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Abstract

We have studied the non-linear oscillation of the system of the satellites connected by light, flexible and extensible cable under
the influence of Earth’s magnetic force, the shadow of the earth due to solar radiation pressure and earth oblateness in the case of
elliptic orbit of the Centre of mass of the system. The non-linear terms present in the equations of motion of the system are taken
into consideration. First of all we have derived equations of motion for non-linear oscillations and a system of equation
representing almost periodic oscillations due to Malkin. An attempt has been made to analyse the motion and stability of the
system analytically. As there is no periodic terms in the equation of motion, so only non-resonant solution have been obtained
and shown to be stable.

Keywords: Stability, Non-linear oscillation ,Solar radiation pressure, Earth Magnetic force, Satellites, Elliptic orbit.

1. Introduction

This paper deals with the study the effect of shadow of the earth due to solar radiation pressure, magnetic force and
earth’s oblateness on non-linear oscillation and stability of two satellites connected by light, flexible and extensible
cable in the central gravitational field of earth in anelliptic orbit of the centre of mass of the system in case of two
dimensional motion. Beletsky, V.V. is the pioneer worker in this field. This paper is an attempt towards the
generalization of works done by him.

2. Equations of Motion for Non-Linear oscillation of the Centre of Mass of the System.

The equations of motion in elliptic orbit of the centre of mass of a system of two satellites connected by a light,
flexible and extensible cable under the influence of the shadow of the earth due to solar radiation pressure, magnetic
force and oblateness of the earth in two dimension case in Nechvile’s coordinates system are given by

4B - 4 i
X"-2y'-3xp BB Ap’y cos e cos(v —a) = —Aap* {1——0} X— Ccosi
P pr P
B . = l oo
and y"+ 2X'+—y— Ap’y cos esin(v —a) =-Aqp* {1——“} y—p—zcos|
P pr P

1
Where, F=+X2+y? p:m, A=p73{%—%}: Solar pressure parameter
1 2

= The shadow function parameter

B= —22 = Oblateness parameter

C= {& - &} He = Magnetic force parameter

mo M, |up

ISSN: 2231-5373 http://www.ijmttjournal.org Page 102




International Journal of Mathematics Trends and Technology — Volume 12 Number 2 — Aug 2014
o
Tu T, mm,

Where A denotes modulus of elasticity and x denotes the product of gravitational constant and mass of
the earth. Here B; and B, are the absolute values of forces due to the direct solar pressure exerted on
the masses m; and m, and «a be the angular separation of solar position vector projected on the orbital plane
from the orbit perigee. Here € is the inclination of the osculating plane of the orbit of the centre of mass of
the system with the plane of ecliptic and p and e are focal parameter and eccentricity of the earth.

Here, dashes denote the differentiation with respect to the true anomaly v of the elliptic orbit of the centre
of mass.

We have
1
p = =(1+ecosv) ™" = =1-eCoSV+e2COS2V —..immrrrrrrnres
(1+ecosv)
P’ =(1+Cc0sV)? =1-28C0SV +..coeremrrrrrernnns
p*=(1+ecosv) > =1-3€C0SV+...cocrurrrrrrene,
p* =(1+ecosv) ™ =1-4€CosV +.....cc.crerrernnn..
esinv . ’ . :
p'=—————=esinv[l+ecosv]” =esinv —2e?siNV-CoSV +................
(1+ecosv)

Putting the value of p, p®, p° and p* from [2.3] in [2.1] and neglecting the 2nd higher order terms containing e in
their expansions, we get

X" —2y' —3(1—ecosv)x —4B(1+ecosv)x+ A(l—3ecosv )y cos  cos(v — )
=-1, (1—4ecosv)—£T°(1—3ecosv) X —c(L +ecosv)cosi

and " +2x +B(L+ecosv)y — All—3ecosvy cos e sin(v—«)

=1, (1-4e cosv)—fT‘)(l— 3ecosV)|y —cecosvcosi

............... (2.9)
Now, we want to examine the effect of the shadow of the earth due to the solar radiation pressure, magnetic force

and oblateness of the earth on the equilibrium position (a, o) for the non-linear oscillation of the system.

For this, Let n; and ), be the small variations in x and y coordinates at the given equilibrium point (a, o) of
the system. Then we have

Xx=a+n, and y=n,
X'=n, and y'=n, eeeerinenes (2.5)
X"=77£' and y"=772"

2 2
and  r’=x’+y’=(a+n, f +ni=a’+2an, +n’ +n; :a{1+ fean, /A Hh)}

a
%
(2an, +n? +n3)
= a{1+ 5
a
But at the equilibrium point, we have -
rh=a
From (2.6) and (2.7), we have
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Now expanding the right hand side of [2.8] and retaining terms only up to third order in infinitesimals n; and 1, , we
get after some simplifications.

2 2 3 2
1_1_771 mn 3n,  3mn,
=t o sttt
rr, r, 1, 2r; 2ry 21,
Substituting the values of x and y and their derivatives from [2.5] in [2.4], we get the variational equations of motion
in the form:

ny—2n; -[ (3+4B)+(4B-3)ecosv|(r, +1,) = —Z[(1—4e cosv)—

T vX)

£—°(1—3ecosv)}(ro +1,)
"

— A(1-3ecosVv )y, cos e cos(v —a)—c(l+ecosv)cosi

ns—2n, +B(L+ecosv)y, = —Z[(l —4ecosv)— £T°(1 ~3e cosv)}n2

+ Ay, cos e (1-3ecosv)sin(v — a)— Cesinv cosi

1
Putting the value of — from [2.9] in [2.10], we get after neglecting the higher order terms than the third in
r

infinitesimals n; and n, and after some simplifications.
A, | 315 4Br} /
n—2n, —mn, = r—g{l:ojt /1_0 —r} —?O(l—SeCOSv)(ng —rn? +5n + 21722)
o

a a

3 —_—
+ e{%(BAy/l cos ecos(v —a )+ (4/10, +4B— 3):71

a

3

—cosi+(4Z+ B—S) ro)}%cosv} —Qecosi(v-a)

a

n ! Z /g
and 1, +2n; —myn, = 7[70(36 cosv 1) (ronu, —n?n, +1°)

0]
3 3
+e{(4r02 —B—BEOrOZ)q2 cosv —%Ay/l cos e cosv sin(v —a)—%sinvcosiH +Qsin(v-a)
............ (2.12)
Where Q = Ay, cos e
[2.11] can be re-written as
ny —2n; —min, = uf, -Qcosly — )
and
ny+2n —mén, = uH, +Qsinlv-a) (2.12)
Where
m?=3+4B-4,, m’= A"‘fo —B-1,, Q=Ay,cose, M:A—g«l
r0 r0
3ry  4Br} re !
f = /1:°+ /1_0 -r; —%c.com —70(1—3e003v)(2r03 —r,n? +5n! +21722)
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+ef3Ay, cosecos(v —a)+ (42, +4B -3}, —cosi +(44,+B-3) ro}%scosv ]

l

and  H, = 70

(3e Cosv — 1)([’0771772 - 7712772 + 7723 )

3 3
+e{(4ro2 -B —3£0r§)qz cosv —iAy/l cos e cosv sin(v —a)—isinvcosi}
Z Z
ereieeeeenn (2.13)
Thus, the system of equations given by [2.12] represents the non-linear oscillation of the system at the equilibrium
point (a,, 0). We see that it represents the almost periodic oscillation due to Malkin.
3. Non-resonant solution of the equations and its stability

The general solution of linear part of [2.12] which can be obtained by putting u=0 , can be written in the
form :

n, =a,sing, +a,sin g, + A cos(v —a)
1, = a,W, cos ¢, +a,W, cos¢, — A sin(v —a)
. . v (3.1)

n. =a,K, cosg, +a,K,cosg, + A, sin(v—a)

1, = —a,K,w, sin ¢, —a,K,w, sin ¢, + A, cos(v —a)
Where

p=oN+a, ¢,=0,V+a,
Herea,, a, ; @, and @, are constants to be determined from the initial conditions and @, , @, are the roots of
the characteristic equation.

a)4+(mf+m§—0)a)2+mf+m§:0 e (3.2)
From (4.3.1), we have -

ny = —a,W; sin ¢, —a,w’ sin ¢, — A cos(v —a) 3

ny = —a,WK? cosg, —a,K,w? cosg, — A, sin(v —a)

Thus, on putting the values of 1,,1,,1',,1",, ", and ", from [3.1] and [3.3] respectively in [2.12] when p =
0, we get

—~ [ai(wl2 —2K,w, +m/ )]sin ¢, — [az(wz2 —2K,w, +m/ )]sin b,

—|A +2A, + m?A [cos(v - o) =-Qcos(v - a)
and  — [al(Klwl2 — 2w, +m; Kl)]cos¢1 —~ [a2 (KZWZZ — 2w, + m;KZ)]COSgbZ

—|A, +2A +m2A, [sin(v —a)=Qsinv—a) (3.4)
Equations of (3.4) will be identically satisfied if the coefficients of sing 4, sing,, cos (v - ), cos¢ 1, cos¢,and sin
(v - a) vanish separately, so we get

W —2K,w, +m? =0
W, —2K,w, +m> =0y (3.5)
A +2A, +mZA =Q
K w2 —2w, +miK, =0
and KW -2w, +miK,=0r (3.6)

A +2A +mZA, =-Q

From (4.3.5) and (4.3.6), we get
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K :W1+m12: 2w, K :W22+mf: 2w,
oow, o wramil ot 2w, w2 +m? o

m; +m2 +m? m; -3 m; +m2+m? m; -3
Now, we shall study the general solution of the entire non-linear equations (2.12) with p = 0 (i.e. fy # 0, Hy # 0).

For this, we exploit the method of variation of arbitrary constants in our further studies.
Here the amplitude and the phase will now be taken as functions of v but not constants as in linear case.

Here, &, =a,(V), 8, =a,(v), o, =), @y =, (V)
n, =a,sing, +a,sing, + A cos(v—a)
n, = a,K, cos¢, +a,k, cosg, + A, sin(v—a)
Thus, we get
n, = a,sin ¢, + a,¢, cos ¢, + a, sin ¢, +a,¢, cos ¢, — A sin(v —a)
ny = a/K, cos ¢, —a,K,¢', sin ¢, + a,K, cos ¢, —a,K,¢,'sin g, + A, cos(v — o)
1, = a/w, cos ¢, — a,W,¢", Sin ¢, + a,w, Cos ¢, — a,W,@,'sin ¢, — A cos(v — )

ny =—a/K,w, sin ¢, —a,K,w,¢', cos ¢, — a,K,w, sin ¢, —a, K,w,¢,'cos ¢, — A, sin(v —a )
e (3.8)
Comparing the values of n; and ), in the system of equations [4.3.8] and [4.3.1], we get by subtraction:

a,sing, +a, ¢1‘cos ¢, —a,w, cos ¢, +a, sin ¢, + a,¢p,'cos ¢, —a,w, cos ¢, =0
a K, cosp, —a K’ sing +aKwsing +aK,sing, —a,K,p',sing, +a,K,w,sing, =0
.............. (3.9)

In two cases when f; = 0, H; = 0 and f; = 0, H; = 0O, substituting the values of n; and n,and their derivatives from
[3.1], [3.3] and [3.8], we get on using [3.7].

ajw, CoS¢, —a,W,@; Sing, + ajw? sing, +a,W, coS¢, — a,W,¢; sing, + a,w; sing, = u f,
-a/K,w, sing, —a,K,w,¢', cos ¢, +a,K,w; cos ¢, — a,K,w, sin ¢, —a, K, w,¢', cos ¢,

and

and
+a,K,W. cos ¢, = uH,
.............. (3.10)
Multiplying the first equation of [3.9] by kyw; and then adding it to the 2nd equation of (3.10), we get
a,sing, [WlKl -w,K, ] +a, (¢'2_W2 )(WlKl -w,K, )COS¢2 = pH,
............... (3.11)
Again, multiply the 2nd equation of [3.9] by k,w, and adding it the 2nd equation of [3.10], we get
a;(w,K, —w, K, )sin ¢, +a, (¢, —w, \w,K, —w,K, )cos ¢, = uH,
............... (3.12)

Again, multiplying the 2nd equation of [3.9] by w; and subtracting it from k; times the first equation of [3.10], we
get -
a, (Wz K —w K, )COS 9, +a, (¢|2 —W, )(Wz K —w K, )Sin ¢, = uK, f,
............... (3.13)
Lastly, multiply the 2" equation of (3.9) by w, and then subtracting it from w; times the first equation of (3.10), we
get

ai(Wle - WzKl)COS ¢, - a1(¢|1_W1)(W1K2 - WzKl)Sin ¢, = pK, f,
Now, putting the value of w; and w;, from (3.7) in (3.11), (3.12), (3.13) and (3.14), we get,

(we—w?) , W — W
al[% sing, +a1(¢ 1_W1) % cos¢, = uH,
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22 22
ay |:m12 (Wl ™ )}COS@ al( '1_W1)m12 %Sin@ = pK, f,
w W

2

[ Jsmﬂéz +a, ¢ 2 Wz){@jcosﬂbz = uH,

( w2 —w?) W —w; )
and am W Cos¢, — a2(¢ z_Wz) Tow sing, = uK, f,
1Wa 1

.............. (3.15)
After solving these four equations of [3.15] for and, we get
a = —u[Hfsingb1 +K, ] cos¢1]
= M[Hfsingb2 + K f] cos¢2]

¢ =W, +ﬂ[— H, cosg, + K, f,"sin ¢1]

8
v ,Ll * *

¢',=W, +—[H1 cosg, — K, f, smq)z] ............... (3.16)

a

2
Where,

Hi=— =1 = nd —2-—2 (3.17)
PwZiow? Tt mwi —w?) m?  m,

Thus, on considering aj, a,¢; and ¢, as variables, we get a new system of four variations equations of
motion given in [3.16].
It we put on the right hand Side of the system of equations [3.16], the values of fl* and HI in terms of f;

and H; respectively from [2.13] and then the values of n; and n, from [3.1], then the right hand side forms of the
expression are expanded into trigonometrical sums and averaged values of the variables are taken after dripping all
the terms in the system of equations [3.16] except the free terms, we get the system of equations for first
approximation as :

a;=0, a,=0, ', =W, @', =W,] e (3.18)
Where WI and WZ are the new frequencies depending on w;, w, and constant quantities a;, a, Ay, Az, o, My, My,
k; and k; and hence on integration, we get from (3.18).

a, =constant=a,, a,=constant= a;‘

@, =W, V+ €, @, =W V+ €, }
where €, and e, are constants, Thus we see that in the relation [3.19] ; a; and a, remain constant where as the

values of ¢ and ¢, are slightly changed in the first approximation which indicates the change in the frequencies.
But it has no effect on stability.
Thus, in the first approximation, the solutions of the equations of non-linear oscillation [2.12] can be written as -

n, = a, sin(w;v+ &, )+ a; sin(wjv+ e, )+ A cos(v—a)

1, = a; K, cos(w,v+ €, J+a;K, cos(wjv+ &, )+ A, sin(v—a)
.. (3.20)
Where af, a; €, and €, are arbitrary constant and WI and W; will be new frequencies, the values of A; and A,
are given in [3.6].
Finally, we conclude that the solutions given in [3.20] will be stable.

4. RESONANT SOLUTION OF THE EQUATION AND ITS STABILITY
In this section, we shall examine the system of equations [2.12] with the supposition that the oscillation is of
resonance type.
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In case of resonance oscillation, we suppose that

w, =1 and Q= Q" e (4.1)

Which are customary in the resonance case of oscillation. In its absence, the generating system will have no almost
periodic solution.
Thus, the system of equations [2.12] can be put in the form:

n; —2n, —mfm = uf, -1Q’ COS(V —Ol)}

2 * -
13 —21; — M1, = pH; + pQsin(v — )
Where , f; and H; have their usual meanings given in [2.13].
In this case, the particular solutions of [4.2] for f; = 0 and H; = 0 can be assumed to be in the form -

n, =asing + M, cos(v—a)+M,sin(v-a)
n, = aK, cosg + M, K, cos(v —a ) - M, K, sin(v-a)

where @ =wyVv + o3 a, oz, My, M, are constants.
From (4.4.3), we get

1, = aw, cos¢ — M, sin(v—a)+ M, cos(v—a)
n, =—ak,w, sing—M,K, sin(v—a)-M,K, cos(v—a)
In a similar way just as in the preceding sections of this chapter and keeping in mind that w, = 1, we get from [4.3.7]

2 2
K1=W1+M1= 22""1 _ 2=1+M1= 2 b (4.5)
2w, W+ M; 2 1+ M,
From [4.4.4], we get
ny = —aw’sin ¢ — M, cos(v—a)—M,sin(v-a) @6
ny =—aK,w? cosg+M,K,sin(v—a)-M,K, coslv—a)] '

Now, similar to the non-resonance case, we shall investigate the general solution to the system of equations [4.2]
representing the non-linear oscillation, when f; = 0 and H;= 0.

We shall assume that a, My, M, and ¢ are new variables like the previous section of this chapter, we get on
solving the system of equations for M'; ,M', , a'and ¢ obtained in the form :
M; = y[HI* cos(v —a)—K, " sin(v — a)], M) = y[Hf* sin(v—a)+K,f,” cos(v - a)]

a = ﬂ[— H, sing — K, f"~ cos¢], ¢ =w, +§[H1** cos + K, f,”sin 0]
e (A7)
« 2Q7sin(v-«a . .= 2M,Q cos(v-a .
Where, H, :w+ H, f = Q > ( )+ f, SRR (X))
o, -1 o, -1
The values of HI and fl* can be given from [3.17] in case of resonance oscillation where w, = 1 as
proZ2Hy e Mo (4.9)

R VI

In order to get the first approximate solution of the system of equation [4.7], we shall put in the right hand sides of
[4.7], the different values from [4.8], [4.9] and [2.13] and then the values of n; and n, from [3.1]. Now after
dropping the other terms except the free terms, we take the averaged terms into trigonometrical sums as mentioned
in the previous section of this chapter, the set of equations [4.7] can be written as :

}+MZZ[—2K2+%K§—

_6Km, K,KZm,

M;:L) {Mf(K2+3K2‘°’) n n

3Kym, K,KZm,
4(w; -1

m, m,
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3
+a? [—2|<2 rakzK, O KlmZJ M, + Ber, Mf[Kz —ﬂjsina—lvl;{r(z + Klmzjsina
m m, m m,

BECLUTVEYS COSaH

1

3ys, 3Km, KlKZZmZJ . Mz{_ K3+ 6Kym, Klezmzj

' H 2 3
M, = M;| 2K, —=K
2 4iwf—1iH 1( 227 m m, m, m,

3
+a2[2K2 3Kk 2K, + oMz , K mzj}Ml+6ero{M§{K2 - Klmzjcosoc—l\/lf[K2 n KlmZJCOSa
ml ml ml ml

2k, Mem M sing b |+ 2 [14 KM
m (W —1) m,

1 1

, — u3erk,

a _M[Mlsina +M,cosaja

3 2
o =w 1t Imz| 2k, —aK Kz 4 S KM | el gy 2y OKaMe | Ko,
2(w12 —l) m, m, m, m,

2
+a’ 2Kl—§Kf’+3K2mZ—Kl KoM, -12er, < M, Kom, Ky cosa —M, Km, K sing
2 m, m, m 2 m, 2

The set of equations [4.10] can be written in the form:

M = u[b{MZE? -MZE? —a2E3}+bl{Mf[K2 - K;qszsina—Mf{Kz +%Jsina

1

N 2K,m,

M,M, COSaH = 1R, [M,, M,, a]

1

M; = [ b{ME, - MZE, + 2°E,} M1+bl{M22(K2 - K;qmz JCOSa— |\/|12(K2 —%}cosa

1 1

+MM1MzsinaH = uR,[M,, M,, a]
1

a'=—ub,K,[M, sina + M, +cosa fa = tR,[M,, M,, a]

¢'=w,+ uplE MM + 2%, | —bl{Ml(ZKrgmz +K1J005a —MZ(ZKr;mZ +K1J5inaH =w"”

1 1

............... (4.11)
Where the values of b, by, Ey, E,, E3, E4 and Es are given by
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2
1 b, — 3er, E, :K2+3K§’—6K1m2 _ KKym,

b= b =
aw?-1) 2w’ -1 m, m,

2 2
E, =2K, —SKS L L es UL S 1LY

ml ml ml ml
3 2
£, 2K, — kK24 OKeMe KoMy e o Sya, My  KiKem, (4.12)
2 m, m, 2 m, m,

Here Ry, R, and R; and stand for functional notations.
Now let us examine the system of equations [4.11] we see that the solutions given in [4.3] can be stable

only when the given conditions are satisfied.
R[M,, M,, a]=0, R,[M,, M,, a]=0,R,JM,, M,,a]=0 ... (4.13)
If the conditions mentioned in (4.13) are satisfied then the values of My, M, and a will remain constants and in that

case the value of ¢' = @** will also be a constant quantity.
Therefore, we shall have a new frequency o** in place of ;. But it will not affect the stability. Thus, in

the first approximation, the stationary solutions of the system of equations [4.2] for non-linear oscillation can be
written in the form:

n, =a"sing+M, cos(v—a)+M; sin(v-a)
n,=a K, cos6—-M, sinv—a)+M, cosv-a) (4.14)
Where 6 = o** v + a3 being arbitrary constant and a**, M,** are the roots of the system of equations.

b{MZE, - MZE, ~a’E, | M, +bl{|v|f£r<2 + K&TZJsim

2K,m,

—MZ{K2 + KlmzjsinoH M, M, cosw}:o

1 1

Q K,m
b{MZE, - MZE, +a%E, M, v 1+ rlnlz

2K,m,

Mlesina}:O

1 1 1

+bl{M§[K2 +am, jcosw —~ MfEK2 + Krlnmz jc05a+

and [M, sine + M, cosafa=0 ceeeeeien (4.15)
Hence, we finally come to the conclusion that the stationary solution [4.14] can be stable for -
M; = M**, M, = My** and a=a**

Only when the roots of the following characteristic equation

R _, oR, R,

om, om, oa

oR OoR R

—z /| —Z =0 (4.16)

om, om, oa

oR, R, R,

om, om, oa

have negative real parts.
From what we have discussed above in this paper, it follows that the stationary solution in the non-

resonance case is stable in the first approximation in elliptic motion of the system where as the stationary solution in
the resonance case exists only when the roots of the characteristic equation [4.16] have negative real parts.
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