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Abstract 
We have studied the non-linear oscillation of the system of the satellites connected by light, flexible and extensible cable under 
the influence of Earth’s magnetic force, the shadow of the earth due to solar radiation pressure and earth oblateness in the case of 
elliptic orbit of the Centre of mass of the system. The non-linear terms present in the equations of motion of the system are taken 
into consideration. First of all we have derived equations of motion for non-linear oscillations and a system of equation 
representing almost periodic oscillations due to Malkin. An attempt has been made to analyse the motion and stability of the 
system analytically.  As there is no periodic terms in the equation of motion, so only non-resonant solution have been obtained 
and shown to be stable.  
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1. Introduction 
This paper deals with the  study the effect of shadow of the earth due to solar radiation pressure, magnetic force and 
earth’s oblateness on non-linear oscillation and stability of two satellites connected by light, flexible and extensible 
cable in the central gravitational field of earth in anelliptic orbit of the centre of mass of the system in case of two 
dimensional motion. Beletsky, V.V. is the pioneer worker in this field. This paper is an attempt towards the 
generalization of works done by him. 

2. Equations of Motion for Non-Linear oscillation of the Centre of Mass of the System. 
The equations of motion in elliptic orbit of the centre of mass of a system of two satellites connected by a light, 
flexible and extensible cable under the influence of the shadow of the earth due to solar radiation pressure, magnetic 
force and oblateness of the earth in two dimension case  in Nechvile’s coordinates system are given by   
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                                                                                                                                                 …………….(2.2) 
Where   denotes modulus of elasticity  and   denotes the product of gravitational constant and mass of 
the earth. Here B1 and B2 are the absolute values of forces due to the direct solar pressure exerted on 
the masses m1 and m2 and  be the angular separation of solar position vector projected on the orbital plane 
from the orbit perigee. Here   is the inclination of the osculating plane of the orbit of the centre of mass of 
the system with the plane of ecliptic and p and e are focal parameter and eccentricity of the earth.                                                  
Here, dashes denote the differentiation with respect to the true anomaly v of the elliptic orbit of the centre 
of mass. 
We have 
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Putting the value of , 2 , 3 and 4 from [2.3] in [2.1] and neglecting the 2nd higher order terms containing e in 
their expansions, we get  
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                           …………… (2.4) 
Now, we want to examine the effect of the shadow of the earth due to the solar radiation pressure, magnetic force 
and oblateness of the earth on the equilibrium position (a, o) for the non-linear oscillation of the system. 
 For this, Let 1 and 2 be the small variations in x and y coordinates at the given equilibrium point (a, o) of 
the system. Then we have 
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But at the equilibrium point, we have - 
 ro = a                                                                                                                            ............ (2.7) 
From (2.6) and (2.7), we have 
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Now expanding the right hand side of [2.8] and retaining terms only up to third order in infinitesimals 1 and 2 , we 
get after some simplifications. 
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Substituting the values of x and y and their derivatives from [2.5] in [2.4], we get the variational equations of motion 
in the form: 
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Putting the value of 
r
1

 from [2.9] in [2.10], we get after neglecting the higher order terms than the third in 

infinitesimals 1 and 2 and after some simplifications. 
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Where Q  = cos1A  
[2.11] can be re-written as 
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Thus, the system of equations given by [2.12] represents the non-linear oscillation of the system at the equilibrium 
point (ao, o). We see that it represents the almost periodic oscillation due to Malkin. 
3. Non-resonant solution of the equations and its stability 
 

The general solution of linear part of [2.12] which can be obtained by putting µ=0 , can be written in the 
form : 
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Where 
 111   v ,  222   v  
Here 1 , 2  ; 1a  and 2a  are constants to be determined from the initial conditions and 1 , 2   are the roots of 
the characteristic equation. 
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From (4.3.1), we have - 
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Thus, on putting the values of 12121 ",',',,   and 2"  from [3.1] and [3.3] respectively in [2.12] when µ = 
0, we get 
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Equations of (3.4) will be identically satisfied if the coefficients of sin 1, sin 2, cos (v - 훼), cos 1, cos 2 and sin  
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From (4.3.5) and (4.3.6), we get  
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Now, we shall study the general solution of the entire non-linear equations (2.12) with   µ  0 (i.e. f1  0, H1  0). 
For this, we exploit the method of variation of arbitrary constants in our further studies. 
Here the amplitude and the phase will now be taken as functions of v but not constants as in linear case. 
 Here, )(),( 2211 vaavaa  , )(),( 2211 vv    
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  )sin(coscos 22221112   vAkaka  
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Comparing the values of 1 and 2 in the system of equations [4.3.8] and [4.3.1], we get by subtraction: 
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In two cases when f1  0, H1  0 and f1 = 0, H1 = 0, substituting the values of 1 and 2 and their derivatives from 
[3.1], [3.3] and [3.8], we get on using [3.7]. 
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Multiplying the first equation of [3.9] by k1w1 and then adding it to the 2nd equation of (3.10), we get 
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                          …………… (3.11) Again, multiply the 2nd equation of [3.9] by k2w2 and adding it the 2nd equation of [3.10], we get 
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                               ............... (3.12) 
Again, multiplying the 2nd equation of [3.9] by w1 and subtracting it from k1 times the first equation of [3.10], we 
get - 
      1122112222221122 sin'cos fKKwKwwaKwKwa     
                                                        ...............(3.13) 
Lastly, multiply the 2nd equation of (3.9) by w2 and then subtracting it from w2 times the first equation of (3.10), we 
get 
      1211221111112211 sin'cos fKKwKwwaKwKwa     
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Now, putting the value of w1 and w2 from (3.7) in (3.11), (3.12), (3.13) and (3.14), we get, 
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After solving these four equations of [3.15] for and, we get                  
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 Thus, on considering a1, a2,1 and 2 as variables, we get a new system of four variations equations of 
motion given in [3.16]. 
 It we put on the right hand Side of the system of equations [3.16], the values of *

1f and *
1H  in terms of f1 

and H1 respectively from [2.13] and then the values of 1 and 2 from [3.1], then the right hand side forms of the 
expression are expanded into trigonometrical sums and averaged values of the variables are taken after dripping all 
the terms in the system of equations [3.16] except the free terms, we get the system of equations for first 
approximation as : 

 * *
1 2 1 1 2 2a 0,       a 0,  ' w ,  ' w                                     ……......... (3.18) 

Where *
1w  and *

2w  are the new frequencies depending on w1, w2 and constant quantities a1, a2, A1, A2, ro , m1, m2, 
k1 and k2 and hence on integration, we get from (3.18). 
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where 1  and 2  are constants, Thus we see that in the relation [3.19] ;  a1 and a2 remain constant where as the 
values of 1 and 2  are slightly changed in the first approximation which indicates the change in the frequencies. 
But it has no effect on stability. 
Thus, in the first approximation, the solutions of the equations of non-linear oscillation [2.12] can be written as - 
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Where *

1a , *
2a , 1  and 2  are arbitrary constant and  *

1w and *
2w  will be new frequencies, the values of A1 and A2  

are given in [3.6]. 
 Finally, we conclude that the solutions given in [3.20] will be stable. 
 
4.RESONANT SOLUTION OF THE EQUATION AND ITS STABILITY 
In this section, we shall examine the system of equations [2.12] with the supposition that the oscillation is of 
resonance type. 
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 In case of resonance oscillation, we suppose that 
  12 w  and *QQ                                                        ……........ (4.1) 
Which are customary in the resonance case of oscillation. In its absence, the generating system will have no almost 
periodic solution. 
 Thus, the system of equations [2.12] can be put in the form: 
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Where , f1 and H1 have their usual meanings given in [2.13]. 
 In this case, the particular solutions of [4.2] for f1 = 0 and H1 = 0 can be assumed to be in the form - 
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In a similar way just as in the preceding sections of this chapter and keeping in mind that w2 = 1, we get from [4.3.7] 
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From [4.4.4], we get 

 
   

   












vKMvKMwaK
vMvMaw

cossincos

sincossin

2221
2
112

21
2
11                                 ............... (4.6) 

Now, similar to the non-resonance case, we shall investigate the general solution to the system of equations [4.2] 
representing the non-linear oscillation, when f1  0 and   H1 0. 
 We shall assume that a, M1, M2 and   are new variables like the previous section of this chapter, we get on 

solving the system of equations for 1'M , 2'M , a' and  ' obtained in the form : 
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The values of *
1H  and *

1f  can be given from [3.17] in case of resonance oscillation where 2 = 1 as 
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In order to get the first approximate solution of the system of equation [4.7], we shall put in the right hand sides of 
[4.7], the different values from [4.8], [4.9] and [2.13] and then the values of 1 and 2 from [3.1]. Now after 
dropping the other terms except the free terms, we take the averaged terms into trigonometrical sums as mentioned 
in the previous section of this chapter, the set of equations [4.7] can be written as : 
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The set of equations [4.10] can be written in the form: 
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Where the values of b, b1, E1, E2, E3, E4 and E5 are given by  
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Here R1, R2 and R3 and stand for functional notations. 
 Now let us examine the system of equations [4.11] we see that the solutions given in [4.3] can be stable 
only when the given conditions are satisfied. 
   0  ,  , 211 aMMR ,   0  ,  , 212 aMMR ,   0  ,  , 213 aMMR                                     ................(4.13) 
If the conditions mentioned in (4.13) are satisfied then the values of M1, M2 and a will remain constants and in that 
case the value of ' = ** will also be a constant quantity. 
 Therefore, we shall have a new frequency ** in place of 1. But it will not affect the stability. Thus, in 
the first approximation, the stationary solutions of the system of equations [4.2] for non-linear oscillation can be 
written in the form: 
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Where  = ** v + 3 being arbitrary constant and a**, M2**   are the roots of the system of equations. 
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Hence, we finally come to the conclusion that the stationary solution [4.14] can be stable for - 
 M1 = M1**,    M2 = M2**   and a = a** 
Only when the roots of the following characteristic equation 
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have negative real parts. 
 From what we have discussed above in this paper, it follows that the stationary solution in the non-
resonance case is stable in the first approximation in elliptic motion of the system where as the stationary solution in 
the resonance case exists only when the roots of the characteristic equation [4.16] have negative real parts. 
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