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I. Introduction 

 There have been various generalizations of metric space such as Gahler who gave the concept of 2-metric space, Dhage 

[1,2 ] who gave the concept of D-metric. Mustafa and Sims [14,15] introduced a new generalized version of metric space & 

called it G-metric space after they had shown that most of the results related to D-metric space are invalid, Here we prove a 

common fixed point theorem in G-metric space using pairs of weakly compatible mappings.  

II. Definitions and Preliminaries 

 We here begin with some definitions and results for G- metric spaces that will be used in the following sections . 

Definition 2.1 [15] Let X be a nonempty set and let G; X x X x X--- >R+  be a function satisfying the following axioms  

(G1)  G (x, y, z) = 0 if x = y = z  

(G2)  G (x, x, y) > 0, for all x, y  X with x  y  

(G3)  G (x, x, y)  G (x, y, z) for all  x, y, z  X with z  y .  

(G4)  G (x, y, z) = G (x, z, y) = G (y, z, x) =….. (symmetry in all three variables ) 

(G5)  G (x, y, z)   G (x, a, a ) + G (a, y, z), for all x, y, z, a  x (rectangle inequality ) 

 Then the function G is called a generalized metric or more specifically a G- metric on X,  and the pair (X, G) is called a 

G- metric space .  

Definition 2.2 [15]  Let (X,G ) be a G- metric space , let  {xn} be a sequence of points of X, we say that {xn}  converges to a 

point x in X  

if  
      ,

lim
mn

  G (x, xn, xm) = 0 

In other words for e  > 0 there exists no  N such that G ( x, xn, xm ) <  for all n, m  no Then x is called the limit of sequence 

{xn }. 
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     Definition 2.3 [15]  Let ( X,G ) be a G- metric space , a sequence {xn,} is called G - Cauchy sequence if for given  > o ,       

there is no  N such that  G ( xn, xm, xe ) <  for all n, m ,l  no that is if. G ( xn , xm, xe )  0 as n, m , l    

Definition 2.4 [15]  Let A, B be self mappings on a G-metric space X.  Then the pair (A, B ) is said to be weakly compatible if 

they commute at their coincidence point , that is Ax= Bx implies that ABx = BAx for all x  X. 

Preposition 2.5 [15] Let (X, G) be a G-metric space, Then, the following are equivalent  

 (i) {xn}is G- convergent to x  
(ii)  G (xn, xn, x )  0, as n   
(iii) G (xn, x, x, )  0, as n   
(iv) G ( xm, xn, x)  0 as n, m   

Preposition 2.6 [15]  In a G-metric space (X, G ) the following are equivalent  

 (i) The sequence {xn} is G- Cauchy   

 (ii) For every  > 0 , there exists no N such that G ( xn, xm, xm) <  for all n , m  n0.  

Definition 2.7 [16]. Let  denote the set of alternating distance functions 

 : [ 0,   [  [ 0,  [ which satifies following conditions 

(i)  is strictly increasing 

(ii)   is upper semi continuous from the right.  

(iii) 


0n

 (t) <  for all t > 0 

(iv)  (t) = 0  t = 0 

Main Result 

   Let f, g, h, s, r and t be self mappings of a complete G-metric space (X, G) and  

(i) f (x)  t (X), g(X)  s (X), h (X)  r (X) and  f (X) or g (X) or h (X) is a closed subset of X.  

(ii) G (fx, gy, hz )  

  {max [  ( G ( gy, fx, rx)  

+ G (hz, gy, ty) + G (fx, sz, hz),  

  (G ( fx, rx, gy) + G (sz, fx, rx) ),  

  ( G( gy, ty, hz) + G (fx, gy, ty )) ] } 

 Where , , , >, 0 and 3 ∝ +4훽 + 2훾 < 1 

(iii)  : R+ is increasing function such that  (a) < a for all a > 0 and   (a) <   as a   

(iv) The pairs (f, r) , (g, t ) and (h, s) are weakly compatible pairs.  

 Then the mappings f, g, h, r, s and t have a common unique fixed point in X.  

 Proof: Let X0  X be an arbitrary point. Then by (i) there exist x1, x2, x3  X such that  
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fx0 = tx1  = y0 , gx1 = sx2 = y1 and  hx2 = rx3 = y2  

applying the concept of mathematical induction we can define a sequence {yn} in X such that 

 fx3n = tx3n+1 = y3n,   

 gx3n+1 = sx3n+2 = y3n+1 and  

 hx3n+2 = rx3n+3 = y3n+2 for n = 0, 1, 2.... 

Now we prove that the sequence is a Cauchy sequence and for this we define 

 dm = G (ym, ym+1, ym+2)  

So we have   

 d3n = G (y3n, y3n+1, y3n+2) 

 = G (fx3n, gx3n+1, hx3n+2) 

 <  {max [  (G (gx3n+1, fx3n, rx3n)+ G (hx3n+2, gx3n+1, tx3n+1) + G (fx3n, sx3n+2, hx3n+2 ),  

                [ G (fx3n, rx3n, gx3n+1) +G (sx3n+2, fx3n, rx3n)],  [ G (gx3n+1, tx3n+1) + G (gx3n+1, tx3n+1)]} 

 <  {max [  (G (y3n+1, y3n, y3n-1)+G (y3n+2, y3n+1, y3n)+ G (y3n, y3n+1, y3n+2 )], [ G (y3n, y3n-1, y3n+1)  

                   + G (y3n+2, y3n, y3n-1)], [ G (y3n+1, y3n, y3n +2)+ G (y3n+0, y3n, y3n)]}  

 <  { max  [  G (d3n-1, + d3n,+  d3n) 2  d3n-1, 2 d3n ] } 

 <  { max  [  G (d3n-1, + 2d3n,), 2 d3n-1, 2 d3n  ] } 

from the above inequality we will have following  

Case I- If max =  (d3n-1 + 2d3n) ,then  

  d3n   (  (d3n-1 + 2d3n) ) as  (t) < t , hence we get  

                            d3n     (d3n-1+ 2d3n)  

  (1- 2 ) d3n   d3n-1  

  d3n  d3n-1 

Case - II If max = 2  d3n-1 then  d3n   (2d3n-1) as  (t) < t hence we get d3n  2d3n-1 

 i.e. d3n  d3n-1  

Case - III If max = 2  d3n then d3n   (2d3n) again as  (t) < t  we get  d3n  d3n which is a contradiction. Hence d3n  ≤ d3n-1 

 If m = 3n+1, then  

 d3n+1 = G (y3n+1, y3n+2 , y3n+3) 

        = G (fx3n+1, gx3n+2 , hx3n+3)  

           {max [  [ G (gx3n+2, fx3n+2, rx3n+1) + G (hx3n+3, gx3n+2, tx3n+2) + G (fx3n+1, sx3n+3, hx3n+3)],  

                      [ G (fx3n+1, rx3n+1, gx3n+2) + G (Sx3n+3, fx3n+1, rx3n+1)],  [G (gx3n+2, tx3n+2, hx3n+3)  

                    + G (fx3n+1, gx3n+2, tx3n+2)] ] }. 

   {max [  [ G (y3n+2, y3n+1, y3n) +G (y3n+3, y3n+2, y3n+1) + G (y3n+1, y3n+2, y3n+3)],  [ G (y3n+1, y3n, y3n+2) + 
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                               G (y3n+2, y3n+1, y3n)],   [ G (y3n+2, y3n+1, y3n+3) + G (y3n+1, y3n+2, y3n+1)] ] } 

              {max [  (d3n+2d3n+1), 2 d3n, 2 d3n+1)]} 

From the above inequality we have following cases. 

Case- I If max =  (d3n+2d3n+1) then d3n+1   (  (d3n+2d3n+1) as  (t) < t, we get 

 d3n+1   (d3n+2d3n+1) 

 (1-2  ) d3n+1  d3n 

 d3n+1  d3n 

Case- II If max = 2 d3n, then we get d3n+1    (2 d3n) as  (t) < t, we get  d3n+1   2 d3n or d3n+1   d3n  

Case III If max = 2 d3n+1, then we get d3n+1    (2 d3n+1) as  (t), < t we get d3n+1   2 d3n+1  or d3n+1   d3n+1  

which is a contradiction. Hence d3n+1 ≤ d3n 

If m = 3n+2, then 

 d3n+2 = G (y3n+2, y3n+3, y3n+4)  

         =G (fx3n+2, gx3n+3, hx3n+4),   

          {max [  [G (gx3n+3, fx3n+2, rx3n+2)+ G (hx3n+4, gx3n+3, tx3n+3)+ G (fx3n+2,sx3n+4, hx3n+4)]  

                         [G (fx3n+2, rx3n+2 , gx3n+3)+ G (Sx3n+4, fx3n+2 , rx3n+2)] , [G (gx3n+3, tx3n+3 , hx3n+4) 

                                      + G (fx3n+2, gx3n+3, tx3n+3)]] }   

        {max [  ( G (y3n+3, y3n+2, y3n+1)+ G (y3n+4, y3n+3, y3n+2) G (y3n+2, y3n+3, y3n+4) ),  ( G (y3n+2, y3n+1, y3n+3) 

                        + G (y3n+3,y3n+2, y3n+1)),  ( G (y3n+3, y3n+2, y3n+4)+ G (y3n+2, y3n+3, y3n+2)]} 

                      {max [  ( d3n+1, +d3n+2, +d3n+2),+  (d3n+1 + d3n+1) , (d3n+2 + d3n+2 )]} 

 From the above inequality we have following cases.  

Case. I  If  max =  (d3n+1, + 2d3n+2) then d3n+2   (  ( d3n+1, +2d3n+2 )) as  (t) < t  then we get  

             d3n+2   ( d3n+1 +2d3n+2 ) or d3n+2  



21

 d3n+1      

            d3n+2  d3n+1 

Case II. If max = 2  d3n+1 then we get d3n+2   (2 d3n+1) as  (t) < t, hence we get  d3n+2  2 d3n+1or 

           d3n+2   d3n+1 which is the required result.  

Case III.  If max = 2  d3n+2 then  d3n+2   (2 d3n+2) as  (t) < t, then we get d3n+2  2 d3n+2  or  d3n+2   d3n+2  

          which is a contradiction. From the above three cases we can say that dn  dn-1 for every n N. So by above inequality we       

get dn  q dn-1, where q =  3 ∝ +4훽 + 2훾 < 1 i.e.  

      dn = G (yn, yn+1, yn+2) 

            q G (yn-1, yn, yn+1) 

             qn  G (y0, y1, y2) 



International Journal of Mathematics Trends and Technology – Volume 12 Number 2 – Aug 2014 

ISSN: 2231-5373                   http://www.ijmttjournal.org Page 98 
 

    also we have  G ( x, x, y )  G (x, y, z ), hence we get  G (yn, yn yn+1)  qn G (y0, y1, y2) and  

   G (yn, yn , ym)  (yn, yn , yn+1) + G (yn+1, yn+1 , yn+2) + ----- +  G (ym-1, ym-1, ym) 

   i.e. we have G (yn, yn , ym)  gn G (y0, y1, y2)+-------------------+ ------ + gm-1 G (y0, y1 , y2)   hence we have  

      G(yn.yn,ym)   
q
qq mn




1
G (y0, y1, y2) 

               
q

q n

1
G (y0, y1, y2)  0 

 So the sequence {yn} is a Cauchy sequence in X and as X is complete {yn} will converge to y in X.  

i.e. 
n

lim
 yn= y 

mn,
lim

 fx3n =
mn,

lim
 gx3n+1  = 

nm,
lim

  hx3n+2 =  
nm,

lim
 tx3n+1  

= 
nm,

lim
sx3n+2 = 

nm,
lim

 r3n+3 = y 

Let h (X) is a closed subset of r(X). Then there exist u  X Such that  r u = y.Now consider on  

G(fu,y,y)   = G (fu, gx3n+1, hx3n+2) 

                     {max [  (G (gx3n+1, fu, ru) + G (hx3n+2, gx3n+1, tx3n+1)+ G (fu, Sx3n+2, hx3n+2)),  (G (fu, ru, gx3n+1) 

                               + G (Sx3n+2, fu, ru)), ( G ( gx3n+1, tx3n+1, hx3n+2) + G ( fu, gx3n+1, tx3n+1))]} 

                    { max [  (G (y, fu, y) + G (y, y, y)+ G (fu, y, y)),  (G (fu, y, y) + G (y, fu, ru)),  ( G ( y, y, y) + G ( fu, y, y )]} 

      {max [ 2  G (fu, y, y),2  G (fu, y, y),   G (fy, y, y)]  

from the above inequality we can have two cases. 

Case I If max = 2   G ( fu, y, y ) 

              then  G (fu, y, y )   (2  G (fu, y, y) ) as  (t) < t, G (fu, y, y, )   2  G (fu, y, y) or ( 1 - 2 )  G (fu, y, y)  0.Hence     

G (fu, y, y) = 0 or fu = y 

Case II  If max = 2  G (fu, y, y) 

            then G (fu , y, y )   [2  G (fu, y, y) ]as   (t), hence we get. 

 G (fu , y, y )   2  G (fu, y, y) ] or  ( 1-2 ) G (fu, y, y) ≤ 0, hence G (fu, y, y) = 0 or fu = y. 

Case III If max =  G (fu, y, y), then  

  G (fu , y, y )   [  G (fu, y, y) ] as   (t), < t,  hence we get.G (fu , y, y )    G (fu, y, y) or 

 ( 1-) G (fu, y, y) ≤ 0 or  G (fu, y, y) = 0 this implies fu = y.Therefore fu = ru = y . Then by applying the definition of 

weak compatibility on the pair (r, f ) we have  fru = rfu.Hence  fy = ry 

Now we prove fy = y. On the contrary Let fy  y, then  

G (fy, gx3n+1, hx3n+2)  {max {  (G (gx3n+1, fy, ry) + G (hx3n+2, gx3n+1,tx3n+1) + G (fy, Sx3n+2, hx3n+2)), (G (fy, ry, gx3n+1 )  
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                                                   + G (Sx3n+2, fy, gy)), +  (G (gx3n+1,tx3n+1, hx3n+2) + G (fy, gx3n+1, tx3n+1)}} 

                                   { max {  (G (y, fy, fy) + G (y, y, y) + G (fy, y, y)),  (G (fy, fy, y) + G (y, fy, fy)),((G (y, y, y ) 

                                                     + G (fy, y, y )}} 

                                  { max { 3  G (fy, y, y), 4  G (fy, y, y),  G (fy, y, y ) }} 

From the above inequality we have following cases 

Case I If max = 3  G (fy, y, y ) then 

            G (fy, y, y )   { 3  G (fy, y, y) } as  (t) < t ,G (fy, y, y )   3  G (fy, y, y) then G (fy, y, y) = 0 hence we get fy = y.  

Case II   If max = 4  G ( fy, y, y) then  

    G (fy, y, y)    [ 4   G ( fy, y, y) ]as  (t) < t then we get G (fy, y, y)    4   G ( fy, y, y) which implies fy=y 

Case III  If max =  G ( fy, y, y) then  

 G (fy, y, y)   [ G ( fy, y, y)] as  (t) < t we get G (fy, y, y)     G ( fy, y, y) which implies  fy = y  

             and as fy = ry we have fy = ry = y. Hence y is common fixed point of f and r.As y = fy  f (X)  t (X) there exists w       

such that tw = y. We shall now prove that gw = y.Consider  

G (y, gw, hx3n+2) = G (fy, gw, hx3n+2)  

                              { max [ ( G (gw, fy, ry) + G (hx3n+2, gw, tw)+ G  (fy, sx3n+2), hx3n+2),  ( G (fy, ry, gw) 

                                   + G (Sx3n+2, fy, ry)),  ( G (gw, tw, hx3n+2) + G (fy, gw, tw))]  

                              { max [ ( G (gw, y, y) + G (y, gw, y)+ G  (y, y, y )), ( G (y, y, gw) + G (y, y, y )) , ( G (gw, y, y ) 

                                   + G (y, gw, y))]  

                             { max [2 G (gw, y, y) ,  G (gw, y, y),2 G ( gw, y, y)] 

From the above inequality we have following cases.  

Case I  If max = 2  G (gw, y, y) then we get  G (gw, y, y)   [ 2  G (gw, y, y) ]as  (t) < t  we have 

            G (gw, y, y)   2  G (gw, y, y) hence G (gw, y, y) = 0    gw = y  

Case II  If max =  G (gw, y, y) then we get G (gw, y, y)   [  G (gw, y, y) ] as (t) < t  we have  

           G (gw, y, y)    G (gw, y, y) hence G (gw, y, y) = 0    gw = y  

Case III  If max = 2 G (gw, y, y) we get G (gw, y, y)  [2 G (gw, y, y)] as  (t) < t  we have 

          G (gw, y, y)   2  G (gw, y, y) hence G (gw, y, y) = 0    gw = y  

        Therefore we have gw = tw = y. As (g, t) are weakly compatible we get  tgw = gtw Hence ty = gy.  

        We shall now prove that gy= y. On the contrary Let gy y, then 

        G (fy, gy, hx3n+2)  { max [( G (gy, fy, ry) + G (hx3n+2, gy, ty)+ G (fy, Sx3n+2, hx3n+2 )) ,  ( G (fy, ry, gy)  

                                      + G (Sx3n+2, fy, ry )) ,  ( G (gy, ty, hx3n+2)+ G (fy, gy, ty )]} 

As n   we get  

G  (y, gy, y)   { max [ (G (gy, y, y)+ G ( y, y, gy ) + G (y, y, y)) ,  ( G (y, y, gy)+ G ( y, y, y )),   (G (gy, gy, y) 
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                                     + G (y, gy, ty))]}  

                      { max [2  G (gy, y, ry) , G (gy, y, y),4 G (gy, y, y) } 

From the above inequality we have following three cases.  

Case  I If max = 2  G (gy, y, y) then  

 G (gy, y, y)   [ 2 G (gy, y, y)] as  (t) < t we get G (gy, y, y )  2 G (gy, y, y ) hence G (gy, y, y) = 0  or gy = y.  

Case II If max =  G (gy, y, y) then  

               G (gy, y, y)   [  G (gy, y, y)] as  (t) < t we get  G (gy, y, y )   G (gy, y, y ) hence G (gy, y, y) = 0  or gy = y.  

Case III If max = 4  G (gy, y, y) then  

              G (gy, y, y)   [ 4  G (gy, y, y)] as  (t) < t we get G (gy, y, y )  4   G (gy, y, y )hence  G (gy, y, y) = 0  or gy = y.  

Also gy= ty = y. Hence we get y is a common fixed point of g and t. Similarly since y = gy  g (X)	⊂s (X),  

there exist v X such that sv = y. We now prove that hv = y If hv y, we have  

G (y, y, hv ) = G (fy, gy, hv)  

                      {max [ ( G (gy, fy, ry) + G (hv, gy, ty) + G (fy, sv, hv)) ,  ( G (fy, ry, gy)+ G (sv, fy, ry)) ,  (G (gy, ty, hv)  

                       +  G (fy, gy, ty )) ]}  

        {max [ ( G (y, y, y) + G (hv, y, y)+ G (y, y, hv)) ,  ( G (y, y, y)+ G (y, y, y)) ,  (G (y, y, hv) +  G (y, y, y )) ] 

        {max [2  G (hv, y, y),  (hv, y, y)]} 

From the above inequality we have following case 

Case I If max = 2  G (hv, y, y) then  

           G (hv, y, y)   [ 2  G (hv, y, y)] as  (t) < t we get G (hv, y, y )  2  G (hv, y, y ) hence G (hv, y, y) = 0  i.e. hv = y.  

Case II If max =  G (hv, y, y) then 

 G (hv, y, y)   [  G (hv, y, y)] as  (t) < t we get G (hv, y, y )   G (hv, y, y ) hence G (hv, y, y) = 0  i.e. hv = y.  

Thus hv = sv = y. As the pair (h, s) are weakly compatible we have shv = hsv. Hence sy = hy.Now we shall prove that hy = y. 

G ( y, y, hy) = G (fy, gy, hy )   

                      {max [ ( G (gy, fy, ry) + G (hy, gy, ty)+ G (fy, sy, hy)) ,  ( G (fy, ry, gy) + G (sy, fy, ry)) ,  (G (gy, ty, hy) 

                                     +G (fy, gy, ty ) ]} 

        {max [  (G (y, y, y) + (hy, y, y)+ G (y, y, hy)) ,  ( G (y, y, y) + G (y, y, y )), (G (y, y, hy) + G (y, y, y ) ]} 

                     {max [ 2  G (hy, y, y),   G (y, y, hy)]} 

From the above inequality we have following cases.  

Case I  If max = 2  G (hy, y, y) then 

            G (y, y, hy)  [ 2  G (hy, y, y)] as  (t) < t we get G (y, y, hy )  2  G (hy, y, y ) hence G (y, y, hy) = 0  i.e. hy = y.  

Case II-  If max =  G (y, y, hy) then 

 G (y, y, hy)   [  G (y, y, hy)] as  (t) < t  we get G (y, y, hy )   G (y, y, hy )hence G (y, y, hy) = 0  i.e. hy = y.  
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Since sy = hy = y. We have y is a common fixed point of s and h. Thus f, g, h, s, t, r have a common fixed point y.  

So fy = gy = hy = sy = ty = ry = y. We shall now prove that y is a unique fixed point of f, g, h, s, t, r Let y’ is the another fixed 

point of  f, g, h, r, s, t. 

G ( y, y, hy') = G (fy, gy, hy') 

                        {max [ ( G (gy, fy, ry) + G (hy', gy, ty)+ G (fy, sy', hy')) ,  ( G (fy, ry, gy) + G (sy', fy, ry)) , (G (gy, ty, hy')  

                                        + G (fy, gy, ty ) )]} 

G ( y, y, y')   {max [ ( G (y, y, y)+ G (y', y, y) + G (y', y', y')),  ( G (y, y, y)+ G (y', y, y)) ,  (G (y, y, y') + G (y, y, y )) ]} 

                     {max [  G (y', y, y),    G (y', y, y), G (y', y, y)]} 

From the above inequality we have three cases.  

Case I . If max =   G (y', y, y) then  

 G (y, y, y')    [ G (y', y, y)] as  (t) < t  we get G (y, y, y')    G (y', y, y) hence G (y, y, y')  = 0 or y = y'   

Case II . If max =  G (y', y, y) then  

              G (y, y, y')    [  G (y', y, y)] as  (t) < t  we get G (y, y, y')   G (y', y, y) hence  G (y, y, y')  = 0 or y = y'   

Case III . If max =  G (y', y, y) then  

 G (y, y, y')    [ G (y', y, y)] as  (t) < t we get G (y, y, y')    G (y', y, y)  hence G (y, y, y')  = 0 or y = y '.  Hence y 

is unique common fixed point of f, g, h, s, t, r. This completes the proof of the theorem.  

      ==== 
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