Common Fixed Point Theorem in G-Metric Space Using Weakly Compatible Mappings

Dr. Shalu Saxena, Dr. Smita Nair
Assistant Prof. in Mathematics
Department of Mathematics
Sri Sathy Sai College for Women Bhopal M.P. India

Abstract

In this paper we present a common fixed point theorem for self mappings using the concept of weakly compatible mappings.

Key words:- Complete G-metric Space, Weakley compatible mappings.

I. Introduction

There have been various generalizations of metric space such as Gahler who gave the concept of 2-metric space, Dhage [1,2] who gave the concept of D-metric. Mustafa and Sims [14,15] introduced a new generalized version of metric space \& called it G-metric space after they had shown that most of the results related to D-metric space are invalid, Here we prove a common fixed point theorem in G-metric space using pairs of weakly compatible mappings.

II. Definitions and Preliminaries

We here begin with some definitions and results for G- metric spaces that will be used in the following sections .
Definition 2.1 [15] Let X be a nonempty set and let G; $\mathrm{X} \times \mathrm{X} \times \mathrm{X}--->\mathrm{R}^{+}$be a function satisfying the following axioms
(G1) $\quad G(x, y, z)=0$ if $x=y=z$
$\left(\mathrm{G}_{2}\right) \quad \mathrm{G}(\mathrm{x}, \mathrm{x}, \mathrm{y})>0$, for all $\mathrm{x}, \mathrm{y} \varepsilon \mathrm{X}$ with $\mathrm{x} \neq \mathrm{y}$
$\left(G_{3}\right) \quad G(x, x, y) \leq G(x, y, z)$ for all $x, y, z \varepsilon X$ with $z \neq y$.
$\left(\mathrm{G}_{4}\right) \quad \mathrm{G}(\mathrm{x}, \mathrm{y}, \mathrm{z})=\mathrm{G}(\mathrm{x}, \mathrm{z}, \mathrm{y})=\mathrm{G}(\mathrm{y}, \mathrm{z}, \mathrm{x})=\ldots . .($ symmetry in all three variables $)$
(G_{5}) $\mathrm{G}(\mathrm{x}, \mathrm{y}, \mathrm{z}) \leq \mathrm{G}(\mathrm{x}, \mathrm{a}, \mathrm{a})+\mathrm{G}(\mathrm{a}, \mathrm{y}, \mathrm{z})$, for all $\mathrm{x}, \mathrm{y}, \mathrm{z}, \mathrm{a} \varepsilon \mathrm{x}$ (rectangle inequality)
Then the function G is called a generalized metric or more specifically a G - metric on X, and the pair (X, G) is called a G- metric space .

Definition 2.2 [15] Let (X,G) be a G- metric space, let $\left\{\mathrm{x}_{\mathrm{n}}\right\}$ be a sequence of points of X , we say that $\left\{\mathrm{x}_{\mathrm{n}}\right\}$ converges to a point x in X
if $\begin{aligned} & \lim \\ & n, m \rightarrow \infty\end{aligned} \mathrm{G}\left(\mathrm{x}, \mathrm{x}_{\mathrm{n}}, \mathrm{x}_{\mathrm{m}}\right)=0$
In other words for $\mathrm{e} \varepsilon>0$ there exists $\mathrm{n}_{\mathrm{o}} \varepsilon \mathrm{N}$ such that $\mathrm{G}\left(\mathrm{x}, \mathrm{x}_{\mathrm{n}}, \mathrm{x}_{\mathrm{m}}\right)<\varepsilon$ for all $\mathrm{n}, \mathrm{m} \geq \mathrm{n}_{\mathrm{o}}$ Then x is called the limit of sequence $\left\{\mathrm{X}_{\mathrm{n}}\right\}$.

Definition 2.3 [15] Let (X,G) be a G- metric space, a sequence $\left\{\mathrm{x}_{\mathrm{n}}\right.$, $\}$ is called G - Cauchy sequence if for given $\varepsilon>0$, there is $\mathrm{n}_{\mathrm{o}} \varepsilon \mathrm{N}$ such that $\mathrm{G}\left(\mathrm{x}_{\mathrm{n}}, \mathrm{x}_{\mathrm{m}}, \mathrm{x}_{\mathrm{e}}\right)<\varepsilon$ for all $\mathrm{n}, \mathrm{m}, l \geq \mathrm{n}_{\mathrm{o}}$ that is if. $\mathrm{G}\left(\mathrm{x}_{\mathrm{n}}, \mathrm{x}_{\mathrm{m}}, \mathrm{x}_{\mathrm{e}}\right) \rightarrow 0$ as $\mathrm{n}, \mathrm{m}, l \rightarrow \infty$

Definition 2.4 [15] Let A, B be self mappings on a G-metric space X. Then the pair (A, B) is said to be weakly compatible if they commute at their coincidence point, that is $\mathrm{Ax}=\mathrm{Bx}$ implies that $\mathrm{ABx}=\mathrm{BAx}$ for all $\mathrm{x} \varepsilon \mathrm{X}$.

Preposition 2.5 [15] Let (X, G) be a G-metric space, Then, the following are equivalent
(i) $\quad\left\{x_{n}\right\}$ is G- convergent to x
(ii) $\quad \mathrm{G}\left(\mathrm{x}_{\mathrm{n}}, \mathrm{x}_{\mathrm{n}}, \mathrm{x}\right) \rightarrow 0$, as $\mathrm{n} \rightarrow \infty$
(iii) $\quad \mathrm{G}\left(\mathrm{x}_{\mathrm{n}}, \mathrm{x}, \mathrm{x},\right) \rightarrow 0$, as $\mathrm{n} \rightarrow \infty$
(iv) $\quad \mathrm{G}\left(\mathrm{x}_{\mathrm{m}}, \mathrm{x}_{\mathrm{n}}, \mathrm{x}\right) \rightarrow 0$ as $\mathrm{n}, \mathrm{m} \rightarrow \infty$

Preposition 2.6 [15] In a G-metric space (X, G) the following are equivalent
(i) The sequence $\left\{\mathrm{x}_{\mathrm{n}}\right\}$ is G- Cauchy
(ii) For every $\varepsilon>0$, there exists $\mathrm{n}_{\mathrm{o}} \varepsilon \mathrm{N}$ such that $\mathrm{G}\left(\mathrm{x}_{\mathrm{n}}, \mathrm{x}_{\mathrm{m}}, \mathrm{x}_{\mathrm{m}}\right)<\varepsilon$ for all $\mathrm{n}, \mathrm{m} \geq \mathrm{n}_{0}$.

Definition 2.7 [16]. Let ϕ denote the set of alternating distance functions
$\phi:[0, \phi[\rightarrow[0, \infty[$ which satifies following conditions
(i) $\quad \phi$ is strictly increasing
(ii) $\quad \phi$ is upper semi continuous from the right.
(iii) $\quad \sum_{n=0}^{\infty} \phi(\mathrm{t})<\infty$ for all $\mathrm{t}>0$
(iv) $\quad \phi(\mathrm{t})=0 \Leftrightarrow \mathrm{t}=0$

Main Result

Let f, g, h, s, r and t be self mappings of a complete G-metric space (X, G) and
(i) $\quad f(x) \subseteq t(X), g(X) \subseteq s(X), h(X) \subseteq r(X)$ and $f(X)$ or $g(X)$ or $h(X)$ is a closed subset of X.
(ii) $\quad \mathrm{G}(\mathrm{fx}, \mathrm{gy}, \mathrm{hz})$
$\leq \phi\{\max [\alpha(\mathrm{G}(\mathrm{gy}, \mathrm{fx}, \mathrm{rx})$
$+G(h z, g y, t y)+G(f x, s z, h z)$,
$\beta(G(f x, r x, g y)+G(s z, f x, r x))$,
$\gamma(\mathrm{G}(\mathrm{gy}, \mathrm{ty}, \mathrm{hz})+\mathrm{G}(\mathrm{fx}, \mathrm{gy}, \mathrm{ty}))]\}$
Where $\alpha, \beta, \gamma,>, 0$ and $3 \alpha+4 \beta+2 \gamma<1$
(iii) $\quad \phi: \mathrm{R}^{+}$is increasing function such that ϕ (a) < a for all a>0 and $\Sigma \phi($ a) $<\infty$ as a $\rightarrow \infty$
(iv) The pairs (f, r), (g, t) and (h, s) are weakly compatible pairs.

Then the mappings $\mathrm{f}, \mathrm{g}, \mathrm{h}, \mathrm{r}, \mathrm{s}$ and t have a common unique fixed point in X .
Proof: Let $X_{0} \in X$ be an arbitrary point. Then by (i) there exist $x_{1}, x_{2}, x_{3} \in X$ such that
$\mathrm{fx}_{0}=\mathrm{tx}_{1}=\mathrm{y}_{0}, \mathrm{gx}_{1}=\mathrm{sx}_{2}=\mathrm{y}_{1}$ and $\mathrm{hx}_{2}=\mathrm{rx}_{3}=\mathrm{y}_{2}$
applying the concept of mathematical induction we can define a sequence $\left\{y_{n}\right\}$ in X such that

$$
\begin{aligned}
& \mathrm{fx}_{3 \mathrm{n}}=\mathrm{tx}_{3 \mathrm{n}+1}=y_{3 n} \\
& \mathrm{gx}_{3 \mathrm{n}+1}=\mathrm{sx}_{3 \mathrm{n}+2}=\mathrm{y}_{3 \mathrm{n}+1} \text { and } \\
& \mathrm{hx}_{3 \mathrm{n}+2}=\mathrm{rx}_{3 \mathrm{n}+3}=\mathrm{y}_{3 \mathrm{n}+2} \text { for } \mathrm{n}=0,1,2 \ldots
\end{aligned}
$$

Now we prove that the sequence is a Cauchy sequence and for this we define

$$
\mathrm{d}_{\mathrm{m}}=\mathrm{G}\left(\mathrm{y}_{\mathrm{m}}, \mathrm{y}_{\mathrm{m}+1}, \mathrm{y}_{\mathrm{m}+2}\right)
$$

So we have
from the above inequality we will have following
Case I- If $\max =\alpha\left(d_{3 n-1}+2 d_{3 n}\right)$, then

$$
\begin{aligned}
& d_{3 n} \leq \phi\left(\alpha\left(d_{3 n-1}+2 d_{3 n}\right)\right) \text { as } \phi(t)<t, \text { hence we get } \\
& d_{3 n} \leq \alpha\left(d_{3 n-1}+2 d_{3 n}\right) \\
& (1-2 \alpha) d_{3 n} \leq \alpha d_{3 n-1} \\
& d_{3 n} \leq d_{3 n-1}
\end{aligned}
$$

Case - II If max $=2 \beta d_{3 n-1}$ then $\quad d_{3 n} \leq \phi\left(2 \beta d_{3 n-1}\right)$ as $\phi(t)<t$ hence we get $d_{3 n} \leq 2 \beta d_{3 n-1}$

$$
\text { i.e. } d_{3 n} \leq d_{3 n-1}
$$

Case - III If max $=2 \gamma \mathrm{~d}_{3 n}$ then $\mathrm{d}_{3 \mathrm{n}} \leq \phi\left(2 \gamma \mathrm{~d}_{3 \mathrm{n}}\right)$ again as $\phi(\mathrm{t})<\mathrm{t}$ we get $\mathrm{d}_{3 \mathrm{n}} \leq \mathrm{d}_{3 n}$ which is a contradiction. Hence $\mathrm{d}_{3 \mathrm{n}} \leq \mathrm{d}_{3 \mathrm{n}-1}$
If $m=3 n+1$, then

$$
\leq \phi\left\{\operatorname { m a x } \left[\alpha\left[G\left(y_{3 n+2}, y_{3 n+1}, y_{3 n}\right)+G\left(y_{3 n+3}, y_{3 n+2}, y_{3 n+1}\right)+G\left(y_{3 n+1}, y_{3 n+2}, y_{3 n+3}\right)\right], \beta\left[G\left(y_{3 n+1}, y_{3 n}, y_{3 n+2}\right)+\right.\right.\right.
$$

$$
\begin{aligned}
& \mathrm{d}_{3 \mathrm{n}+1}=\mathrm{G}\left(\mathrm{y}_{3 \mathrm{n}+1}, \mathrm{y}_{3 \mathrm{n}+2}, \mathrm{y}_{3 \mathrm{n}+3}\right) \\
& =G\left(\mathrm{fx}_{3 \mathrm{n}+1}, \mathrm{gx}_{3 \mathrm{n}+2}, \mathrm{hx}_{3 \mathrm{n}+3}\right) \\
& \leq \phi\left\{\operatorname { m a x } \left[\alpha\left[G\left(\mathrm{gx}_{3 \mathrm{n}+2}, \mathrm{fx}_{3 \mathrm{n}+2}, \mathrm{rx}_{3 \mathrm{n}+1}\right)+\mathrm{G}\left(\mathrm{hx}_{3 \mathrm{n}+3}, \mathrm{gx}_{3 \mathrm{n}+2}, \mathrm{tx}_{3 \mathrm{n}+2}\right)+\mathrm{G}\left(\mathrm{fx}_{3 \mathrm{n}+1}, \mathrm{sx}_{3 \mathrm{n}+3}, \mathrm{hx}_{3 \mathrm{n}+3}\right)\right],\right.\right. \\
& \beta\left[G\left(\mathrm{fx}_{3 \mathrm{n}+1}, \mathrm{rx}_{3 \mathrm{n}+1}, \mathrm{gx}_{3 \mathrm{n}+2}\right)+\mathrm{G}\left(\mathrm{Sx}_{3 \mathrm{n}+3}, \mathrm{fx}_{3 \mathrm{n}+1}, \mathrm{rx}_{3 \mathrm{n}+1}\right)\right], \gamma\left[\mathrm{G}\left(\mathrm{gx}_{3 n+2}, \mathrm{tx}_{3 \mathrm{n}+2}, \mathrm{hx}_{3 \mathrm{n}+3}\right)\right. \\
& \left.\left.\left.+G\left(\mathrm{fx}_{3 \mathrm{n}+1}, \mathrm{gx}_{3 \mathrm{n}+2}, \mathrm{tx}_{3 \mathrm{n}+2}\right)\right]\right]\right\} \text {. }
\end{aligned}
$$

$$
\begin{aligned}
& d_{3 n}=G\left(y_{3 n}, y_{3 n+1}, y_{3 n+2}\right) \\
& =G\left(f x_{3 n}, g x_{3 n+1}, h x_{3 n+2}\right) \\
& <\phi\left\{\operatorname { m a x } \left[\alpha \left(G\left(\mathrm{gx}_{3 n+1}, \mathrm{fx}_{3 n}, \mathrm{rx}_{3 n}\right)+\mathrm{G}\left(\mathrm{hx}_{3 n+2}, \mathrm{gx}_{3 n+1}, \mathrm{tx}_{3 n+1}\right)+\mathrm{G}\left(\mathrm{fx}_{3 n}, \mathrm{sx}_{3 n+2}, \mathrm{hx}_{3 n+2}\right),\right.\right.\right. \\
& \left.\beta\left[G\left(\mathrm{fx}_{3 \mathrm{n}}, \mathrm{rx}_{3 \mathrm{n}}, \mathrm{gx}_{3 \mathrm{n}+1}\right) \quad+\mathrm{G}\left(\mathrm{sx}_{3 \mathrm{n}+2}, \mathrm{fx}_{3 \mathrm{n}}, \mathrm{rx}_{3 \mathrm{n}}\right)\right], \gamma\left[\mathrm{G}\left(\mathrm{gx}_{3 \mathrm{n}+1}, \mathrm{tx}_{3 \mathrm{n}+1}\right)+\mathrm{G}\left(\mathrm{gx}_{3 \mathrm{n}+1}, \mathrm{tx}_{3 \mathrm{n}+1}\right)\right]\right\} \\
& <\phi\left\{\operatorname { m a x } \left[\alpha\left(G\left(y_{3 n+1}, y_{3 n}, y_{3 n-1}\right)+G\left(y_{3 n+2}, y_{3 n+1}, y_{3 n}\right)+G\left(y_{3 n}, y_{3 n+1}, y_{3 n+2}\right)\right], \beta\left[G\left(y_{3 n}, y_{3 n-1}, y_{3 n+1}\right)\right.\right.\right. \\
& \left.\left.+G\left(y_{3 n+2}, y_{3 n}, y_{3 n-1}\right)\right], \gamma\left[G\left(y_{3 n+1}, y_{3 n}, y_{3 n+2}\right)+G\left(y_{3 n+0}, y_{3 n}, y_{3 n}\right)\right]\right\} \\
& <\phi\left\{\max \left[\alpha G\left(d_{3 n-1},+d_{3 n},+d_{3 n}\right) 2 \beta d_{3 n-1}, 2 \gamma d_{3 n}\right]\right\} \\
& <\phi\left\{\max \left[\alpha G\left(d_{3 n-1},+2 d_{3 n}\right), 2 \beta d_{3 n-1}, 2 \gamma d_{3 n}\right]\right\}
\end{aligned}
$$

$$
\begin{aligned}
& \left.\left.\left.\quad \mathrm{G}\left(\mathrm{y}_{3 \mathrm{n}+2}, \mathrm{y}_{3 \mathrm{n}+1}, \mathrm{y}_{3 \mathrm{n}}\right)\right], \gamma\left[\mathrm{G}\left(\mathrm{y}_{3 \mathrm{n}+2}, \mathrm{y}_{3 \mathrm{n}+1}, \mathrm{y}_{3 \mathrm{n}+3}\right)+\mathrm{G}\left(\mathrm{y}_{3 \mathrm{n}+1}, \mathrm{y}_{3 \mathrm{n}+2}, \mathrm{y}_{3 \mathrm{n}+1}\right)\right]\right]\right\} \\
& \left.\leq \phi\left\{\max \left[\alpha\left(\mathrm{d}_{3 \mathrm{n}}+2 \mathrm{~d}_{3 \mathrm{n}+1}\right), 2 \beta \mathrm{~d}_{3 \mathrm{n}}, 2 \gamma \mathrm{~d}_{3 \mathrm{n}+1}\right)\right]\right\}
\end{aligned}
$$

From the above inequality we have following cases.
Case- I If max $=\alpha\left(d_{3 n}+2 d_{3 n+1}\right)$ then $d_{3 n+1} \leq \phi\left(\alpha\left(d_{3 n}+2 d_{3 n+1}\right)\right.$ as $\phi(t)<t$, we get

$$
\begin{aligned}
& d_{3 n+1} \leq \alpha\left(d_{3 n}+2 d_{3 n+1}\right) \\
& (1-2 \alpha) d_{3 n+1} \leq \alpha d_{3 n} \\
& d_{3 n+1} \leq d_{3 n}
\end{aligned}
$$

Case- II If $\max =2 \beta \mathrm{~d}_{3 n}$, then we get $\mathrm{d}_{3 \mathrm{n}+1} \leq \phi\left(2 \beta \mathrm{~d}_{3 \mathrm{n}}\right)$ as $\phi(\mathrm{t})<\mathrm{t}$, we get $\mathrm{d}_{3 \mathrm{n}+1} \leq 2 \beta \mathrm{~d}_{3 \mathrm{n}}$ or $\mathrm{d}_{3 \mathrm{n}+1} \leq \mathrm{d}_{3 n}$
Case III If max $=2 \gamma \mathrm{~d}_{3 n+1}$, then we get $\mathrm{d}_{3 n+1} \leq \phi\left(2 \gamma \mathrm{~d}_{3 n+1}\right)$ as $\phi(\mathrm{t})$, $<t$ we get $d_{3 n+1} \leq 2 \gamma \mathrm{~d}_{3 n+1}$ or $d_{3 n+1} \leq d_{3 n+1}$ which is a contradiction. Hence $d_{3 n+1} \leq d_{3 n}$

If $m=3 n+2$, then

$$
\begin{aligned}
& d_{3 n+2}=G\left(y_{3 n+2}, y_{3 n+3}, y_{3 n+4}\right) \\
& =G\left(\mathrm{fx}_{3 \mathrm{n}+2}, \mathrm{gx}_{3 \mathrm{n}+3}, \mathrm{hx}_{3 \mathrm{n}+4}\right), \\
& \leq \phi\left\{\operatorname { m a x } \left[\alpha\left[G\left(g x_{3 n+3}, f x_{3 n+2}, r x_{3 n+2}\right)+G\left(h x_{3 n+4}, g x_{3 n+3}, t x_{3 n+3}\right)+G\left(f x_{3 n+2}, s x_{3 n+4}, h x_{3 n+4}\right)\right]\right.\right. \\
& \beta\left[G\left(\mathrm{fx}_{3 \mathrm{n}+2}, \mathrm{rx}_{3 \mathrm{n}+2}, \mathrm{gx}_{3 \mathrm{n}+3}\right)+\mathrm{G}\left(\mathrm{Sx}_{3 \mathrm{n}+4}, \mathrm{fx}_{3 \mathrm{n}+2}, \mathrm{rx}_{3 \mathrm{n}+2}\right)\right], \gamma\left[\mathrm{G}\left(\mathrm{gx}_{3 \mathrm{n}+3}, \mathrm{tx}_{3 \mathrm{n}+3}, \mathrm{hx}_{3 \mathrm{n}+4}\right)\right. \\
& \left.\left.\left.+G\left(\mathrm{fx}_{3 \mathrm{n}+2}, \mathrm{gx}_{3 \mathrm{n}+3}, \mathrm{tx}_{3 \mathrm{n}+3}\right)\right]\right]\right\} \\
& \leq \phi\left\{\operatorname { m a x } \left[\alpha\left(G\left(y_{3 n+3}, y_{3 n+2}, y_{3 n+1}\right)+G\left(y_{3 n+4}, y_{3 n+3}, y_{3 n+2}\right) G\left(y_{3 n+2}, y_{3 n+3}, y_{3 n+4}\right)\right), \beta\left(G\left(y_{3 n+2}, y_{3 n+1}, y_{3 n+3}\right)\right.\right.\right. \\
& \left.\left.+G\left(y_{3 n+3}, y_{3 n+2}, y_{3 n+1}\right)\right), \gamma\left(G\left(y_{3 n+3}, y_{3 n+2}, y_{3 n+4}\right)+G\left(y_{3 n+2}, y_{3 n+3}, y_{3 n+2}\right)\right]\right\} \\
& \leq \phi\left\{\max \left[\alpha\left(d_{3 n+1},+d_{3 n+2},+d_{3 n+2}\right),+\beta\left(d_{3 n+1}+d_{3 n+1}\right), \gamma\left(d_{3 n+2}+d_{3 n+2}\right)\right]\right\}
\end{aligned}
$$

From the above inequality we have following cases.
Case. I If $\max =\alpha\left(d_{3 n+1},+2 d_{3 n+2}\right)$ then $d_{3 n+2} \leq \phi\left(\alpha\left(d_{3 n+1},+2 d_{3 n+2}\right)\right)$ as $\phi(t)<t$ then we get

$$
\begin{aligned}
& \mathrm{d}_{3 \mathrm{n}+2} \leq \alpha\left(\mathrm{d}_{3 \mathrm{n}+1}+2 \mathrm{~d}_{3 \mathrm{n}+2}\right) \text { or } \mathrm{d}_{3 \mathrm{n}+2} \leq \frac{\alpha}{1-2 \alpha} \mathrm{~d}_{3 \mathrm{n}+1} \\
& \mathrm{~d}_{3 \mathrm{n}+2} \leq \mathrm{d}_{3 \mathrm{n}+1}
\end{aligned}
$$

Case II. If max $=2 \beta d_{3 n+1}$ then we get $d_{3 n+2} \leq \phi\left(2 \beta d_{3 n+1}\right)$ as $\phi(t)<t$, hence we get $d_{3 n+2} \leq 2 \beta d_{3 n+1}$ or $\mathrm{d}_{3 \mathrm{n}+2} \leq \mathrm{d}_{3 \mathrm{n}+1}$ which is the required result.

Case III. If $\max =2 \gamma \mathrm{~d}_{3 \mathrm{n}+2}$ then $\mathrm{d}_{3 \mathrm{n}+2} \leq \phi\left(2 \gamma \mathrm{~d}_{3 \mathrm{n}+2}\right)$ as $\phi(\mathrm{t})<\mathrm{t}$, then we get $\mathrm{d}_{3 \mathrm{n}+2} \leq 2 \gamma \mathrm{~d}_{3 \mathrm{n}+2}$ or $\mathrm{d}_{3 \mathrm{n}+2} \leq \mathrm{d}_{3 \mathrm{n}+2}$
which is a contradiction. From the above three cases we can say that $d_{n} \leq d_{n-1}$ for every $n \in N$. So by above inequality we get $\mathrm{d}_{\mathrm{n}} \leq \mathrm{q}_{\mathrm{n}-1}$, where $\mathrm{q}=3 \alpha+4 \beta+2 \gamma<1$ i.e.

$$
\begin{aligned}
\mathrm{d}_{\mathrm{n}} & =G\left(\mathrm{y}_{\mathrm{n}}, \mathrm{y}_{\mathrm{n}+1}, \mathrm{y}_{\mathrm{n}+2}\right) \\
& \leq \mathrm{qG}\left(\mathrm{y}_{\mathrm{n}-1}, \mathrm{y}_{\mathrm{n}}, \mathrm{y}_{\mathrm{n}+1}\right) \\
& \leq \mathrm{q}^{\mathrm{n}} G\left(\mathrm{y}_{0}, \mathrm{y}_{1}, \mathrm{y}_{2}\right)
\end{aligned}
$$

also we have $G(x, x, y) \leq G(x, y, z)$, hence we get $G\left(y_{n}, y_{n} y_{n+1}\right) \leq q^{n} G\left(y_{0}, y_{1}, y_{2}\right)$ and
$G\left(y_{n}, y_{n}, y_{m}\right) \leq\left(y_{n}, y_{n}, y_{n+1}\right)+G\left(y_{n+1}, y_{n+1}, y_{n+2}\right)+-----+G\left(y_{m-1}, y_{m-1}, y_{m}\right)$
i.e. we have $G\left(y_{n}, y_{n}, y_{m}\right) \leq g^{n} G\left(y_{0}, y_{1}, y_{2}\right)+----------------+-----+g^{m-1} G\left(y_{0}, y_{1}, y_{2}\right)$ hence we have

$$
\begin{aligned}
\mathrm{G}\left(\mathrm{y}_{\mathrm{n}} \cdot \mathrm{y}_{\mathrm{n}}, \mathrm{y}_{\mathrm{m}}\right) & \leq \frac{q^{n}-q^{m}}{1-q} \mathrm{G}\left(\mathrm{y}_{0}, \mathrm{y}_{1}, \mathrm{y}_{2}\right) \\
& \leq \frac{q^{n}}{1-q} \mathrm{G}\left(\mathrm{y}_{0}, \mathrm{y}_{1}, \mathrm{y}_{2}\right) \rightarrow 0
\end{aligned}
$$

So the sequence $\left\{y_{n}\right\}$ is a Cauchy sequence in X and as X is complete $\left\{y_{n}\right\}$ will converge to y in X.
i.e. $\lim _{n \rightarrow \infty} \mathrm{y}_{\mathrm{n}}=\mathrm{y} \quad \lim _{n, m \rightarrow \infty} \mathrm{fx}_{3 \mathrm{n}}=\lim _{n, m \rightarrow \infty} \mathrm{gx}_{3 \mathrm{n}+1}=\quad \lim _{m, n \rightarrow \infty} \quad \mathrm{hx}_{3 \mathrm{n}+2}=\lim _{m, n \rightarrow \infty} \mathrm{tx}_{3 \mathrm{n}+1}$
$\lim \quad \lim$
$=m, n \rightarrow \infty^{\mathrm{Sx}_{3 \mathrm{n}+2}=} \quad m, n \rightarrow \infty^{\mathrm{r}_{3 \mathrm{n}+3}=\mathrm{y}}$
Let $h(X)$ is a closed subset of $r(X)$. Then there exist $u \in X$ Such that $r u=y$.Now consider on

$$
\begin{aligned}
G(f u, y, y)= & G\left(f u, g x_{3 n+1}, h x_{3 n+2}\right) \\
\leq & \phi\left\{\operatorname { m a x } \left[\alpha\left(G\left(g x_{3 n+1}, f u, r u\right)+G\left(h x_{3 n+2}, g x_{3 n+1}, \mathrm{tx}_{3 n+1}\right)+G\left(f u, S x_{3 n+2}, h x_{3 n+2}\right)\right), \beta\left(G\left(f u, r u, g x_{3 n+1}\right)\right.\right.\right. \\
& \left.\left.\left.\quad+G\left(S x_{3 n+2}, f u, r u\right)\right), \gamma\left(G\left(g x_{3 n+1}, t x_{3 n+1}, h x_{3 n+2}\right)+G\left(f u, g x_{3 n+1}, t x_{3 n+1}\right)\right)\right]\right\} \\
\leq & \phi\{\max [\alpha(G(y, f u, y)+G(y, y, y)+G(f u, y, y)), \beta(G(f u, y, y)+G(y, f u, r u)), \gamma(G(y, y, y)+G(f u, y, y)]\} \\
\leq & \phi\{\max [2 \alpha G(f u, y, y), 2 \beta G(f u, y, y), \gamma G(f y, y, y)]
\end{aligned}
$$

from the above inequality we can have two cases.
Case I If $\max =2 \alpha \mathrm{G}(\mathrm{fu}, \mathrm{y}, \mathrm{y})$
then $G(f u, y, y) \leq \phi(2 \alpha G(f u, y, y))$ as $\phi(t)<t, G(f u, y, y,) \leq 2 \alpha G(f u, y, y)$ or $(1-2 \alpha) G(f u, y, y) \leq 0$.Hence $\mathrm{G}(\mathrm{fu}, \mathrm{y}, \mathrm{y})=0$ or $\mathrm{fu}=\mathrm{y}$

Case II If $\max =2 \beta \mathrm{G}(\mathrm{fu}, \mathrm{y}, \mathrm{y})$
then $\mathrm{G}(\mathrm{fu}, \mathrm{y}, \mathrm{y}) \leq \phi[2 \beta \mathrm{G}(\mathrm{fu}, \mathrm{y}, \mathrm{y})]$ as $\phi(\mathrm{t})$, hence we get.
$G(f u, y, y) \leq 2 \beta G(f u, y, y)]$ or $(1-2 \beta) G(f u, y, y) \leq 0$, hence $G(f u, y, y)=0$ or $f u=y$.
Case III If $\max =\gamma \mathrm{G}(\mathrm{fu}, \mathrm{y}, \mathrm{y})$, then
$\mathrm{G}(\mathrm{fu}, \mathrm{y}, \mathrm{y}) \leq \phi[\gamma \mathrm{G}(\mathrm{fu}, \mathrm{y}, \mathrm{y})]$ as $\phi(\mathrm{t}),<\mathrm{t}$, hence we get. $\mathrm{G}(\mathrm{fu}, \mathrm{y}, \mathrm{y}) \leq \gamma \mathrm{G}(\mathrm{fu}, \mathrm{y}, \mathrm{y})$ or
$(1-\gamma) G(f u, y, y) \leq 0$ or $G(f u, y, y)=0$ this implies $f u=y$.Therefore $f u=r u=y$. Then by applying the definition of weak compatibility on the pair (r,f) we have fru = rfu.Hence fy = ry

Now we prove $\mathrm{fy}=\mathrm{y}$. On the contrary Let $\mathrm{fy} \neq \mathrm{y}$, then
$G\left(f y, g x_{3 n+1}, h x_{3 n+2}\right) \leq \phi\left\{\max \left\{\alpha\left(G\left(g x_{3 n+1}, f y, r y\right)+G\left(h x_{3 n+2}, g x_{3 n+1}, t x_{3 n+1}\right)+G\left(f y, S x_{3 n+2}, h x_{3 n+2}\right)\right), \beta\left(G\left(f y, r y, g x_{3 n+1}\right)\right.\right.\right.$

$$
\begin{aligned}
& \text { International Journal of Mathematics Trends and Technology - Volume } 12 \text { Number } 2 \text { - Aug } 2014 \\
& \left.\left.+G\left(\mathrm{Sx}_{3 n+2}, f y, g y\right)\right),+\gamma\left(G\left(\mathrm{gx}_{3 \mathrm{n}+1}, \mathrm{tx}_{3 \mathrm{n}+1}, \mathrm{hx}_{3 \mathrm{n}+2}\right)+\mathrm{G}\left(\mathrm{fy}, \mathrm{gx}_{3 \mathrm{n}+1}, \mathrm{tx}_{3 \mathrm{n}+1}\right)\right\}\right\} \\
& \leq \phi\{\max \{\alpha(G(y, f y, f y)+G(y, y, y)+G(f y, y, y)), \beta(G(f y, f y, y)+G(y, f y, f y)), \gamma((G(y, y, y) \\
& +G(f y, y, y)\}\} \\
& \leq \phi\{\max \{3 \alpha G(f y, y, y), 4 \beta G(f y, y, y), \gamma G(f y, y, y)\}\}
\end{aligned}
$$

From the above inequality we have following cases
Case I If max $=3 \alpha G(f y, y, y)$ then
$G(f y, y, y) \leq \phi\{3 \alpha G(f y, y, y)\}$ as $\phi(t)<t, G(f y, y, y) \leq 3 \alpha G(f y, y, y)$ then $G(f y, y, y)=0$ hence we get fy $=y$.
Case II If max $=4 \beta$ ($f y, y, y$) then
$G(f y, y, y) \leq \phi[4 \beta G(f y, y, y)]$ as $\phi(t)<t$ then we get $G(f y, y, y) \leq 4 \beta G(f y, y, y)$ which implies fy=y
Case III If $\max =\gamma \mathrm{G}(\mathrm{fy}, \mathrm{y}, \mathrm{y})$ then
$\mathrm{G}(\mathrm{fy}, \mathrm{y}, \mathrm{y}) \leq \phi[\gamma \mathrm{G}(\mathrm{fy}, \mathrm{y}, \mathrm{y})]$ as $\phi(\mathrm{t})<\mathrm{t}$ we get $\mathrm{G}(\mathrm{fy}, \mathrm{y}, \mathrm{y}) \leq \gamma \mathrm{G}(\mathrm{fy}, \mathrm{y}, \mathrm{y}) \quad$ which implies fy $=\mathrm{y}$
and as fy $=$ ry we have $f y=r y=y$. Hence y is common fixed point of f and r.As $y=f y \in f(X) \subseteq t(X)$ there exists w such that $\mathrm{tw}=\mathrm{y}$. We shall now prove that $\mathrm{gw}=\mathrm{y}$.Consider
$G\left(y, g w, h x_{3 n+2}\right)=G\left(f y, g w, h x_{3 n+2}\right)$

$$
\begin{aligned}
\leq & \phi\left\{\operatorname { m a x } \left[\alpha\left(G(g w, f y, r y)+G\left(h x_{3 n+2}, g w, t w\right)+G\left(f y, s x_{3 n+2}\right), h x_{3 n+2}\right), \beta(G(f y, r y, g w)\right.\right. \\
& \left.+G\left(S x_{3 n+2, ~ f y, r y)}\right), \gamma\left(G\left(g w, t w, h x_{3 n+2}\right)+G(f y, g w, t w)\right)\right] \\
\leq & \phi\{\max [\alpha(G(g w, y, y)+G(y, g w, y)+G(y, y, y)), \beta(G(y, y, g w)+G(y, y, y)), \gamma(G(g w, y, y) \\
& +G(y, g w, y))] \\
\leq \phi\{ & \max [2 \alpha G(g w, y, y), \beta G(g w, y, y), 2 \gamma G(g w, y, y)]
\end{aligned}
$$

From the above inequality we have following cases.
Case I If max $=2 \alpha G(g w, y, y)$ then we get $G(g w, y, y) \leq \phi[2 \alpha G(g w, y, y)]$ as $\phi(t)<t$ we have
$\mathrm{G}(\mathrm{gw}, \mathrm{y}, \mathrm{y}) \leq 2 \alpha \mathrm{G}(\mathrm{gw}, \mathrm{y}, \mathrm{y})$ hence $\mathrm{G}(\mathrm{gw}, \mathrm{y}, \mathrm{y})=0 \Rightarrow \mathrm{gw}=\mathrm{y}$
Case II If max $=\beta G(\mathrm{gw}, \mathrm{y}, \mathrm{y})$ then we get $\mathrm{G}(\mathrm{gw}, \mathrm{y}, \mathrm{y}) \leq \phi[\beta \mathrm{G}(\mathrm{gw}, \mathrm{y}, \mathrm{y})]$ as $\phi(\mathrm{t})<\mathrm{t}$ we have
$G(g w, y, y) \leq \beta G(g w, y, y)$ hence $G(g w, y, y)=0 \Rightarrow g w=y$
Case III If max $=2 \gamma \mathrm{G}(\mathrm{gw}, \mathrm{y}, \mathrm{y})$ we get $\mathrm{G}(\mathrm{gw}, \mathrm{y}, \mathrm{y}) \leq \phi[2 \gamma \mathrm{G}(\mathrm{gw}, \mathrm{y}, \mathrm{y})]$ as $\phi(\mathrm{t})<\mathrm{t}$ we have
$\mathrm{G}(\mathrm{gw}, \mathrm{y}, \mathrm{y}) \leq 2 \gamma \mathrm{G}(\mathrm{gw}, \mathrm{y}, \mathrm{y})$ hence $\mathrm{G}(\mathrm{gw}, \mathrm{y}, \mathrm{y})=0 \Rightarrow \mathrm{gw}=\mathrm{y}$
Therefore we have $\mathrm{gw}=\mathrm{tw}=\mathrm{y}$. As (g, t) are weakly compatible we get $\mathrm{tgw}=\mathrm{gtw}$ Hence $\mathrm{ty}=\mathrm{gy}$.
We shall now prove that $g y=y$. On the contrary Let $g y \neq y$, then
$G\left(f y, g y, h x_{3 n+2}\right) \leq \phi\left\{\max \left[\alpha\left(G(g y, f y, r y)+G\left(h x_{3 n+2}, g y, t y\right)+G\left(f y, S x_{3 n+2}, h x_{3 n+2}\right)\right), \beta(G(f y, r y, g y)\right.\right.$

$$
\left.\left.+G\left(S x_{3 n+2}, \text { fy, ry }\right)\right), \gamma\left(G\left(g y, t y, h x_{3 n+2}\right)+G(f y, g y, t y)\right]\right\}
$$

As $n \rightarrow \infty$ we get
$G(y, g y, y) \leq \phi\{\max [\alpha(G(g y, y, y)+G(y, y, g y)+G(y, y, y)), \beta(G(y, y, g y)+G(y, y, y)), \gamma(G(g y, g y, y)$

```
    +G(y,gy, ty))]}
\leq\phi{max [2 \alpha G (gy, y, ry),\beta G (gy, y, y),4\gammaG (gy, y, y) }
```

International Journal of Mathematics Trends and Technology - Volume 12 Number 2-Aug 2014

From the above inequality we have following three cases.
Case I If $\max =2 \alpha \mathrm{G}(\mathrm{gy}, \mathrm{y}, \mathrm{y})$ then
$G(g y, y, y) \leq \phi[2 \alpha G(g y, y, y)]$ as $\phi(t)<t$ we get $G(g y, y, y) \leq 2 \alpha G(g y, y, y)$ hence $G(g y, y, y)=0$ or $g y=y$. Case II If $\max =\beta \mathrm{G}(\mathrm{gy}, \mathrm{y}, \mathrm{y})$ then
$\mathrm{G}(\mathrm{gy}, \mathrm{y}, \mathrm{y}) \leq \phi[\beta \mathrm{G}(\mathrm{gy}, \mathrm{y}, \mathrm{y})]$ as $\phi(\mathrm{t})<\mathrm{t}$ we get $\mathrm{G}(\mathrm{gy}, \mathrm{y}, \mathrm{y}) \leq \beta \mathrm{G}(\mathrm{gy}, \mathrm{y}, \mathrm{y})$ hence $\mathrm{G}(\mathrm{gy}, \mathrm{y}, \mathrm{y})=0$ or $\mathrm{gy}=\mathrm{y}$.
Case III If max $=4 \gamma \mathrm{G}(\mathrm{gy}, \mathrm{y}, \mathrm{y})$ then
$G(\mathrm{gy}, \mathrm{y}, \mathrm{y}) \leq \phi[4 \gamma \mathrm{G}(\mathrm{gy}, \mathrm{y}, \mathrm{y})]$ as $\phi(\mathrm{t})<\mathrm{t}$ we get $\mathrm{G}(\mathrm{gy}, \mathrm{y}, \mathrm{y}) \leq 4 \gamma \mathrm{G}(\mathrm{gy}, \mathrm{y}, \mathrm{y})$ hence $\mathrm{G}(\mathrm{gy}, \mathrm{y}, \mathrm{y})=0$ or $\mathrm{gy}=\mathrm{y}$. Also $g y=t y=y$. Hence we get y is a common fixed point of g and t. Similarly since $y=g y \in g(X) \subset s(X)$, there exist $v \in X$ such that $s v=y$. We now prove that $h v=y$ If $h v \neq y$, we have
$G(y, y, h v)=G(f y, g y, h v)$

$$
\begin{aligned}
& \leq \phi\{\max [\alpha(G(g y, f y, r y)+G(h v, g y, t y)+G(f y, s v, h v)), \beta(G(f y, r y, g y)+G(s v, f y, r y)), \gamma(G(g y, t y, h v) \\
& \\
& \quad+G(f y, g y, t y))]\} \\
& \leq
\end{aligned}
$$

From the above inequality we have following case
Case I If max $=2 \alpha \mathrm{G}(\mathrm{hv}, \mathrm{y}, \mathrm{y})$ then
$\mathrm{G}(\mathrm{hv}, \mathrm{y}, \mathrm{y}) \leq \phi[2 \alpha \mathrm{G}(\mathrm{hv}, \mathrm{y}, \mathrm{y})]$ as $\phi(\mathrm{t})<\mathrm{t}$ we get $\mathrm{G}(\mathrm{hv}, \mathrm{y}, \mathrm{y}) \leq 2 \alpha \mathrm{G}(\mathrm{hv}, \mathrm{y}, \mathrm{y})$ hence $\mathrm{G}(\mathrm{hv}, \mathrm{y}, \mathrm{y})=0$ i.e. $\mathrm{hv}=\mathrm{y}$.
Case II If $\max =\gamma G(h v, y, y)$ then
$\mathrm{G}(\mathrm{hv}, \mathrm{y}, \mathrm{y}) \leq \phi[\gamma \mathrm{G}(\mathrm{hv}, \mathrm{y}, \mathrm{y})]$ as $\phi(\mathrm{t})<\mathrm{t}$ we get $\mathrm{G}(\mathrm{hv}, \mathrm{y}, \mathrm{y}) \leq \gamma \mathrm{G}(\mathrm{hv}, \mathrm{y}, \mathrm{y})$ hence $\mathrm{G}(\mathrm{hv}, \mathrm{y}, \mathrm{y})=0$ i.e. $\mathrm{hv}=\mathrm{y}$.
Thus $h v=s v=y$. As the pair (h, s) are weakly compatible we have $s h v=h s v$. Hence $s y=$ hy.Now we shall prove that $h y=y$.
$G(y, y, h y)=G(f y, g y, h y)$

$$
\begin{aligned}
\leq & \phi\{\max [\\
& \alpha(G(g y, f y, r y)+G(h y, \text { gy, ty })+G(f y, \text { sy, hy })), \beta(G(f y, r y, \text { gy })+G(s y, f y, r y)), \gamma(G(g y, \text { ty, hy }) \\
& +G(f y, \text { gy, ty })]\} \\
\leq \phi\{\max [& \alpha(G(y, y, y)+(h y, y, y)+G(y, y, h y)), \beta(G(y, y, y)+G(y, y, y)), \gamma(G(y, y, h y)+G(y, y, y)]\} \\
\leq & \phi\{\max [2 \alpha G(h y, y, y), \gamma G(y, y, h y)]\}
\end{aligned}
$$

From the above inequality we have following cases.
Case I If max $=2 \alpha G(h y, y, y)$ then
$G(y, y, h y) \leq \phi[2 \alpha G(h y, y, y)]$ as $\phi(t)<t$ we get $G(y, y, h y) \leq 2 \alpha G(h y, y, y)$ hence $G(y, y, h y)=0$ i.e. hy $=y$.
Case II- If $\max =\gamma \mathrm{G}(\mathrm{y}, \mathrm{y}$, hy) then
$\mathrm{G}(\mathrm{y}, \mathrm{y}, \mathrm{hy}) \leq \phi[\gamma \mathrm{G}(\mathrm{y}, \mathrm{y}, \mathrm{hy})]$ as $\phi(\mathrm{t})<\mathrm{t}$ we get $\mathrm{G}(\mathrm{y}, \mathrm{y}, \mathrm{hy}) \leq \gamma \mathrm{G}(\mathrm{y}, \mathrm{y}$, hy $)$ hence $\mathrm{G}(\mathrm{y}, \mathrm{y}, \mathrm{hy})=0$ i.e. hy $=\mathrm{y}$.

Since $s y=h y=y$. We have y is a common fixed point of s and h. Thus f, g, h, s, t, r have a common fixed point y.
So fy $=$ gy $=$ hy $=s y=t y=r y=y$. We shall now prove that y is a unique fixed point of f, g, h, s, t, r Let y ' is the another fixed point of $\mathrm{f}, \mathrm{g}, \mathrm{h}, \mathrm{r}, \mathrm{s}, \mathrm{t}$.
$\left.\mathrm{G}\left(\mathrm{y}, \mathrm{y}, \mathrm{hy} \mathrm{y}^{\prime}\right)=\mathrm{G}(\mathrm{fy}, \mathrm{gy}, \mathrm{hy})^{\prime}\right)$

$$
\begin{aligned}
& \leq \phi\left\{\operatorname { m a x } \left[\alpha \left(G(\text { gy, fy, ry })+G\left(h y^{\prime}, \text { gy, ty }\right)+G(f y, \text { sy', hy') }), \beta(G(f y, \text { ry, gy })+G(\text { sy', fy, ry })), \gamma(G(\text { gy, ty, hy') }\right.\right.\right. \\
& \quad+G(f y, \text { gy, ty }))]\}
\end{aligned}
$$

$G\left(y, y, y^{\prime}\right) \leq \phi\left\{\max \left[\alpha\left(G(y, y, y)+G\left(y^{\prime}, y, y\right)+G\left(y^{\prime}, y^{\prime}, y^{\prime}\right)\right), \beta\left(G(y, y, y)+G\left(y^{\prime}, y, y\right)\right), \gamma\left(G\left(y, y, y^{\prime}\right)+G(y, y, y)\right)\right]\right\}$

$$
\leq \phi\left\{\max \left[\alpha \mathrm{G}\left(\mathrm{y}^{\prime}, \mathrm{y}, \mathrm{y}\right), \beta \mathrm{G}\left(\mathrm{y}^{\prime}, \mathrm{y}, \mathrm{y}\right), \gamma \mathrm{G}\left(\mathrm{y}^{\prime}, \mathrm{y}, \mathrm{y}\right)\right]\right\}
$$

From the above inequality we have three cases.
Case I . If max $=\alpha G\left(y^{\prime}, y, y\right)$ then
$\mathrm{G}\left(\mathrm{y}, \mathrm{y}, \mathrm{y}^{\prime}\right) \leq \phi\left[\alpha \mathrm{G}\left(\mathrm{y}^{\prime}, \mathrm{y}, \mathrm{y}\right)\right]$ as $\phi(\mathrm{t})<\mathrm{t}$ we get $\mathrm{G}\left(\mathrm{y}, \mathrm{y}, \mathrm{y}^{\prime}\right) \leq \alpha \mathrm{G}\left(\mathrm{y}^{\prime}, \mathrm{y}, \mathrm{y}\right)$ hence $\mathrm{G}\left(\mathrm{y}, \mathrm{y}, \mathrm{y}^{\prime}\right)=0$ or $\mathrm{y}=\mathrm{y}^{\prime}$
Case II . If max $=\beta G\left(y^{\prime}, y, y\right)$ then
$G\left(y, y, y^{\prime}\right) \leq \phi\left[\beta G\left(y^{\prime}, y, y\right)\right]$ as $\phi(t)<t$ we get $G\left(y, y, y^{\prime}\right) \leq \beta G\left(y^{\prime}, y, y\right)$ hence $G\left(y, y, y^{\prime}\right)=0$ or $y=y^{\prime}$
Case III. If $\max =\gamma G\left(y^{\prime}, y, y\right)$ then
$\mathrm{G}\left(\mathrm{y}, \mathrm{y}, \mathrm{y}^{\prime}\right) \leq \phi\left[\gamma \mathrm{G}\left(\mathrm{y}^{\prime}, \mathrm{y}, \mathrm{y}\right)\right]$ as $\phi(\mathrm{t})<\mathrm{t}$ we get $\mathrm{G}\left(\mathrm{y}, \mathrm{y}, \mathrm{y}^{\prime}\right) \leq \gamma \alpha \mathrm{G}\left(\mathrm{y}^{\prime}, \mathrm{y}, \mathrm{y}\right)$ hence $\mathrm{G}(\mathrm{y}, \mathrm{y}, \mathrm{y})=0$ or $\mathrm{y}=\mathrm{y}^{\prime}$. Hence y is unique common fixed point of f, g, h, s, t, r. This completes the proof of the theorem.

References

[1]B.C. Dhage. Generalized metric spaces and mapping with fixed points. Bull. Calcutta Math, Soc. 84(1992),329-336.
[2]B. C. Dhage, On generalized metric spaces and topological structure II, Pure Appl. Math. Sci. 40 (1994), 37-41.
[3]B. C. Dhage, A common fixed point principle in D-metric spaces. Bull. Calcutta Math. Soc. 91 (1999), 475-480.
[4]B. C. Dhage, Generalized metric spaces and topological structure. I, Annalele Stiintifice ale Universitatii Al.I. Cuza, (2000).
[5]G.Jungck, Compatible mappings and common fixed points, Int. J. Math. Sci., 9 (4) (1986), 771-779.
[6]G.Jungck, Common fixed points for noncontinuous nonself maps on non-metric spaces,far East J.Math.Sci.,4(1996),199-215.
[7]G.Jungck,, B.E. Rhoades,Fixed points for set valued functions without continuity,Indian J, Pure Appl. Math.29(1998),227-238.
[8]M. Abbas, B.E. Rhoades,Common fixed point results for noncommuting mappings without continuity in generalized metric spaces, Appl. Math. Comput. 215 (2009). $262-269$.
[9]M. Abbas, T. Nazir, S. Radcnovic, Some periodic point results in generalized metric spaces, Appl. Math. Comput. 217 (2010). 4094-4099.
[10]R.Chugh, T. Kadian, A. Rani, B. E. Rhoades,Property P in G-metric spaces. Fixed Point Theory Appl. 2010 (2010), Article ID 401684.
[11]S. Sessa, On a weak commutativity condition of mappings in fixed point consideration, Publ. Inst. Math. Soc. 32 (1982), 149-153.
[12]S.S. Tomer, D. Singh, M.S. Rathore, Common fixed point theorems via weakly compatible mappings in complete G-metric spaces: Using control functions. Adv. Fixed Point Theory, 4 (2014) No. 2, 245-262
[13]W.Shatanawi, Fixed point theory for contractive mappings satisfying U-maps in G-metric spaces. Fixed Point Theory Appl. 2010 (2010), Article ID 181650.
[14] Z. Mustafa, B. Sims, Some remarks concerninig D-metric spaces, in Proceedings of the Internatinal Conferences on Fixed Point Theory and Applications, pp. 189-198, Valencia, Spain, July 2003.
[15] Z. Mustafa, B. Sims, A new approach to generalized metric spaces, J. Nonlinear Convex Anal. 7 (2006), 289-297.
[16]Z. Mustafa, H. Obiedat, F Awawdeh, Some fixed Point theorem for mapping on complete G-metric spaces, Fixed Point Theory Appl. 2008 (2008), Article ID 189870.
[17]Z. Mustafa, B, Sims, Fixed point theorems for contractive mapping in complete G-metric spaces, Fixed Point Theory Appl. 2009 (2009), Article ID 917175.
[18]Z. Muilata, W. Shatanawi, M. Bataineh, Existence of fixed point results in G-metric spaces, Int. Math. Math. Sci. 2009 (2009), Article ID 283028.

