le k$.

II. MAIN THEOREMS

Theorem: 2.1

The graph obtained by duplication of an arbitrary vertex by a new edge in cycle C_n ($n \ge 3$) is divisor cordial graph.

Proof.

Let C_n be cycle with n vertices $v_1, v_2, ..., v_n$ and n edges $e_1, e_2, ..., e_n$, where $n \ge 3$.

Without loss of generality we duplicate the vertex v_2 by an edge e_{n+1} with end vertices as v' and v''.

Let the graph so obtained is G. Then |V(G)| = n+2 and |E(G)| = n+3.

Define vertex labeling $f: V(G) \rightarrow \{1, 2, ..., n+2\}$ as follows

$$f(v') = n+1$$
 and $f(v'') = n+2$

Label the vertices $v_1, v_2, ..., v_{n-1}$ and v_n in the following order.

$$1, 2, 2^2, \dots, 2^{k_1},$$

3,
$$3 \times 2$$
 3×2^2 ..., 3×2^{k_2} ,

$$5, 5 \times 2 5 \times 2^2 \dots, 5 \times 2^{k_3},$$

where $(2m-1)2^{k_m} \le n$ and $m \ge 1$, $k_m \ge 0$.

Also $(2m-1)2^a$ divides $(2m-1)2^b$ (a < b) and $(2m-1)2^{k_i}$ does not divide 2m+1.

Interchange the labels of v_1 and v_2 .

The consecutive adjacent vertices having labels odd and even numbers contribute 1 to each edge. Similarly, the consecutive the above labeling, the consecutive adjacent vertices of v_2 , v_3 , ..., v_n having the labels even numbers and cons adjacent vertices having the labels odd numbers and consecutive adjacent vertices having labels even and odd numbers contribute 0 to each edge. Also $f(v_2)|f(v_1)$, $f(v_n)\nmid f(v_1)|f(v_n)|f$

Thus,
$$e_f(0) = e_f(1) = \frac{n+3}{2}$$
, if n is odd.

$$e_f(0)=\frac{n+2}{2} \ \ \text{and} \ e_f(1)=\frac{n+4}{2}$$
 , if n is even.

Therefore, $|e_f(0) - e_f(1)| \le 1$.

Hence G is divisor cordial graph.

Example: 2.1

The graph obtained by duplicating vertex by an edge in cycle C₈ and its divisor cordial labeling is given in Figure 2.1.

Figure 2.1

Theorem: 2.2

The graph obtained by duplication of an arbitrary edge by a new vertex in cycle C_n ($n \ge 3$) is divisor cordial graph.

Proof

Let C_n be cycle with n vertices v_1 , v_2 , ..., v_n and n edges e_1 , e_2 , ..., e_n , where $n \ge 3$. Without loss of generality we duplicate the edge v_1v_2 by a vertex v'. Let the graph so obtained is G. Then |V(G)| = n+1 and |E(G)| = n+2.

Define vertex labeling $f: V(G) \rightarrow \{1, 2, ..., n+1\}$ as follows

Case 1 : n = 3

$$f(v_1) = 2$$
, $f(v_2) = 3$, $f(v_3) = 1$, $f(v') = 4$.

Figure 2.2

Thus, $e_f(0) = 0$ and $e_f(1) = 3$.

Therefore $|e_f(0) - e_f(1)| \le 1$.

Hence G is divisor cordial graph, for n = 3.

Case $2: n \ge 4$

$$f(v')=n{+}1$$

Label the vertices $v_1, v_2, ..., v_{n-1}$ and v_n in the following order.

1, 2,
$$2^2$$
, ..., 2^{k_1} ,

$$3, 3 \times 2 3 \times 2^2 \dots, 3 \times 2^{k_2}$$

$$5, 5 \times 2 5 \times 2^2 \dots, 5 \times 2^{k_3},$$

.

where $(2m-1)2^{k_m} \le n$ and $m \ge 1$, $k_m \ge 0$.

Also $(2m-1)2^a$ divides $(2m-1)2^b$ (a < b) and $(2m-1)2^{k_i}$ does not divide 2m+1.

Interchange the labels of v_1 and v_2 .

In the above labeling, the consecutive adjacent vertices of v_2 , v_3 , ..., v_n having the labels even numbers and consecutive adjacent vertices having labels odd and even numbers contribute 1 to each edge. Similarly, the consecutive adjacent vertices having the labels odd numbers and consecutive adjacent vertices having labels even and odd numbers contribute 0 to each edge.

Also $f(v_2)|f(v_1), f(v_n)|f(v_1)|f(v_1)|f(v_n)|, f(v_2)|f(v'), f(v_1)|f(v')| if n is odd and <math>f(v_1)|f(v')| if n is even.$

Thus,
$$e_f(0) = \frac{n+1}{2}$$
 and $e_f(1) = \frac{n+3}{2}$, if n is odd.

$$e_f(0)=e_f(1)=\frac{n+2}{2}\,,\,if\;n\;is\;even.$$

Therefore, $|e_f(0) - e_f(1)| \le 1$. Hence G is divisor cordial graph.

Example:2.2

The graph obtained by duplication of an edge by a vertex in C_5 and its divisor cordial labeling is shown in Figure 2.3.

Figure 2.3

Theorem: 2.3

The graph $G = \langle S_n^{(1)} : S_n^{(2)} : S_n^{(3)} \rangle$ is divisor cordial.

Proof.

Let $v_1^{(i)}$, $v_2^{(i)}$,..., $v_n^{(i)}$ be the pendant vertices of $S_n^{(i)}$ and let $v_1^{(i)}$ be the apex vertex of $S_n^{(i)}$ for $i=1,\,2,\,3$. The apex vertices $v_1^{(1)}$ and $v_1^{(2)}$ are joined by an edge as well as to a new vertex x_1 and the apex vertices $v_1^{(2)}$ and $v_1^{(3)}$ are joined by an edge as well as to a new vertex x_2 . Let G be $< S_n^{(1)}: S_n^{(2)}: S_n^{(3)}>$. Then |V(G)|=3n+2 and |E(G)|=6n-5.

Define vertex labeling $f: V(G) \rightarrow \{1, 2, ..., 3n+2\}$ as follows

$$f(v_1^{(1)}) = 1,$$

$$f(v_1^{(2)}) = 2,$$

$$f(v_1^{(3)}) = 3,$$

For n is odd.

$$f(x_1) = 3n+1,$$

$$f(x_2) = 3n+2,$$

$$f(v_2^{(1)}) = 4,$$

$$f(v_3^{(1)}) = 6,$$

$$f(v_{2i+2}^{(1)}) = 6i - 1$$

for
$$1 \le i \le \frac{n-3}{2}$$

$$f(v_{2i+3}^{(1)}) = 6i +$$

$$f(\ v_{2i+3}^{(1)}\)=6i+1 \qquad \qquad \text{for } 1\leq i \leq \frac{n-3}{2}$$

$$f(v_{2i}^{(2)}) = 6i + 2$$

$$f(\ v_{2i}^{(2)}\) = \ 6i + 2 \qquad \qquad \text{for } 1 \leq i \leq \frac{n-1}{2}$$

$$f(\ v_{2i+1}^{(2)}\)=6i+4$$

for
$$1 \le i \le \frac{n-3}{2}$$

$$f(v_n^{(2)}) = 3n - 4,$$

$$f(v_i^{(3)}) = 3i + 6,$$

$$for \ 1 \leq i \leq n-1$$

$$f(v_n^{(3)}) = 3n - 2.$$

For n is even.

$$f(x_1) = 3n+2,$$

$$f(x_2) = 3n+1,$$

$$f(v_2^{(1)}) = 4,$$

$$f(v_3^{(1)}) = 6,$$

$$f(v_{2i+2}^{(1)}) = 6i - 1$$

for
$$1 \le i \le \frac{n-2}{2}$$

$$f(v_{2i+3}^{(1)}) = 6i + 1$$

for
$$1 \le i \le \frac{n-4}{2}$$

$$f(\ v_{2i}^{(2)}\)=6i+2 \qquad \qquad for \ 1\leq i \leq \frac{n-2}{2}$$

$$f(v_{2i+1}^{(2)}) = 6i + 4$$
 for $1 \le i \le \frac{n-2}{2}$

$$f(v_n^{(2)}) = 3n - 5,$$

$$f(v_i^{(3)}) = 3i + 6,$$
 for $1 \le i \le n - 1$

$$f(v_n^{(3)}) = 3n - 1.$$

In both case, $e_f(0) = 3n - 2$ and $e_f(1) = 3n - 3$.

Therefore $|e_f(0) - e_f(1)| \le 1$.

Hence G is divisor cordial.

Example:2.3

The graph $G = \langle S_n^{(1)} : S_n^{(2)} : S_n^{(3)} \rangle$ and its divisor cordial labeling is given in Figure 2.4.

Figure 2.4

Theorem: 2.4

The graph $G = \langle W_n^{(1)} : W_n^{(2)} : W_n^{(3)} \rangle$ is divisor cordial.

Proof.

Let $v_1^{(i)}$, $v_2^{(i)}$,..., $v_n^{(i)}$ be the pendant vertices of $W_n^{(i)}$ and let c_i be the apex vertex of $W_n^{(i)}$ for i = 1, 2, 3. The apex vertices c_1 and c_2 are joined by an edge as well as to a new vertex x_1 and the apex vertices c_2 and c_3 are joined by an edge as well as to a new vertex x2.

Let G be
$$< W_n^{(1)}: W_n^{(2)}: W_n^{(3)} >$$
.

Then
$$|V(G)| = 3n+5$$
 and $|E(G)| = 6n+4$.

Define vertex labeling $f: V(G) \rightarrow \{1, 2, ..., 3n+5\}$ as follows

$$f(c_1) = 1$$
,

$$f(c_2)=2,$$

$$f(c_3) = 3$$
,

For n is even.

$$f(x_1) = 3n+4,$$

$$f(x_2)=6,$$

$$f(v_1^{(1)}) = 4,$$

$$f(v_{2i}^{(1)}) = 5 + 6(i-1)$$

for
$$1 \le i \le \frac{n}{2}$$

$$f(v_{2i+1}^{(1)}) = 7 + 6(i-1)$$

for
$$1 \le i \le \frac{n-2}{2}$$

$$f(\ v_{2i-1}^{(2)}) = 8 + 6(i-1)$$

for
$$1 \le i \le \frac{n}{2}$$

$$f(\ v_{2i}^{(2)}\)=10+6(i-1) \qquad \qquad \text{for } 1\leq i \leq \frac{n-2}{2}$$

For
$$1 \le i \le \frac{n-2}{2}$$

$$f(v_n^{(2)}) = 3n+1,$$

$$f(v_i^{(3)}) = 9 + 3(i-1),$$

for $1 \le i \le n-1$

$$f(v_n^{(3)}) = 3n+5.$$

For n is odd.

$$f(x_1) = 3n+5,$$

$$f(x_2) = 6$$
,

$$f(v_1^{(1)}) = 4,$$

$$f(v_{2i}^{(1)}) = 5 + 6(i-1)$$

for
$$1 \le i \le \frac{n-1}{2}$$

$$f(v_{2i+1}^{(1)}) = 7 + 6(i-1)$$

for
$$1 \le i \le \frac{n-1}{2}$$

$$f(\ v_{2i-1}^{(2)}) = 8 + 6(i-1)$$

for
$$1 \le i \le \frac{n-1}{2}$$

$$f(v_{2i}^{(2)}) = 10 + 6(i-1)$$

for
$$1 \le i \le \frac{n-1}{2}$$

$$f(v_n^{(2)}) = 3n+2,$$

$$f(v_i^{(3)}) = 9 + 3(i-1),$$

for
$$1 \le i \le n-1$$

$$f(v_n^{(3)}) = 3n+4.$$

In both case, $e_f(0) = e_f(1) = 3n+2$.

Therefore $|e_f(0) - e_f(1)| \le 1$.

Hence G is divisor cordial.

Example:2.4

The graph $G = \langle W_6^{(1)} : W_6^{(2)} : W_6^{(3)} \rangle$ and its divisor cordial labeling is given in Figure 2.5.

Figure 2.5

Theorem: 2.5

The graph obtained by joining two copies of S_n by path P_k admits divisor cordial labeling where $n \ge 4$.

Proof.

Let G be the graph obtained by joining two copies of S_n by path P_k . Let u_1 , u_2 , ..., u_n be the vertices of first copy of S_n and v_1 , v_2 , ..., v_n be the vertices of second copy of S_n .

Let w_1 , w_2 ,..., w_k be the vertices of path P_k with $u_1 = w_1$ and $v_1 = w_k$.

Then |V(G)| = 2n + k - 2 and |E(G)| = 4n + k - 7.

Define vertex labeling $f: V(G) \rightarrow \{1, 2, ..., 2n+k-2\}$ as follows

Label the vertices w_k , w_{k-1} , ..., w_3 , w_2 in the following order.

where $(2m-1)2^{k_m} \le k-1$ and $m \ge 1$, $k_m \ge 0$.

Also $(2m-1)2^a$ divides $(2m-1)2^b$ (a < b) and $(2m-1)2^{k_i}$ does not divide 2m+1.

In the above labeling, the consecutive adjacent vertices of w_k , w_{k-1} , ..., w_3 , w_2 having the labels even numbers and consecutive adjacent vertices having labels odd and even numbers contribute 1 to each edge. Similarly, the consecutive adjacent vertices having the labels odd numbers and consecutive adjacent vertices having labels even and odd numbers contribute 0 to each edge and $f(w_1)|f(w_2)$.

For k is odd

$$\begin{array}{ll} f(u_i) = \ k+2(i-1), & 2 \leq \ i \leq n-1 \\ f(v_i) = \ k-1+2(i-1), & 2 \leq \ i \leq n-1 \\ f(u_n) = f(u_{n-1})+1, & \\ f(v_n) = f(v_{n-1})+3. & \end{array}$$

For k is even

$$\begin{array}{ll} f(u_i) = \ k-1+2(i-1), & 2 \leq \ i \leq n-1 \\ f(v_i) = \ k+2(i-1), & 2 \leq \ i \leq n-1 \\ f(u_n) = f(u_{n-1})+3, & \\ f(v_n) = f(v_{n-1})+1. & \end{array}$$

Thus,
$$e_f(0)=\frac{4n+k-6}{2}$$
 and $e_f(1)=\frac{4n+k-8}{2}$, if k is odd

$$e_f(0)=e_f(1)=\frac{4n+k-7}{2}\,\text{, if k is even.}$$

Hence $|e_f(0) - e_f(1)| \le 1$.

Hence G is divisor cordial graph.

Example:2.5

The graph G obtained by joining two copies of S₆ by path P₆ and its divisor cordial labeling is given in Figure 2.6.

Figure 2.6

III. CONCLUSIONS

In this paper, we prove that the duplication of an arbitrary vertex by a new edge of cycle C_n $(n \ge 3)$, the duplication of an arbitrary edge by a new vertex of cycle C_n $(n \ge 3)$, $< S_n^{(1)} : S_n^{(2)} : S_n^{(3)} >$, $< W_n^{(1)} : W_n^{(3)} >$ and the graph obtained by joining two copies of S_n by a path P_k $(n \ge 4)$ are divisor cordial graph.

REFERENCES

- I. Cahit, "Cordial graphs: A weaker version of graceful and harmonious graphs", Ars Combinatoria, Vol 23, pp. 201-207, 1987.
- David M. Burton, Elementary Number Theory, Second Edition, Wm. C. Brown Company Publishers, 1980.
- F. Harary, Graph Theory, Addison-Wesley, Reading, Mass, 1972.
- J. A. Gallian, A dynamic survey of graph labeling, The Electronic Journal of Combinatorics, 19, # DS6, 2012.
- P.Maya and T.Nicholas, Some New Families of Divisor Cordial Graph, Annals of Pure and Applied Mathematics Vol. 5, No.2, pp. 125-134, 2014.
- P. Lawrence Rozario Raj and R. Valli, Some new families of divisor cordial graphs, International Journal of Mathematics Trends and Technology, Vol 7, No. 2, 2014.
- S. K. Vaidya and N. H. Shah, "Some Star and Bistar Related Divisor Cordial Graphs", Annals of Pure and Applied Mathematics, Vol 3, No.1, pp. 67-77, [7] 2013.
- S. K. Vaidya and N. H. Shah, "Further Results on Divisor Cordial Labeling", Annals of Pure and Applied Mathematics, Vol 4, No.2, pp. 150-159, 2013.
- [9] R. Varatharajan, S. Navanaeethakrishnan and K. Nagarajan, "Divisor cordial graphs", International J. Math. Combin., Vol 4, pp. 15-25, 2011.
 [10] R. Varatharajan, S. Navanaeethakrishnan and K. Nagarajan, "Special classes of divisor cordial graphs", International Mathematical Forum, Vol 7, No. 35, pp. 1737-1749, 2012.