Some Common Fixed Point Theorems for Sequence of Mappings in Two Metric Spaces

T.Veerapandi, T.Thiripura Sundari, J.Paulraj Joseph
Professor and H.O.D of Science and Humanities, S. Veerasamy Chettiar College of Engineering and Technology, S.V.Nagar, Puliangudi, India
Department of Mathematics, Sri K.G.S Arts College, Srivaikuntam, India
Professor and H.O.D of Mathematics, Manonmaniam Sundaranar University, Tirunelveli, India

Abstract

: In this paper we prove some common fixed point theorems for sequence of mappings in two complete metric spaces.

Key words and Phrases : fixed point, common fixed point, sequence of maps and complete metric space.

AMS Mathematics Subject Classification : 47H10, 54H25

1. INTRODUCTION.

Fixed point theory and common fixed point theory have basic roles in the application of some branches of mathematics. There are many articles about common fixed point theorems in metric spaces([3]-[5]). In [6] and [7], B.Fisher proved some theorems in two complete metric spaces. Later some authors proved some kind of fixed and common fixed point theorems in two metric spaces ([1], [2], [8]-[10]. In this paper we prove some common fixed point theorems for sequence of mappings in two complete metric spaces. The following definitions are necessary for the present study.

Definition1.1 A sequence $\left\{\mathrm{x}_{\mathrm{n}}\right\}$ in a metric space (X, d) is said to be convergent to a point $\mathrm{x} \in \mathrm{X}$ if given $\in>0$ there exists a positive integer n_{0} such that $\mathrm{d}\left(\mathrm{x}_{\mathrm{n}}, \mathrm{x}\right)<\epsilon$ for all $\mathrm{n} \geq \mathrm{n}_{0}$.

Definition1.2. A sequence $\left\{\mathrm{x}_{\mathrm{n}}\right\}$ in a metric space (X,d) is said to be a Cauchy sequence in X if given $\in>0$ there exists a positive integer n_{0} such that $\mathrm{d}\left(\mathrm{x}_{\mathrm{m}}, \mathrm{x}_{\mathrm{n}}\right)<\in$ for all $\mathrm{m}, \mathrm{n} \geq \mathrm{n}_{0}$.

Definition1.3 A metric space (X, d) is said to be complete if every Cauchy sequence in X converges to a point in X.

Definition1.4 Let X be a non-empty set and $\mathrm{f}: \mathrm{X} \rightarrow \mathrm{X}$ be a map. An element x in X is called a fixed point of X if $f(x)=x$.

Definition1.5. Let X be a non-empty set and $\mathrm{f}, \mathrm{g}: \mathrm{X} \rightarrow \mathrm{X}$ be two maps. An element x in X is called a common fixed point of f and g if $f(x)=g(x)=x$.

Definition1.6. Let X be a non-empty set and a point x in X is said to be a common fixed point of sequence of maps $T_{n}: X$ $\rightarrow X$ if $T_{n}(x)=x$ for all n.

2.MAIN RESULTS

Theorem 2.1: Let (X, d) and (Y, e) be complete metric spaces. Let $\left\{A_{n}\right\},\left\{B_{n}\right\}(n \in N)$ be sequence of mappings of X into Y and $\left\{S_{n}\right\},\left\{T_{n}\right\}(n \in N)$ be sequence of mappings of Y into X satisfying the inequalities.

$$
\begin{aligned}
& \mathrm{d}\left(\mathrm{~S}_{\mathrm{p}} \mathrm{~A}_{\mathrm{i}} \mathrm{x}, \mathrm{~T}_{\mathrm{q}} \mathrm{~B}_{\mathrm{j}} \mathrm{x}^{\prime}\right) \leq \mathrm{c}_{1} \cdot \max \left\{\mathrm{~d}\left(\mathrm{x}, \mathrm{x}^{\prime}\right), \mathrm{d}\left(\mathrm{x}, \mathrm{~S}_{\mathrm{p}} \mathrm{~A}_{\mathrm{i}} \mathrm{x}\right),\right. \\
& \mathrm{d}\left(\mathrm{x}^{\prime}, \mathrm{T}_{\mathrm{q}} \mathrm{~B}_{\mathrm{j}} \mathrm{x}^{\prime}\right), \mathrm{e}\left(\mathrm{~A}_{\mathrm{i}} \mathrm{X}, \mathrm{~B}_{\mathrm{j}} \mathrm{x}^{\prime}\right), \\
& \left.\mathrm{d}\left(\mathrm{x}, \mathrm{~T}_{\mathrm{q}} \mathrm{~B}_{\mathrm{j}} \mathrm{x}^{\prime}\right) \cdot \mathrm{d}\left(\mathrm{~S}_{\mathrm{p}} \mathrm{~A}_{\mathrm{i}} \mathrm{X}, \mathrm{x}^{\prime}\right)\right\}-\cdots--(2.1 .1) \\
& \mathrm{e}\left(\mathrm{~B}_{\mathrm{j}} \mathrm{~S}_{\mathrm{p}} \mathrm{y}, \mathrm{~A}_{\mathrm{i}} \mathrm{~T}_{\mathrm{q}} \mathrm{y}^{\prime}\right) \leq \mathrm{c}_{2} \cdot \max \left\{\mathrm{e}\left(\mathrm{y}, \mathrm{y}^{\prime}\right), \mathrm{e}\left(\mathrm{y}, \mathrm{~B}_{\mathrm{j}} \mathrm{~S}_{\mathrm{p}} \mathrm{y}\right),\right. \\
& \mathrm{e}\left(\mathrm{y}^{\prime}, \mathrm{A}_{\mathrm{i}} \mathrm{~T}_{\mathrm{q}} \mathrm{y}^{\prime}\right), \mathrm{d}\left(\mathrm{~S}_{\mathrm{p}} \mathrm{y}, \mathrm{~T}_{\mathrm{q}} \mathrm{y}^{\prime}\right), \\
& \left.\mathrm{e}\left(\mathrm{y}, \mathrm{~A}_{\mathrm{i}} \mathrm{~T}_{\mathrm{q}} \mathrm{y}^{\prime}\right) \cdot \mathrm{e}\left(\mathrm{~B}_{\mathrm{j}} \mathrm{~S}_{\mathrm{p}} \mathrm{y}, \mathrm{y}^{\prime}\right)\right\}-\cdots---(2.1 .2)
\end{aligned}
$$

for all $\mathrm{i} \neq \mathrm{j} \neq \mathrm{p} \neq \mathrm{q}, \mathrm{x}, \mathrm{x}^{\prime}$ in X and $\mathrm{y}, \mathrm{y}^{\prime}$ in Y where $0 \leq \mathrm{c}_{1}<1$ and $0 \leq c_{2}<1$. If one of the mappings $\left\{A_{n}\right\},\left\{B_{n}\right\},\left\{S_{n}\right\}$ and $\left\{T_{n}\right\}$ is continuous, then $\left\{S_{n} A_{n}\right\}$ and $\left\{T_{n} B_{n}\right\}$ have a common fixed point z in X and $\left\{B_{n} S_{n}\right\}$ and $\left\{A_{n} T_{n}\right\}$ have a common fixed point w in Y. Further, $\left\{A_{n}\right\} z=\left\{B_{n}\right\} z=w$ and $\left\{S_{n}\right\} w=\left\{T_{n}\right\} w=z$.

Proof: Let x_{0} be an arbitrary point in X and we define the sequences $\left\{x_{n}\right\}$ in X and $\left\{y_{n}\right\}$ in Y by

$$
\begin{gathered}
\mathrm{A}_{\mathrm{n}} \mathrm{X}_{2 \mathrm{n}-2}=\mathrm{y}_{2 \mathrm{n}-1}, \mathrm{~S}_{\mathrm{n}} \mathrm{y}_{2 \mathrm{n}-1}=\mathrm{x}_{2 \mathrm{n}-1}, \mathrm{~B}_{\mathrm{n}} \mathrm{x}_{2 \mathrm{n}-1}=\mathrm{y}_{2 \mathrm{n}} ; \\
\mathrm{T}_{\mathrm{n}} \mathrm{y}_{2 \mathrm{n}}=\mathrm{x}_{2 \mathrm{n}} \quad \text { for } \mathrm{n}=1,2,3 \ldots .
\end{gathered}
$$

Now using inequality (2.1.1) we have

$$
\begin{aligned}
& \mathrm{d}\left(\mathrm{x}_{2 \mathrm{n}+1}, \mathrm{x}_{2 \mathrm{n}}\right)=\mathrm{d}\left(\mathrm{~S}_{\mathrm{n}} \mathrm{~A}_{\mathrm{n}} \mathrm{X}_{2 \mathrm{n}}, \mathrm{~T}_{\mathrm{n}} \mathrm{~B}_{\mathrm{n}} \mathrm{X}_{2 \mathrm{n}-1}\right) \\
& \leq \mathrm{c}_{1} \cdot \max \left\{\mathrm{~d}\left(\mathrm{x}_{2 \mathrm{n}}, \mathrm{x}_{2 \mathrm{n}-1}\right), \mathrm{d}\left(\mathrm{x}_{2 \mathrm{n}}, \mathrm{~S}_{\mathrm{n}} \mathrm{~A}_{\mathrm{n}} \mathrm{x}_{2 \mathrm{n}}\right),\right. \\
& d\left(x_{2 n-1}, T_{n} B_{n} x_{2 n-1}\right), e\left(A_{n} x_{2 n}, B_{n} x_{2 n-1}\right), \\
& \left.\mathrm{d}\left(\mathrm{x}_{2 \mathrm{n}}, \mathrm{~T}_{\mathrm{n}} \mathrm{~B}_{\mathrm{n}} \mathrm{x}_{2 \mathrm{n}-1}\right) . \mathrm{d}\left(\mathrm{~S}_{\mathrm{n}} \mathrm{~A}_{\mathrm{n}} \mathrm{X}_{2 \mathrm{n}}, \mathrm{x}_{2 \mathrm{n}-1}\right)\right\} \\
& =c_{1} . \max \left\{d\left(x_{2 n}, x_{2 n-1}\right), d\left(x_{2 n}, x_{2 n+1}\right), d\left(x_{2 n-1}, x_{2 n}\right)\right. \text {, } \\
& \left.\mathrm{e}\left(\mathrm{y}_{2 \mathrm{n}+1}, \mathrm{y}_{2 \mathrm{n}}\right), \mathrm{d}\left(\mathrm{x}_{2 \mathrm{n}}, \mathrm{x}_{2 \mathrm{n}}\right) . \mathrm{d}\left(\mathrm{x}_{2 \mathrm{n}-1}, \mathrm{x}_{2 \mathrm{n}+1}\right)\right\} \\
& \left.\mathrm{e}\left(\mathrm{y}_{2 \mathrm{n}+1}, \mathrm{y}_{2 \mathrm{n}}\right), 0\right\} \\
& \leq \mathrm{c}_{1} . \max \left\{\mathrm{d}\left(\mathrm{x}_{2 \mathrm{n}-1}, \mathrm{x}_{2 \mathrm{n}}\right), \mathrm{e}\left(\mathrm{y}_{2 \mathrm{n}+1}, \mathrm{y}_{2 \mathrm{n}}\right)\right\} \cdots-----(2.1 .3)
\end{aligned}
$$

Now using inequality (2.1.2) we have

$$
\begin{aligned}
& e\left(y_{2 n}, y_{2 n+1}\right)=e\left(B_{n} S_{n} y_{2 n-1}, A_{n} T_{n} y_{2 n}\right) \\
& \leq \mathrm{c}_{2} \cdot \max \left\{\mathrm{e}\left(\mathrm{y}_{2 \mathrm{n}-1}, \mathrm{y}_{2 \mathrm{n}}\right), \mathrm{e}\left(\mathrm{y}_{2 \mathrm{n}-1}, \mathrm{~B}_{\mathrm{n}} \mathrm{~S}_{\mathrm{n}} \mathrm{y}_{2 \mathrm{n}-1}\right),\right. \\
& e\left(y_{2 n}, A_{n} T_{n} y_{2 n}\right), d\left(S_{n} y_{2 n-1}, T_{n} y_{2 n}\right), \\
& \left.e\left(y_{2 n-1}, A_{n} T_{n} y_{2 n}\right) . e\left(B_{n} S_{n} y_{2 n-1}, y_{2 n}\right)\right\} \\
& =c_{2} \cdot \max \left\{e\left(y_{2 n-1}, y_{2 n}\right), e\left(y_{2 n-1}, y_{2 n}\right), e\left(y_{2 n}, y_{2 n+1}\right),\right. \\
& \left.d\left(\mathrm{x}_{2 \mathrm{n}-1}, \mathrm{x}_{2 \mathrm{n}}\right), \mathrm{e}\left(\mathrm{y}_{2 \mathrm{n}-1}, \mathrm{y}_{2 \mathrm{n}+1}\right) \cdot \mathrm{e}\left(\mathrm{y}_{2 \mathrm{n}}, \mathrm{y}_{2 \mathrm{n}}\right)\right\} \\
& =c_{2} \cdot \max \left\{e\left(y_{2 n-1}, y_{2 n}\right), e\left(y_{2 n-1}, y_{2 n}\right), e\left(y_{2 n}, y_{2 n+1}\right),\right. \\
& \left.\mathrm{d}\left(\mathrm{x}_{2 \mathrm{n}-1}, \mathrm{x}_{2 \mathrm{n}}\right), 0\right\} \\
& \leq \mathrm{c}_{2} \cdot \max \left\{\mathrm{e}\left(\mathrm{y}_{2 \mathrm{n}-1}, \mathrm{y}_{2 \mathrm{n}}\right), \mathrm{d}\left(\mathrm{x}_{2 \mathrm{n}-1}, \mathrm{x}_{2 \mathrm{n}}\right)\right\}-\cdots---(2.1 .4)
\end{aligned}
$$

Again using inequality (2.1.1) we have

$$
\begin{align*}
& \mathrm{d}\left(\mathrm{x}_{2 \mathrm{n}}, \mathrm{x}_{2 \mathrm{n}-1}\right)=\mathrm{d}\left(\mathrm{x}_{2 \mathrm{n}-1}, \mathrm{x}_{2 \mathrm{n}}\right) \\
& =\mathrm{d}\left(\mathrm{~S}_{\mathrm{n}} \mathrm{~A}_{\mathrm{n}} \mathrm{X}_{2 \mathrm{n}-2}, \mathrm{~T}_{\mathrm{n}} \mathrm{~B}_{\mathrm{n}} \mathrm{X}_{2 \mathrm{n}-1}\right) \\
& \leq \mathrm{c}_{1} \cdot \max \left\{\mathrm{~d}\left(\mathrm{x}_{2 \mathrm{n}-2}, \mathrm{x}_{2 \mathrm{n}-1}\right), \mathrm{d}\left(\mathrm{x}_{2 \mathrm{n}-2}, \mathrm{~S}_{\mathrm{n}} \mathrm{~A}_{\mathrm{n}} \mathrm{x}_{2 \mathrm{n}-2}\right)\right. \text {, } \\
& d\left(x_{2 n-1}, T_{n} B_{n} x_{2 n-1}\right), e\left(A_{n} x_{2 n-2}, B_{n} x_{2 n-1}\right) \\
& \left.\mathrm{d}\left(\mathrm{x}_{2 \mathrm{n}-2}, \mathrm{~T}_{\mathrm{n}} \mathrm{~B}_{\mathrm{n}} \mathrm{x}_{2 \mathrm{n}-1}\right) . \mathrm{d}\left(\mathrm{~S}_{\mathrm{n}} \mathrm{~A}_{\mathrm{n}} \mathrm{X}_{2 \mathrm{n}-2}, \mathrm{x}_{2 \mathrm{n}-1}\right)\right\} \\
& =c_{1} . \max \left\{d\left(x_{2 n-2}, x_{2 n-1}\right), d\left(x_{2 n-2}, x_{2 n-1}\right)\right. \text {, } \\
& \mathrm{d}\left(\mathrm{x}_{2 \mathrm{n}-1}, \mathrm{x}_{2 \mathrm{n}}\right), \mathrm{e}\left(\mathrm{y}_{2 \mathrm{n}-1}, \mathrm{y}_{2 \mathrm{n}}\right) \text {, } \\
& \left.\mathrm{d}\left(\mathrm{x}_{2 \mathrm{n}-2}, \mathrm{x}_{2 \mathrm{n}}\right) \cdot \mathrm{d}\left(\mathrm{x}_{2 \mathrm{n}-1}, \mathrm{x}_{2 \mathrm{n}-1}\right)\right\} \\
& =c_{1} . \max \left\{d\left(x_{2 n-2}, x_{2 n-1}\right), d\left(x_{2 n-2}, x_{2 n-1}\right)\right. \text {, } \\
& \left.\mathrm{d}\left(\mathrm{x}_{2 \mathrm{n}-1}, \mathrm{x}_{2 \mathrm{n}}\right), \mathrm{e}\left(\mathrm{y}_{2 \mathrm{n}-1}, \mathrm{y}_{2 \mathrm{n}}\right), 0\right\} \\
& \leq \mathrm{c}_{1} \cdot \max \left\{\mathrm{~d}\left(\mathrm{x}_{2 \mathrm{n}-2}, \mathrm{x}_{2 \mathrm{n}-1}\right), \mathrm{e}\left(\mathrm{y}_{2 \mathrm{n}-1}, \mathrm{y}_{2 \mathrm{n}}\right)\right\} \tag{2.1.5}
\end{align*}
$$

Now using inequality (2.1.2)

$$
\begin{aligned}
\mathrm{e}\left(\mathrm{y}_{2 \mathrm{n}}, \mathrm{y}_{2 \mathrm{n}-1}\right) & =\mathrm{e}\left(\mathrm{~B}_{\mathrm{n}} \mathrm{~S}_{\mathrm{n}} \mathrm{y}_{2 \mathrm{n}-1}, \mathrm{~A}_{\mathrm{n}} \mathrm{~T}_{\mathrm{n}} \mathrm{y}_{2 \mathrm{n}-2}\right) \\
& \leq \mathrm{c}_{2} . \max \left\{\mathrm{e}\left(\mathrm{y}_{2 \mathrm{n}-1}, \mathrm{y}_{2 \mathrm{n}-2}\right), \mathrm{e}\left(\mathrm{y}_{2 \mathrm{n}-1}, \mathrm{~B}_{\mathrm{n}} \mathrm{~S}_{\mathrm{n}} \mathrm{y}_{2 \mathrm{n}-1}\right),\right.
\end{aligned}
$$

$$
\begin{gathered}
\mathrm{e}\left(\mathrm{y}_{2 \mathrm{n}-2}, \mathrm{~A}_{\mathrm{n}} \mathrm{~T}_{\mathrm{n}} \mathrm{y}_{2 \mathrm{n}-2}\right), \mathrm{d}\left(\mathrm{~S}_{\mathrm{n}} \mathrm{y}_{2 \mathrm{n}-1}, \mathrm{~T}_{\mathrm{n}} \mathrm{y}_{2 \mathrm{n}-2}\right), \\
\left.\mathrm{e}\left(\mathrm{y}_{2 \mathrm{n}-1}, \mathrm{~A}_{\mathrm{n}} \mathrm{~T}_{\mathrm{n}} \mathrm{y}_{2 \mathrm{n}-2}\right) \cdot \mathrm{e}\left(\mathrm{~B}_{\mathrm{n}} \mathrm{~S}_{\mathrm{n}} \mathrm{y}_{2 \mathrm{n}-1}, \mathrm{y}_{2 \mathrm{n}-2}\right)\right\} \\
=\mathrm{c}_{2} \cdot \max \left\{\mathrm{e}\left(\mathrm{y}_{2 \mathrm{n}-1}, \mathrm{y}_{2 \mathrm{n}-2}\right), \mathrm{e}\left(\mathrm{y}_{2 \mathrm{n}-1}, \mathrm{y}_{2 \mathrm{n}}\right),\right. \\
\mathrm{e}\left(\mathrm{y}_{2 \mathrm{n}-1}, \mathrm{y}_{2 \mathrm{n}-1}\right), \mathrm{d}\left(\mathrm{x}_{2 \mathrm{n}-1}, \mathrm{x}_{2 \mathrm{n}-2}\right) \\
\left.\mathrm{e}\left(\mathrm{y}_{2 \mathrm{n}-1}, \mathrm{y}_{2 \mathrm{n}-1}\right) . \mathrm{e}\left(\mathrm{y}_{2 \mathrm{n}}, \mathrm{y}_{2 \mathrm{n}-2}\right)\right\} \\
=\mathrm{c}_{2} \cdot \max \left\{\mathrm{e}\left(\mathrm{y}_{2 \mathrm{n}-1}, \mathrm{y}_{2 \mathrm{n}-2}\right), \mathrm{e}\left(\mathrm{y}_{2 \mathrm{n}-1}, \mathrm{y}_{2 \mathrm{n}}\right),\right. \\
\left.\mathrm{e}\left(\mathrm{y}_{2 \mathrm{n}-1}, \mathrm{y}_{2 \mathrm{n}-1}\right), \mathrm{d}\left(\mathrm{x}_{2 \mathrm{n}-1}, \mathrm{x}_{2 \mathrm{n}-2}\right), 0\right\} \\
\leq \mathrm{c}_{2} \cdot \max \left\{\mathrm{e}\left(\mathrm{y}_{2 \mathrm{n}-1}, \mathrm{y}_{2 \mathrm{n}-2}\right), \mathrm{d}\left(\mathrm{x}_{2 \mathrm{n}-1}, \mathrm{x}_{2 \mathrm{n}-2}\right)\right\}-.-(2.1 .6)
\end{gathered}
$$

from inequalities (2.1.3), (2.1.4), (2.1.5) and (2.1.6), we have $\mathrm{d}\left(\mathrm{x}_{\mathrm{n}+1}, \mathrm{x}_{\mathrm{n}}\right) \leq \mathrm{c}_{1}{ }^{\mathrm{n}} \mathrm{c}_{2}{ }^{\mathrm{n}-1} \cdot \max \left\{\mathrm{~d}\left(\mathrm{x}_{1}, \mathrm{x}_{0}\right), \mathrm{e}\left(\mathrm{y}_{1}, \mathrm{y}_{2}\right)\right\} \rightarrow 0$ as $\mathrm{n} \rightarrow \infty$ Thus $\left\{x_{n}\right\}$ is a Cauchy sequence in (X,d). Since (X,d) is complete, $\left\{\mathrm{X}_{\mathrm{n}}\right\}$ converges to a point z in X . Similarly using inequalities (2.1.3), (2.1.4), (2.1.5)and (2.1.6), we prove $\left\{\mathrm{y}_{\mathrm{n}}\right\}$ is a Cauchy sequence in (Y, e) with the limit w in Y .
Suppose $\left\{A_{n}\right\}$ is continuous, then

$$
\lim _{n \rightarrow \infty} \mathrm{~A}_{\mathrm{n}} \mathrm{X}_{2 \mathrm{n}}=\mathrm{A}_{\mathrm{n}} \mathrm{Z}=\lim _{n \rightarrow \infty} \mathrm{y}_{2 \mathrm{n}+1}=\mathrm{w}
$$

Now we prove $\mathrm{S}_{\mathrm{n}} \mathrm{A}_{\mathrm{n}} \mathrm{Z}=\mathrm{z}$. .
Suppose $\mathrm{S}_{\mathrm{n}} \mathrm{A}_{\mathrm{n}} \mathrm{z} \neq \mathrm{z}$.
We have

$$
\begin{aligned}
& \mathrm{d}\left(\mathrm{~S}_{\mathrm{n}} \mathrm{~A}_{\mathrm{n}} \mathrm{z}, \mathrm{z}\right)=\lim _{n \rightarrow \infty} \mathrm{~d}\left(\mathrm{~S}_{\mathrm{n}} \mathrm{~A}_{\mathrm{n}} \mathrm{z}, \mathrm{~T}_{\mathrm{n}} \mathrm{~B}_{\mathrm{n}} \mathrm{X}_{2 \mathrm{n}-1}\right) \\
& \leq \lim _{n \rightarrow \infty} \mathrm{c}_{1} \cdot \max \left\{\mathrm{~d}\left(\mathrm{z}, \mathrm{x}_{2 \mathrm{n}-1}\right), \mathrm{d}\left(\mathrm{z}, \mathrm{~S}_{\mathrm{n}} \mathrm{~A}_{\mathrm{n}} \mathrm{z}\right),\right. \\
& \mathrm{d}\left(\mathrm{x}_{2 \mathrm{n}-1}, \mathrm{~T}_{\mathrm{n}} \mathrm{~B}_{\mathrm{n}} \mathrm{x}_{2 \mathrm{n}-1}\right), \mathrm{e}\left(\mathrm{~A}_{\mathrm{n}} \mathrm{z}, \mathrm{~B}_{\mathrm{n}} \mathrm{X}_{2 \mathrm{n}-1}\right), \\
& \left.\mathrm{d}\left(\mathrm{z}, \mathrm{~T}_{\mathrm{n}} \mathrm{~B}_{\mathrm{n}} \mathrm{X}_{2 \mathrm{n}-1}\right) \cdot \mathrm{d}\left(\mathrm{~S}_{\mathrm{n}} \mathrm{~A}_{\mathrm{n}} \mathrm{z}, \mathrm{x}_{2 \mathrm{n}-1}\right)\right\} \\
& \leq \lim _{n \rightarrow \infty} \mathrm{c}_{1} \cdot \max \left\{\mathrm{~d}\left(\mathrm{z}, \mathrm{x}_{2 \mathrm{n}-1}\right), \mathrm{d}\left(\mathrm{z}, \mathrm{~S}_{\mathrm{n}} \mathrm{~A}_{\mathrm{n}} \mathrm{z}\right),\right. \\
& \mathrm{d}\left(\mathrm{x}_{2 \mathrm{n}-1}, \mathrm{~T}_{\mathrm{n}} \mathrm{~B}_{\mathrm{n}} \mathrm{x}_{2 \mathrm{n}-1}\right), \mathrm{e}\left(\mathrm{~A}_{\mathrm{n}} \mathrm{z}, \mathrm{~B}_{\mathrm{n}} \mathrm{X}_{2 \mathrm{n}-1}\right), \\
& \left.\mathrm{d}\left(\mathrm{z}, \mathrm{x}_{2 \mathrm{n}}\right) \cdot \mathrm{d}\left(\mathrm{~S}_{\mathrm{n}} \mathrm{~A}_{\mathrm{n}} \mathrm{Z}, \mathrm{x}_{2 \mathrm{n}-1}\right)\right\} \\
& =c_{1} \cdot \max \left\{d(z, z), d\left(z, S_{n} A_{n} z\right), d(z, z), e(w, w),\right. \\
& \left.\mathrm{d}(\mathrm{z}, \mathrm{z}) \cdot \mathrm{d}\left(\mathrm{~S}_{\mathrm{n}} \mathrm{~A}_{\mathrm{n}} \mathrm{z}, \mathrm{z}\right)\right\} \\
& =c_{1} \cdot \max \{0, d(z, S A z), 0,0,0\} \\
& \leq \mathrm{c}_{1} . \mathrm{d}\left(\mathrm{z}, \mathrm{~S}_{\mathrm{n}} \mathrm{~A}_{\mathrm{n}} \mathrm{z}\right) \\
& <\mathrm{d}\left(\mathrm{z}, \mathrm{~S}_{\mathrm{n}} \mathrm{~A}_{\mathrm{n}} \mathrm{z}\right) \quad\left(\text { Since } 0 \leq \mathrm{c}_{1}<1\right)
\end{aligned}
$$

Which is a contradiction.
Thus $\mathrm{S}_{\mathrm{n}} \mathrm{A}_{\mathrm{n}} \mathrm{Z}=\mathrm{z}$.
Hence $S_{n} w=z$. (Since $\left.A_{n} z=w\right)$
Now we prove $B_{n} S_{n} w=w$.
Suppose $B_{n} S_{n} w \neq w$.

We have

$$
\begin{aligned}
& \mathrm{e}\left(\mathrm{~B}_{\mathrm{n}} \mathrm{~S}_{\mathrm{n}} \mathrm{w}, \mathrm{w}\right)=\lim _{n \rightarrow \infty} \mathrm{e}\left(\mathrm{~B}_{\mathrm{n}} \mathrm{~S}_{\mathrm{n}} \mathrm{w}, \mathrm{y}_{2 \mathrm{n}+1}\right) \\
& =\lim _{n \rightarrow \infty} \mathrm{e}\left(\mathrm{~B}_{\mathrm{n}} \mathrm{~S}_{\mathrm{n}} \mathrm{w}, \mathrm{~A}_{\mathrm{n}} \mathrm{~T}_{\mathrm{n}} \mathrm{y}_{2 \mathrm{n}}\right) \\
& \leq \lim _{n \rightarrow \infty} \mathrm{c}_{2} \max \left\{\mathrm{e}\left(\mathrm{w}, \mathrm{y}_{2 \mathrm{n}}\right), \mathrm{e}\left(\mathrm{w}, \mathrm{~B}_{\mathrm{n}} \mathrm{~S}_{\mathrm{n}} \mathrm{w}\right),\right. \\
& e\left(y_{2 n}, A_{n} T_{n} y_{2 n}\right), d\left(S_{n} w, T_{n} y_{2 n}\right), \\
& \left.e\left(w, A_{n} T_{n} y_{2 n}\right) \cdot e\left(B_{n} S_{n} w, y_{2 n}\right)\right\} \\
& =c_{2} \cdot \max \left\{e(w, w), e\left(w, B_{n} S_{n} w\right), e(w, w), d(z, z)\right. \\
& \text {, e(w,w).e(} \left.\left.\left.\mathrm{B}_{\mathrm{n}} \mathrm{~S}_{\mathrm{n}} \mathrm{w}, \mathrm{w}\right)\right]\right\} \\
& <\mathrm{e}\left(\mathrm{w}, \mathrm{~B}_{\mathrm{n}} \mathrm{~S}_{\mathrm{n}} \mathrm{w}\right) \quad\left(\text { Since } 0 \leq \mathrm{c}_{2}<1\right)
\end{aligned}
$$

Which is a contradiction.
Thus $\mathrm{B}_{\mathrm{n}} \mathrm{S}_{\mathrm{n}} \mathrm{w}=\mathrm{w}$.
Hence $B_{n} z=w$. (Since $\left.S_{n} w=z\right)$
Now we prove $T_{n} B_{n} z=z$.
Suppose $\mathrm{T}_{\mathrm{n}} \mathrm{B}_{\mathrm{n}} \mathrm{z} \neq \mathrm{z}$.

$$
\begin{aligned}
& \mathrm{d}\left(\mathrm{z}, \mathrm{~T}_{\mathrm{n}} \mathrm{~B}_{\mathrm{n}} \mathrm{z}\right)=\lim _{n \rightarrow \infty} \mathrm{~d}\left(\mathrm{x}_{2 \mathrm{n}+1}, \mathrm{~T}_{\mathrm{n}} \mathrm{~B}_{\mathrm{n}} \mathrm{z}\right) \\
& =\lim _{n \rightarrow \infty} \mathrm{~d}\left(\mathrm{~S}_{\mathrm{n}} \mathrm{~A}_{\mathrm{n}} \mathrm{X}_{2 \mathrm{n}}, \mathrm{~T}_{\mathrm{n}} \mathrm{~B}_{\mathrm{n}} \mathrm{z}\right) \\
& \leq \lim _{n \rightarrow \infty} \mathrm{c}_{1} . \max \left\{\mathrm{d}\left(\mathrm{x}_{2 \mathrm{n}}, \mathrm{z}\right), \mathrm{d}\left(\mathrm{x}_{2 \mathrm{n}}, \mathrm{~S}_{\mathrm{n}} \mathrm{~A}_{\mathrm{n}} \mathrm{X}_{2 \mathrm{n}}\right)\right. \text {, } \\
& \mathrm{d}\left(\mathrm{z}, \mathrm{~T}_{\mathrm{n}} \mathrm{~B}_{\mathrm{n}} \mathrm{z}\right), \mathrm{e}\left(\mathrm{~A}_{\mathrm{n}} \mathrm{X}_{2 \mathrm{n}}, \mathrm{~B}_{\mathrm{n}} \mathrm{z}\right), \\
& \left.d\left(x_{2 n}, T_{n} B_{n} z\right) . d\left(S A x_{2 n}, z\right)\right\} \\
& =\mathrm{c}_{1} \cdot \max \left\{\mathrm{~d}(\mathrm{z}, \mathrm{z}), \mathrm{d}(\mathrm{z}, \mathrm{z}), \mathrm{d}\left(\mathrm{z}, \mathrm{~T}_{\mathrm{n}} \mathrm{~B}_{\mathrm{n}} \mathrm{z}\right), \mathrm{e}\left(\mathrm{w}, \mathrm{~B}_{\mathrm{n}} \mathrm{z}\right),\right. \\
& \left.\mathrm{d}\left(\mathrm{z}, \quad \mathrm{~T}_{\mathrm{n}} \mathrm{~B}_{\mathrm{n}} \mathrm{z}\right) \cdot \mathrm{d}(\mathrm{z}, \mathrm{z})\right\} \\
& =c_{1} \cdot \max \left\{0,0, d\left(z, T_{n} B_{n} z\right), 0,0\right\} \\
& <\mathrm{d}\left(\mathrm{z}, \mathrm{~T}_{\mathrm{n}} \mathrm{~B}_{\mathrm{n}} \mathrm{z}\right) \quad\left(\text { Since } 0 \leq \mathrm{c}_{1}<1\right)
\end{aligned}
$$

Which is a contradiction.
Thus $\mathrm{T}_{\mathrm{n}} \mathrm{B}_{\mathrm{n}} \mathrm{z}=\mathrm{z}$.
Hence $T_{n} w=z$. $\quad\left(\right.$ Since $\left.B_{n} z=w\right)$
Now we prove $A_{n} T_{n} w=w$.
Suppose $A_{n} T_{n} w \neq w$.

$$
\begin{aligned}
& \mathrm{e}\left(\mathrm{w}, \mathrm{~A}_{\mathrm{n}} \mathrm{~T}_{\mathrm{n}} \mathrm{w}\right)=\lim _{n \rightarrow \infty} \mathrm{e}\left(\mathrm{y}_{2 \mathrm{n}}, \mathrm{~A}_{\mathrm{n}} \mathrm{~T}_{\mathrm{n}} \mathrm{w}\right) \\
& =\lim _{n \rightarrow \infty} \mathrm{e}\left(\mathrm{~B}_{\mathrm{n}} \mathrm{~S}_{\mathrm{n}} \mathrm{y}_{2 \mathrm{n}-1}, \mathrm{~A}_{\mathrm{n}} \mathrm{~T}_{\mathrm{n}} \mathrm{w}\right) \\
& \leq \lim _{n \rightarrow \infty} \mathrm{c}_{2} . \max \left\{\mathrm{e}\left(\mathrm{y}_{2 \mathrm{n}-1}, \mathrm{w}\right), \mathrm{e}\left(\mathrm{y}_{2 \mathrm{n}-1}, \mathrm{~B}_{\mathrm{n}} \mathrm{~S}_{\mathrm{n}} \mathrm{y}_{2 \mathrm{n}-1}\right)\right. \text {, } \\
& \mathrm{e}\left(\mathrm{w}, \mathrm{~A}_{\mathrm{n}} \mathrm{~T}_{\mathrm{n}} \mathrm{w}\right), \mathrm{d}\left(\mathrm{~S}_{\mathrm{n}} \mathrm{y}_{2 \mathrm{n}-1}, \mathrm{~T}_{\mathrm{n}} \mathrm{w}\right) \text {, } \\
& \left.e\left(y_{2 n-1}, A_{n} T_{n} w\right) . e\left(B_{n} S_{n} y_{2 n-1}, w\right)\right\}
\end{aligned}
$$

$$
\begin{array}{r}
=c_{2} \cdot \max \left\{\mathrm{e}(\mathrm{w}, \mathrm{w}), \mathrm{e}(\mathrm{w}, \mathrm{w}), \mathrm{e}\left(\mathrm{w}, \mathrm{~A}_{\mathrm{n}} \mathrm{~T}_{\mathrm{n}} \mathrm{w}\right), \mathrm{d}(\mathrm{z}, \mathrm{z}),\right. \\
\left.\mathrm{e}\left(\mathrm{w}, \mathrm{~A}_{\mathrm{n}} \mathrm{~T}_{\mathrm{n}} \mathrm{w}\right) \cdot \mathrm{e}(\mathrm{w}, \mathrm{w})\right\} \\
<\mathrm{e}\left(\mathrm{w}, \mathrm{~A}_{\mathrm{n}} \mathrm{~T}_{\mathrm{n}} \mathrm{w}\right)\left(\text { Since } 0 \leq \mathrm{c}_{2}<1\right)
\end{array}
$$

Which is a contradiction.
Thus $\mathrm{A}_{\mathrm{n}} \mathrm{T}_{\mathrm{n}} \mathrm{W}=\mathrm{w}$.
The same results hold if one of the mappings $\left\{B_{n}\right\},\left\{S_{n}\right\}$ and $\left\{T_{n}\right\}$ is continuous.
So the point z is the common fixed point of $\left\{\mathrm{S}_{\mathrm{n}} \mathrm{A}_{\mathrm{n}}\right\}$ and $\left\{T_{n} B_{n}\right\}$. Similarly we prove w is a common fixed point of $\left\{B_{n} S_{n}\right\}$ and $\left\{A_{n} T_{n}\right\}$.
Remark :2.2 : If we put $\mathrm{A}_{\mathrm{i}}=\mathrm{A}, \mathrm{B}_{\mathrm{j}}=\mathrm{B}, \mathrm{S}_{\mathrm{p}}=\mathrm{S}$ and $\mathrm{T}_{\mathrm{q}}=\mathrm{T}$ in the above theorem 2.1, we get the following corollary.
Corollory 2.3: Let (X, d) and (Y, e) be complete metric spaces.
Let A, B be mappings of X into Y and S , T be mappings of Y into X satisfying the inequalities.
$\mathrm{d}\left(\mathrm{SAx}, \mathrm{TB} \mathrm{x}^{\prime}\right) \leq \mathrm{c}_{1} . \max \left\{\mathrm{d}\left(\mathrm{x}, \mathrm{x}^{\prime}\right), \mathrm{d}(\mathrm{x}, \mathrm{SAx}), \mathrm{d}\left(\mathrm{x}^{\prime}, \mathrm{TB} \mathrm{x}^{\prime}\right)\right.$, $\left.e\left(A x, B x^{\prime}\right), d\left(x, T B x^{\prime}\right) \cdot d\left(S A x, x^{\prime}\right)\right\}$
$e\left(B S y, A T y^{\prime}\right) \leq c_{2} \cdot \max \left\{\mathrm{e}\left(\mathrm{y}, \mathrm{y}^{\prime}\right), \mathrm{e}(\mathrm{y}, \mathrm{BSy}), \mathrm{e}\left(\mathrm{y}^{\prime}, \mathrm{ATy}^{\prime}\right)\right.$,

$$
\text { d(Sy,Ty'), e(y, ATy').e(BSy , } \left.\left.\mathrm{y}^{\prime}\right)\right\}-
$$

for all $\mathrm{x}, \mathrm{x}^{\prime}$ in X and $\mathrm{y}, \mathrm{y}^{\prime}$ in Y where $0 \leq \mathrm{c}_{1}<1$ and $0 \leq \mathrm{c}_{2}<1$. If one of the mappings $\mathrm{A}, \mathrm{B}, \mathrm{S}$ and T is continuous, then SA and TB have a common fixed point z in X and BS and AT have a common fixed point w in Y. Further, $\mathrm{Az}=\mathrm{Bz}=\mathrm{w}$ and $\mathrm{Sw}=\mathrm{Tw}=\mathrm{z}$.
Theorem 2.4: Let (X, d) and (Y, e) be complete metric spaces. Let $\left\{A_{n}\right\},\left\{B_{n}\right\}(n \in N)$ be sequence of mappings of X into Y and $\left\{S_{n}\right\},\left\{T_{n}\right\},(n \in N)$ be sequence of mappings of Y into X satisfying the inequalities.
$\mathrm{d}\left(\mathrm{S}_{\mathrm{p}} \mathrm{A}_{\mathrm{i}} \mathrm{x}, \mathrm{T}_{\mathrm{q}} \mathrm{B}_{\mathrm{j}} \mathrm{x}^{\prime}\right) \leq \mathrm{c}_{1} . \max \left\{\mathrm{d}\left(\mathrm{x}, \mathrm{x}^{\prime}\right), \mathrm{d}\left(\mathrm{x}, \mathrm{S}_{\mathrm{p}} \mathrm{A}_{\mathrm{i}} \mathrm{x}\right), \mathrm{d}\left(\mathrm{x}^{\prime}, \mathrm{T}_{\mathrm{q}} \mathrm{B}_{\mathrm{j}} \mathrm{x}^{\prime}\right)\right.$,

$$
\begin{array}{r}
\mathrm{e}\left(\mathrm{~A}_{\mathrm{i}} \mathrm{x}, \mathrm{~B}_{\mathrm{j}} \mathrm{x}^{\prime}\right), \frac{d\left(x, T_{q} B_{j} x^{\prime}\right)}{2} \\
\left.\frac{d\left(S_{p} A_{i} x, x^{\prime}\right)}{2}\right\}--(2.4 .1)
\end{array}
$$

$e\left(B_{j} S_{p} y, A_{i} T_{q} y^{\prime}\right) \leq c_{2} . \max \left\{e\left(y, y^{\prime}\right), e\left(y, B_{j} S_{p} y\right), e\left(y^{\prime}, A_{i} T_{q} y^{\prime}\right)\right.$,

$$
\begin{aligned}
& \mathrm{d}\left(\mathrm{~S}_{\mathrm{p}} \mathrm{y}, \mathrm{~T}_{\mathrm{q}} \mathrm{y}^{\prime}\right), \frac{e\left(y, A_{i} T_{q} y^{\prime}\right)}{2} \\
& \left.\frac{e\left(B_{j} S_{p} y, y^{\prime}\right)}{2}\right\}--(2.4 .2)
\end{aligned}
$$

for all $\mathrm{i} \neq \mathrm{j} \neq \mathrm{p} \neq \mathrm{q}, \mathrm{x}, \mathrm{x}^{\prime}$ in X and $\mathrm{y}, \mathrm{y}^{\prime}$ in Y where $0 \leq \mathrm{c}_{1}<1$ and $0 \leq \mathrm{c}_{2}<1$. If one of the mappings $\left\{\mathrm{A}_{\mathrm{n}}\right\},\left\{\mathrm{B}_{\mathrm{n}}\right\},\left\{\mathrm{S}_{\mathrm{n}}\right\}$ and $\left\{T_{n}\right\}$ is continuous, then $\left\{S_{n} A_{n}\right\}$ and $\left\{T_{n} B_{n}\right\}$ have a unique common fixed point z in X and $\left\{B_{n} S_{n}\right\}$ and $\left\{A_{n} T_{n}\right\}$ have a unique common fixed point win Y. Further, $\left\{A_{n}\right\} z=\left\{B_{n}\right\} z=$ w and $\left\{S_{n}\right\} w=\left\{T_{n}\right\} w=z$.

Proof: Let x_{0} be an arbitrary point in X and we define the sequences $\left\{x_{n}\right\}$ in X and $\left\{y_{n}\right\}$ in Y by

$$
\begin{aligned}
& \mathrm{A}_{\mathrm{n}} \mathrm{x}_{2 \mathrm{n}-2}=\mathrm{y}_{2 \mathrm{n}-1}, \mathrm{~S}_{\mathrm{n}} \mathrm{y}_{2 \mathrm{n}-1}=\mathrm{x}_{2 \mathrm{n}-1}, \mathrm{~B}_{\mathrm{n}} \mathrm{x}_{2 \mathrm{n}-1}=\mathrm{y}_{2 \mathrm{n} ;}, \mathrm{T}_{\mathrm{n}} \mathrm{y}_{2 \mathrm{n}}=\mathrm{x}_{2 \mathrm{n}} \\
& \text { for } \mathrm{n}=1,2,3 \ldots .
\end{aligned}
$$

Now we have

$$
\begin{aligned}
& \mathrm{d}\left(\mathrm{x}_{2 \mathrm{n}+1}, \mathrm{x}_{2 \mathrm{n}}\right)= \mathrm{d}\left(\mathrm{~S}_{\mathrm{n}} \mathrm{~A}_{\mathrm{n}} \mathrm{x}_{2 \mathrm{n}}, \mathrm{~T}_{\mathrm{n}} \mathrm{~B}_{\mathrm{n}} \mathrm{x}_{2 \mathrm{n}-1}\right) \\
& \leq \mathrm{c}_{1} \cdot \max \left\{\mathrm{~d}\left(\mathrm{x}_{2 \mathrm{n}}, \mathrm{x}_{2 \mathrm{n}-1}\right), \mathrm{d}\left(\mathrm{x}_{2 \mathrm{n}}, \mathrm{~S}_{\mathrm{n}} \mathrm{~A}_{\mathrm{n}} \mathrm{x}_{2 \mathrm{n}}\right),\right. \\
& \quad \mathrm{d}\left(\mathrm{x}_{2 \mathrm{n}-1}, \mathrm{~T}_{\mathrm{n}} \mathrm{~B}_{\mathrm{n}} \mathrm{x}_{2 \mathrm{n}-1}\right), \mathrm{e}\left(\mathrm{~A}_{\mathrm{n}} \mathrm{x}_{2 \mathrm{n}}, \mathrm{~B}_{\mathrm{n}} \mathrm{x}_{2 \mathrm{n}-1}\right), \\
&\left.\frac{d\left(x_{2 n}, T_{n} B_{n} x_{2 n-1}\right)}{2}, \frac{d\left(S_{n} A_{n} x_{2 n}, x_{2 n-1}\right)}{2}\right\} \\
&= \mathrm{c}_{1} \cdot \max \left\{\mathrm{~d}\left(\mathrm{x}_{2 \mathrm{n}}, \mathrm{x}_{2 \mathrm{n}-1}\right), \mathrm{d}\left(\mathrm{x}_{2 \mathrm{n}}, \mathrm{x}_{2 \mathrm{n}+1}\right), \mathrm{d}\left(\mathrm{x}_{2 \mathrm{n}-1}, \mathrm{x}_{2 \mathrm{n}}\right),\right. \\
&\left.\mathrm{e}\left(\mathrm{y}_{2 \mathrm{n}+1}, \mathrm{y}_{2 \mathrm{n}}\right), \frac{d\left(x_{2 n}, x_{2 n}\right)}{2}, \frac{d\left(x_{2 n+1}, x_{2 n-1}\right)}{2}\right\} \\
& \leq \mathrm{c}_{1} \cdot \max \left\{\mathrm{~d}\left(\mathrm{x}_{2 \mathrm{n}}, \mathrm{x}_{2 \mathrm{n}-1}\right), \mathrm{d}\left(\mathrm{x}_{2 \mathrm{n}}, \mathrm{x}_{2 \mathrm{n}+1}\right), \mathrm{d}\left(\mathrm{x}_{2 \mathrm{n}-1}, \mathrm{x}_{2 \mathrm{n}}\right),\right. \\
&\left.\mathrm{e}\left(\mathrm{y}_{2 \mathrm{n}+1}, \mathrm{y}_{2 \mathrm{n}}\right), \quad 0, \frac{\mathrm{~d}\left(\mathrm{x}_{2 \mathrm{n}+1}, \mathrm{x}_{2 \mathrm{n}}\right)+\mathrm{d}\left(\mathrm{x}_{2 \mathrm{n}}, \mathrm{x}_{2 \mathrm{n}-1}\right)}{2}\right\} \\
& \leq\left.\mathrm{c}_{1} . \max \left\{\mathrm{d}\left(\mathrm{x}_{2 \mathrm{n}-1}, \mathrm{x}_{2 \mathrm{n}}\right), \mathrm{e}\left(\mathrm{y}_{2 \mathrm{n}+1}, \mathrm{y}_{2 \mathrm{n}}\right)\right\}------2.4 .3\right)
\end{aligned}
$$

Now

$$
\begin{aligned}
\mathrm{e}\left(\mathrm{y}_{2 \mathrm{n}}, \mathrm{y}_{2 \mathrm{n}+1}\right)= & \mathrm{e}\left(\mathrm{~B}_{n} \mathrm{~S}_{\mathrm{n}} \mathrm{y}_{2 \mathrm{n}-1}, \mathrm{~A}_{\mathrm{n}} \mathrm{~T}_{\mathrm{n}} \mathrm{y}_{2 \mathrm{n}}\right) \\
\leq & \mathrm{c}_{2} \cdot \max \left\{\mathrm{e}\left(\mathrm{y}_{2 \mathrm{n}-1}, \mathrm{y}_{2 \mathrm{n}}\right), \mathrm{e}\left(\mathrm{y}_{2 \mathrm{n}-1}, \mathrm{~B}_{\mathrm{n}} \mathrm{~S}_{\mathrm{n}} \mathrm{y}_{2 \mathrm{n}-1}\right),\right. \\
& \quad \mathrm{e}\left(\mathrm{y}_{2 \mathrm{n}}, \mathrm{~A}_{\mathrm{n}} \mathrm{~T}_{\mathrm{n}} \mathrm{y}_{2 \mathrm{n}}\right), \mathrm{d}\left(\mathrm{~S}_{\mathrm{n}} \mathrm{y}_{2 \mathrm{n}-1}, \mathrm{~T}_{\mathrm{n}} \mathrm{y}_{2 \mathrm{n}}\right), \\
& \left.\frac{\mathrm{e}\left(\mathrm{y}_{2 \mathrm{n}-1}, \mathrm{~A}_{\mathrm{n}} \mathrm{~T}_{\mathrm{n}} y_{2 \mathrm{n}}\right)}{2}, \frac{\mathrm{e}\left(\mathrm{~B}_{\mathrm{n}} \mathrm{~S}_{\mathrm{n}} \mathrm{y}_{2 \mathrm{n}-1}, y_{2 n}\right)}{2}\right\} \\
= & \mathrm{c}_{2} \cdot \max \left\{\mathrm{e}\left(\mathrm{y}_{2 \mathrm{n}-1}, \mathrm{y}_{2 \mathrm{n}}\right), \mathrm{e}\left(\mathrm{y}_{2 \mathrm{n}-1}, \mathrm{y}_{2 \mathrm{n}}\right), \mathrm{e}\left(\mathrm{y}_{2 \mathrm{n}}, \mathrm{y}_{2 \mathrm{n}+1}\right),\right.
\end{aligned}
$$

$$
\left.\mathrm{d}\left(\mathrm{x}_{2 \mathrm{n}-1}, \mathrm{x}_{2 \mathrm{n}}\right), \frac{\mathrm{e}\left(\mathrm{y}_{2 \mathrm{n}-1}, \mathrm{y}_{2 \mathrm{n}+1}\right)}{2}, \frac{\mathrm{e}\left(\mathrm{y}_{2 \mathrm{n}}, \mathrm{y}_{2 \mathrm{n}}\right)}{2}\right\}
$$

$$
=\mathrm{c}_{2} \cdot \max \left\{\mathrm{e}\left(\mathrm{y}_{2 \mathrm{n}-1}, \mathrm{y}_{2 \mathrm{n}}\right), \mathrm{e}\left(\mathrm{y}_{2 \mathrm{n}-1}, \mathrm{y}_{2 \mathrm{n}}\right), \mathrm{e}\left(\mathrm{y}_{2 \mathrm{n}}, \mathrm{y}_{2 \mathrm{n}+1}\right),\right.
$$

$$
\left.\mathrm{d}\left(\mathrm{x}_{2 \mathrm{n}-1}, \mathrm{x}_{2 \mathrm{n}}\right), \frac{\mathrm{e}\left(\mathrm{y}_{2 \mathrm{n}-1}, \mathrm{y}_{2 \mathrm{n}}\right)+\mathrm{e}\left(\mathrm{y}_{2 \mathrm{n}}, \mathrm{y}_{2 \mathrm{n}+1}\right)}{2}, 0\right\}
$$

$$
\leq \mathrm{c}_{2} \cdot \max \left\{\mathrm{e}\left(\mathrm{y}_{2 \mathrm{n}-1}, \mathrm{y}_{2 \mathrm{n}}\right), \mathrm{d}\left(\mathrm{x}_{2 \mathrm{n}-1}, \mathrm{x}_{2 \mathrm{n}}\right)\right\}-\cdots--(2.4 .4)
$$

we have

$$
\mathrm{d}\left(\mathrm{x}_{2 \mathrm{n}}, \mathrm{x}_{2 \mathrm{n}-1}\right)=\mathrm{d}\left(\mathrm{x}_{2 \mathrm{n}-1}, \mathrm{x}_{2 \mathrm{n}}\right)
$$

$$
\begin{aligned}
& =d\left(S_{n} A_{n} x_{2 n-2}, T_{n} B_{n} x_{2 n-1}\right) \\
& \leq c_{1} \cdot \max \left\{d\left(x_{2 n-2}, x_{2 n-1}\right), d\left(x_{2 n-2}, S_{n} A_{n} x_{2 n-2}\right),\right. \\
& \quad d\left(x_{2 n-1}, T_{n} B_{n} x_{2 n-1}\right), e\left(A_{n} x_{2 n-2}, B_{n} x_{2 n-1}\right), \\
& \left.\frac{d\left(x_{2 n-2},\right.}{}, T_{n} B_{n} x_{2 n-1}\right) \\
& =c_{1} \cdot \max \left\{d\left(\mathrm{~d}_{2 n-2}, \mathrm{x}_{2 n-1}\right), d\left(\mathrm{~A}_{2 n-2} x_{2 n-2}, x_{2 n-1}\right)\right. \\
& \\
& d\left(x_{2 n-1}, x_{2 n}\right), e\left(y_{2 n-1}, y_{2 n}\right), \\
& \\
& \left.\frac{d\left(x_{2 n-2}, x_{2 n}\right)}{2}, \frac{d\left(x_{2 n-1}, x_{2 n-1}\right)}{2}\right\} \\
& =c_{1} \cdot \max \left\{d\left(x_{2 n-2}, x_{2 n-1}\right), d\left(x_{2 n-2}, x_{2 n-1}\right),\right. \\
& d\left(x_{2 n-1}, x_{2 n}\right), e\left(y_{2 n-1}, y_{2 n}\right), \\
&
\end{aligned}
$$

$$
\leq \mathrm{c}_{1} \cdot \max \left\{\mathrm{~d}\left(\mathrm{x}_{2 \mathrm{n}-2}, \mathrm{x}_{2 \mathrm{n}-1}\right), \mathrm{e}\left(\mathrm{y}_{2 \mathrm{n}-1}, \mathrm{y}_{2 \mathrm{n}} \mathrm{n}\right)\right\} \cdots-\cdots--(2.4 .5)
$$

Now
$\leq c_{2}$. $\max \left\{\mathrm{e}\left(\mathrm{y}_{2 \mathrm{n}-1}, \mathrm{y}_{2 \mathrm{n}-2}\right), \mathrm{e}\left(\mathrm{y}_{2 \mathrm{n}-1}, \mathrm{y}_{2 \mathrm{n}}\right)\right.$,

$$
\mathrm{e}\left(\mathrm{y}_{2 \mathrm{n}-2}, \mathrm{y}_{2 \mathrm{n}-1}\right), \mathrm{d}\left(\mathrm{x}_{2 \mathrm{n}-1}, \mathrm{x}_{2 \mathrm{n}-2}\right), 0
$$

$$
\left.\frac{\mathrm{e}\left(\mathrm{y}_{2 \mathrm{n}}, \mathrm{y}_{2 \mathrm{n}-1}\right)+\mathrm{e}\left(\mathrm{y}_{2 \mathrm{n}-1}, \mathrm{y}_{2 \mathrm{n}-2}\right)}{2}\right\}
$$

$\left.\leq \mathrm{c}_{2} . \max \left\{\mathrm{e}\left(\mathrm{y}_{2 \mathrm{n}-1}, \mathrm{y}_{2 \mathrm{n}-2}\right), \mathrm{d}\left(\mathrm{x}_{2 \mathrm{n}-1}, \mathrm{x}_{2 \mathrm{n}-2}\right)\right\}-----2.4 .6\right)$ from inequalities (2.4.3), (2.4.4), (2.4.5) and (2.4.6), we have $\mathrm{d}\left(\mathrm{x}_{\mathrm{n}+1}, \mathrm{x}_{\mathrm{n}}\right) \leq \mathrm{c}_{1}{ }^{\mathrm{n}} \mathrm{c}_{2}{ }^{\mathrm{n}-1} \cdot \max \left\{\mathrm{~d}\left(\mathrm{x}_{1}, \mathrm{x}_{0}\right), \mathrm{e}\left(\mathrm{y}_{1}, \mathrm{y}_{2}\right)\right\} \rightarrow 0$ as $\mathrm{n} \rightarrow \infty$ Thus $\left\{X_{n}\right\}$ is a Cauchy sequence in (X,d). Since (X,d) is complete, $\left\{\mathrm{x}_{\mathrm{n}}\right\}$ converges to a point z in X . Similarly using inequalities (2.4.3), (2.4.4), (2.4.5) and (2.4.6), we prove $\left\{y_{n}\right\}$ is a Cauchy sequence in (Y, e) with the limit w in Y .
$\mathrm{d}\left(\mathrm{x}_{\mathrm{n}+1}, \mathrm{x}_{\mathrm{n}}\right) \leq \mathrm{c}_{1}\left(\mathrm{c}_{2}\right)^{\mathrm{n}} . \max \left\{\mathrm{d}\left(\mathrm{x}_{1}, \mathrm{x}_{0}\right), \mathrm{e}\left(\mathrm{y}_{1}, \mathrm{y}_{2}\right)\right\} \rightarrow 0$ as $\mathrm{n} \rightarrow \infty$

$$
\begin{aligned}
& e\left(y_{2 n}, y_{2 n-1}\right)=e\left(B_{n} S_{n} y_{2 n-1}, A_{n} T_{n} y_{2 n-2}\right) \\
& \leq \mathrm{c}_{2} . \max \left\{\mathrm{e}\left(\mathrm{y}_{2 \mathrm{n}-1}, \mathrm{y}_{2 \mathrm{n}-2}\right), \mathrm{e}\left(\mathrm{y}_{2 \mathrm{n}-1}, \mathrm{~B}_{\mathrm{n}} \mathrm{~S}_{\mathrm{n}} \mathrm{y}_{2 \mathrm{n}-1}\right),\right. \\
& e\left(y_{2 n-2}, A_{n} T_{n} y_{2 n-2}\right), d\left(S_{n} y_{2 n-1}, T_{n} y_{2 n-2}\right), \\
& \left.\frac{\mathrm{e}\left(\mathrm{y}_{2 \mathrm{n}-1}, \mathrm{~A}_{\mathrm{n}} \mathrm{~T}_{\mathrm{n}} \mathrm{y}_{2 \mathrm{n}-2}\right)}{2}, \frac{\mathrm{e}\left(\mathrm{~B}_{\mathrm{n}} \mathrm{~S}_{\mathrm{n}} \mathrm{y}_{2 \mathrm{n}-1}, \mathrm{y}_{2 \mathrm{n}-2}\right)}{2}\right\} \\
& =c_{2} \cdot \max \left\{e\left(y_{2 n-1}, y_{2 n-2}\right), \quad e\left(y_{2 n-1}, y_{2 n}\right),\right. \\
& e\left(y_{2 n-2}, y_{2 n-1}\right), d\left(x_{2 n-1}, x_{2 n-2}\right), \\
& \left.\frac{\mathrm{e}\left(\mathrm{y}_{2 \mathrm{n}-1}, \mathrm{y}_{2 \mathrm{n}-1}\right)}{2}, \frac{\mathrm{e}\left(\mathrm{y}_{2 \mathrm{n}}, \mathrm{y}_{2 \mathrm{n}-2}\right)}{2}\right\}
\end{aligned}
$$

Thus $\left\{x_{n}\right\}$ is a Cauchy sequence in (X, d). Since (X, d) is complete, $\left\{\mathrm{x}_{\mathrm{n}}\right\}$ converges to a point z in X . Similarly using inequalities (2.4.4) and (2.4.6), we prove $\left\{y_{n}\right\}$ is a Cauchy sequence in (Y,e) with the limit w in Y .
Suppose A is continuous, then

$$
\lim _{n \rightarrow \infty} \mathrm{~A}_{\mathrm{n}} \mathrm{X}_{2 \mathrm{n}}=\mathrm{A}_{\mathrm{n}} \mathrm{z}=\lim _{n \rightarrow \infty} \mathrm{y}_{2 \mathrm{n}+1}=\mathrm{w}
$$

Now we prove $\mathrm{S}_{\mathrm{n}} \mathrm{A}_{\mathrm{n}} \mathrm{z}=\mathrm{z}$.
Suppose $\mathrm{S}_{\mathrm{n}} \mathrm{A}_{\mathrm{n}} \mathrm{z} \neq \mathrm{z}$.
We have

$$
\begin{aligned}
& \mathrm{d}\left(\mathrm{~S}_{\mathrm{n}} \mathrm{~A}_{\mathrm{n}} \mathrm{Z}, \mathrm{z}\right)=\lim _{n \rightarrow \infty} \mathrm{~d}\left(\mathrm{~S}_{\mathrm{n}} \mathrm{~A}_{\mathrm{n}} \mathrm{z}, \mathrm{~T}_{\mathrm{n}} \mathrm{~B}_{\mathrm{n}} \mathrm{X}_{2 \mathrm{n}-1}\right) \\
& \leq \lim _{n \rightarrow \infty} \mathrm{c}_{1} \cdot \max \left\{\mathrm{~d}\left(\mathrm{z}, \mathrm{x}_{2 \mathrm{n}-1}\right), \mathrm{d}\left(\mathrm{z}, \mathrm{~S}_{\mathrm{n}} \mathrm{~A}_{\mathrm{n}} \mathrm{z}\right),\right. \\
& \mathrm{d}\left(\mathrm{X}_{2 \mathrm{n}-1}, \mathrm{~T}_{\mathrm{n}} \mathrm{~B}_{\mathrm{n}} \mathrm{X}_{2 \mathrm{n}-1}\right), \mathrm{e}\left(\mathrm{~A}_{\mathrm{n}} \mathrm{z}, \mathrm{~B}_{\mathrm{n}} \mathrm{X}_{2 \mathrm{n}-1}\right) \text {, } \\
& \left.\frac{d\left(z, T_{n} B_{n} x_{2 n-1}\right)}{2}, \frac{d\left(S_{n} A_{n} z, x_{2 n-1}\right)}{2}\right\} \\
& =\lim _{n \rightarrow \infty} \mathrm{c}_{1} \cdot \max \left\{\mathrm{~d}\left(\mathrm{z}, \mathrm{x}_{2 \mathrm{n}-1}\right), \mathrm{d}\left(\mathrm{z}, \mathrm{~S}_{\mathrm{n}} \mathrm{~A}_{\mathrm{n}} \mathrm{z}\right),\right. \\
& \mathrm{d}\left(\mathrm{x}_{2 \mathrm{n}-1}, \mathrm{x}_{2 \mathrm{n}}\right), \mathrm{e}\left(\mathrm{~A}_{\mathrm{n}} \mathrm{z}, \mathrm{y}_{2 \mathrm{n}}\right), \frac{\mathrm{d}\left(\mathrm{z}, \mathrm{x}_{2 \mathrm{n}}\right)}{2}, \\
& \left.\frac{\mathrm{~d}\left(\mathrm{~S}_{\mathrm{n}} \mathrm{~A}_{\mathrm{n}} \mathrm{z}, \mathrm{x}_{2 \mathrm{n}-1}\right)}{2}\right\} \\
& =c_{1} \cdot \max \left\{d\left(z, x_{2 n-1}\right), d\left(z, S_{n} A_{n} z\right), d(z, z),\right. \\
& \left.\mathrm{e}(\mathrm{w}, \mathrm{w}), \frac{\mathrm{d}(\mathrm{z}, \mathrm{z})}{2}, \frac{\mathrm{~d}\left(\mathrm{~S}_{\mathrm{n}} \mathrm{~A}_{\mathrm{n}} \mathrm{z}, \mathrm{z}\right)}{2}\right\} \\
& =c_{1} . \max \left\{d\left(z, x_{2 n-1}\right), d\left(z, S_{n} A_{n} z\right), 0,0,0,\right. \\
& \left.\frac{\mathrm{d}\left(\mathrm{~S}_{\mathrm{n}} \mathrm{~A}_{\mathrm{n}} \mathrm{z}, \mathrm{z}\right)}{2}\right\} \\
& \leq \mathrm{c}_{1} \cdot \mathrm{~d}\left(\mathrm{z}, \mathrm{~S}_{\mathrm{n}} \mathrm{~A}_{\mathrm{n}} \mathrm{z}\right) \\
& <\mathrm{d}\left(\mathrm{z}, \mathrm{~S}_{\mathrm{n}} \mathrm{~A}_{\mathrm{n}} \mathrm{z}\right) \quad\left(\text { Since } 0 \leq \mathrm{c}_{1}<1\right)
\end{aligned}
$$

Which is a contradiction.
Thus $\mathrm{S}_{\mathrm{n}} \mathrm{A}_{\mathrm{n}} \mathrm{z}=\mathrm{z}$.
Hence $\mathrm{S}_{\mathrm{n}} \mathrm{w}=\mathrm{z}$. $\quad\left(\right.$ Since $\left.\mathrm{A}_{\mathrm{n}} \mathrm{z}=\mathrm{w}\right)$
Now we prove $B_{n} S_{n} w=w$.
Suppose $\mathrm{B}_{\mathrm{n}} \mathrm{S}_{\mathrm{n}} \mathrm{w} \neq \mathrm{w}$.
We have

$$
\mathrm{e}\left(\mathrm{~B}_{\mathrm{n}} \mathrm{~S}_{\mathrm{n}} \mathrm{w}, \mathrm{w}\right)=\lim _{n \rightarrow \infty} \mathrm{e}\left(\mathrm{~B}_{\mathrm{n}} \mathrm{~S}_{\mathrm{n}} \mathrm{w}, \mathrm{y}_{2 \mathrm{n}+1}\right)
$$

$$
\begin{aligned}
& =\lim _{n \rightarrow \infty} \mathrm{e}\left(\mathrm{~B}_{\mathrm{n}} \mathrm{~S}_{\mathrm{n}} \mathrm{w}, \mathrm{~A}_{\mathrm{n}} \mathrm{~T}_{\mathrm{n}} \mathrm{y}_{2 \mathrm{n}}\right) \\
& \leq \lim _{n \rightarrow \infty} \mathrm{c}_{2} \max \left\{\mathrm{e}\left(\mathrm{w}, \mathrm{y}_{2 \mathrm{n}}\right), \mathrm{e}\left(\mathrm{w}, \mathrm{~B}_{\mathrm{n}} \mathrm{~S}_{\mathrm{n}} \mathrm{w}\right),\right. \\
& \\
& \quad \mathrm{e}\left(\mathrm{y}_{2 \mathrm{n}}, \mathrm{~A}_{\mathrm{n}} \mathrm{~T}_{\mathrm{n}} \mathrm{y}_{2 \mathrm{n}}\right), \mathrm{d}\left(\mathrm{~S}_{\mathrm{n}} \mathrm{w}, \mathrm{~T}_{\mathrm{n}} \mathrm{y}_{2 \mathrm{n}}\right), \\
& \\
& \left.\frac{\mathrm{e}\left(\mathrm{w}, \mathrm{AT}_{2 \mathrm{n}}\right)}{2}, \frac{\mathrm{e}\left(\mathrm{BSw}, \mathrm{y}_{2 \mathrm{n}}\right)}{2}\right\} \\
& =\mathrm{c}_{2} \cdot \max \left\{\mathrm{e}\left(\mathrm{w}, \mathrm{y}_{2 \mathrm{n}}\right),\left(\mathrm{w}, \mathrm{~B}_{\mathrm{n}} \mathrm{~S}_{\mathrm{n}} \mathrm{w}\right), \mathrm{e}(\mathrm{w}, \mathrm{w}),\right. \\
& \left.\quad \mathrm{d}(\mathrm{z}, \mathrm{z}), \frac{\mathrm{e}(\mathrm{w}, \mathrm{w})}{2}, \frac{\mathrm{e}(\mathrm{BSw}, \mathrm{w})}{2}\right\} \\
& <\mathrm{e}\left(\mathrm{w}, \mathrm{~B}_{\mathrm{n}} \mathrm{~S}_{\mathrm{n}} \mathrm{w}\right) \quad\left(\text { Since } 0 \leq \mathrm{c}_{2}<1\right)
\end{aligned}
$$

Which is a contradiction.
Thus $\mathrm{B}_{\mathrm{n}} \mathrm{S}_{\mathrm{n}} \mathrm{w}=\mathrm{w}$.
Hence $B_{n} z=w$. $\left(\right.$ Since $\left.S_{n} w=z\right)$
Now we prove $\mathrm{T}_{\mathrm{n}} \mathrm{B}_{\mathrm{n}} \mathrm{z}=\mathrm{z}$.
Suppose $\mathrm{T}_{\mathrm{n}} \mathrm{B}_{\mathrm{n}} \mathrm{Z} \neq \mathrm{z}$.

$$
\begin{aligned}
\mathrm{d}(\mathrm{z}, \mathrm{TBz}) & =\lim _{n \rightarrow \infty} \mathrm{~d}\left(\mathrm{x}_{2 \mathrm{n}+1}, \mathrm{~T}_{\mathrm{n}} \mathrm{~B}_{\mathrm{n}} \mathrm{z}\right) \\
& =\lim _{n \rightarrow \infty} \mathrm{~d}\left(\mathrm{~S}_{\mathrm{n}} \mathrm{~A}_{\mathrm{n}} \mathrm{x}_{2 \mathrm{n}}, \mathrm{~T}_{\mathrm{n}} \mathrm{~B}_{\mathrm{n}} \mathrm{z}\right) \\
& \leq \lim _{n \rightarrow \infty} \mathrm{c}_{1} \cdot \max \left\{\mathrm{~d}\left(\mathrm{x}_{2 \mathrm{n}}, \mathrm{z}\right), \mathrm{d}\left(\mathrm{x}_{2 \mathrm{n}}, \mathrm{~S}_{\mathrm{n}} \mathrm{~A}_{\mathrm{n}} \mathrm{x}_{2 \mathrm{n}}\right),\right.
\end{aligned}
$$

$$
\mathrm{d}\left(\mathrm{z}, \mathrm{~T}_{\mathrm{n}} \mathrm{~B}_{\mathrm{n}} \mathrm{z}\right), \mathrm{e}\left(\mathrm{Ax}_{2 \mathrm{n}}, \mathrm{~B}_{\mathrm{n}} \mathrm{z}\right),
$$

$$
\left.\frac{\mathrm{d}\left(\mathrm{x}_{2 \mathrm{n}}, \mathrm{TBz}\right)}{2}, \frac{\mathrm{~d}\left(\mathrm{SAx}_{2 \mathrm{n}}, \mathrm{z}\right)}{2}\right\}
$$

$$
=\mathrm{c}_{1} \cdot \max \left\{\mathrm{~d}(\mathrm{z}, \mathrm{z}), \mathrm{d}(\mathrm{z}, \mathrm{z}), \mathrm{d}\left(\mathrm{z}, \mathrm{~T}_{\mathrm{n}} \mathrm{~B}_{\mathrm{n}} \mathrm{z}\right),\right.
$$

$$
\left.\mathrm{e}\left(\mathrm{w}, \mathrm{~B}_{\mathrm{n}} \mathrm{z}\right), \frac{\mathrm{d}(\mathrm{z}, \mathrm{TBz})}{2}, \frac{\mathrm{~d}(\mathrm{z}, \mathrm{z})}{2}\right\}
$$

$$
=\mathrm{c}_{1} \cdot \max \left\{0,0, \mathrm{~d}\left(\mathrm{z}, \mathrm{~T}_{\mathrm{n}} \mathrm{~B}_{\mathrm{n}} \mathrm{z}\right), 0, \frac{\mathrm{~d}(\mathrm{z}, \mathrm{TBz})}{2}, 0\right\}
$$

$$
<\mathrm{d}\left(\mathrm{z}, \mathrm{~T}_{\mathrm{n}} \mathrm{~B}_{\mathrm{n}} \mathrm{z}\right) \quad\left(\text { Since } 0 \leq \mathrm{c}_{1}<1\right)
$$

Which is a contradiction.
Thus $\mathrm{T}_{\mathrm{n}} \mathrm{B}_{\mathrm{n}} \mathrm{z}=\mathrm{z}$.
Hence $T_{n} w=z$. $\quad\left(\right.$ Since $\left.B_{n} z=w\right)$
Now we prove $A_{n} T_{n} w=w$.
Suppose $A_{n} T_{n} W \neq w$.

$$
\begin{aligned}
\mathrm{e}\left(\mathrm{w}, \mathrm{~A}_{\mathrm{n}} \mathrm{~T}_{\mathrm{n}} \mathrm{w}\right) & =\lim _{n \rightarrow \infty} \mathrm{e}\left(\mathrm{y}_{2 \mathrm{n}}, \mathrm{~A}_{\mathrm{n}} \mathrm{~T}_{\mathrm{n}} \mathrm{w}\right) \\
= & \lim _{n \rightarrow \infty} \mathrm{e}\left(\mathrm{~B}_{\mathrm{n}} \mathrm{~S}_{\mathrm{n}} \mathrm{y}_{2 \mathrm{n}-1}, \mathrm{~A}_{\mathrm{n}} \mathrm{~T}_{\mathrm{n}} \mathrm{w}\right)
\end{aligned}
$$

$$
\begin{aligned}
& \leq \lim _{n \rightarrow \infty} \mathrm{c}_{2} \cdot \max \left\{\mathrm{e}\left(\mathrm{y}_{2 \mathrm{n}-1}, \mathrm{w}\right), \mathrm{e}\left(\mathrm{y}_{2 \mathrm{n}-1}, \mathrm{~B}_{\mathrm{n}} \mathrm{~S}_{\mathrm{n}} \mathrm{y}_{2 \mathrm{n}-1}\right),\right. \\
& \mathrm{e}\left(\mathrm{w}, \mathrm{~A}_{\mathrm{n}} \mathrm{~T}_{\mathrm{n}} \mathrm{w}\right), \mathrm{d}\left(\mathrm{~S}_{\mathrm{n}} \mathrm{y}_{2 \mathrm{n}-1}, \mathrm{~T}_{\mathrm{n}} \mathrm{w}\right), \\
& \left.\frac{\mathrm{e}\left(\mathrm{y}_{2 \mathrm{n}-1}, \mathrm{~A}_{\mathrm{n}} \mathrm{~T}_{\mathrm{n}} \mathrm{w}\right)}{2}, \frac{\mathrm{e}\left(\mathrm{~B}_{\mathrm{n}} \mathrm{~S}_{\mathrm{n}} \mathrm{y}_{2 \mathrm{n}-1}, \mathrm{w}\right)}{2}\right\} \\
& =\mathrm{c}_{2} \cdot \max \left\{\mathrm{e}(\mathrm{w}, \mathrm{w}), \mathrm{e}(\mathrm{w}, \mathrm{w}), \mathrm{e}\left(\mathrm{w}, \mathrm{~A}_{\mathrm{n}} \mathrm{~T}_{\mathrm{n}} \mathrm{w}\right),\right.
\end{aligned}
$$

$$
\left.\mathrm{d}(\mathrm{z}, \mathrm{z}), \frac{\mathrm{e}\left(\mathrm{w}, \mathrm{~A}_{\mathrm{n}} \mathrm{~T}_{\mathrm{n}} \mathrm{w}\right)}{2}, \frac{\mathrm{e}(\mathrm{w}, \mathrm{w})}{2}\right\}
$$

$$
=c_{2} \cdot \max \left\{0,0, e\left(w, A_{n} T_{n} w\right), 0,\right.
$$

$$
\left.\frac{\mathrm{e}\left(\mathrm{w}, \mathrm{~A}_{\mathrm{n}} \mathrm{~T}_{\mathrm{n}} \mathrm{w}\right)}{2}, 0\right\}
$$

$<\mathrm{e}\left(\mathrm{w}, \mathrm{A}_{\mathrm{n}} \mathrm{T}_{\mathrm{n}} \mathrm{w}\right) \quad\left(\right.$ Since $\left.0 \leq \mathrm{c}_{2}<1\right)$
Which is a contradiction.
Thus $\mathrm{A}_{\mathrm{n}} \mathrm{T}_{\mathrm{n}} \mathrm{W}=\mathrm{w}$.
The same results hold if one of the mappings $\left\{B_{n}\right\},\left\{S_{n}\right\}$ and $\left\{\mathrm{T}_{\mathrm{n}}\right\}$ is continuous.
Uniqueness: Let z^{\prime} be another common fixed point of $\mathrm{S}_{\mathrm{n}} \mathrm{A}_{\mathrm{n}}$ and $T_{n} B_{n}$ in X, w^{\prime} be another common fixed point of $B_{n} S_{n}$ and $\mathrm{A}_{\mathrm{n}} \mathrm{T}_{\mathrm{n}}$ in Y .

We have $\mathrm{d}\left(\mathrm{z}, \mathrm{z}^{\prime}\right)=\mathrm{d}\left(\mathrm{S}_{\mathrm{n}} \mathrm{A}_{\mathrm{n}} \mathrm{z}, \mathrm{T}_{\mathrm{n}} \mathrm{B}_{\mathrm{n}} \mathrm{z}^{\prime}\right)$

$$
\begin{gathered}
\leq c_{1} \cdot \max \left\{d\left(z, z^{\prime}\right), d\left(z, S_{n} A_{n} z\right),\right. \\
d\left(z^{\prime}, T_{n} B_{n} z^{\prime}\right), e\left(A_{n} z, B_{n} z^{\prime}\right), \\
\\
\left.\frac{d\left(z, T_{n} B_{n} z^{\prime}\right)}{2}, \frac{d\left(S_{n} A_{n} z, z^{\prime}\right)}{2}\right\} \\
=c_{1} \cdot \max \left\{d\left(z, z^{\prime}\right), d(z, z), d\left(z^{\prime}, z^{\prime}\right),\right. \\
\left.e\left(w, w^{\prime}\right), \frac{d\left(z, z^{\prime}\right)}{2}, \frac{d\left(z, z^{\prime}\right)}{2}\right\} \\
=c_{1} \cdot \max \left\{d\left(z, z^{\prime}\right), d(z, z), d\left(z^{\prime}, z^{\prime}\right),\right. \\
e
\end{gathered}
$$

$$
\begin{aligned}
& =c_{2} \cdot \max \left\{\mathrm{e}\left(\mathrm{w}, \mathrm{w}^{\prime}\right), \mathrm{e}(\mathrm{w}, \mathrm{w}), \mathrm{e}\left(\mathrm{w}^{\prime}, w^{\prime}\right)\right. \\
& \left.\mathrm{d}\left(\mathrm{z}, \mathrm{z}^{\prime}\right), \frac{\mathrm{e}\left(\mathrm{w}, \mathrm{w}^{\prime}\right)}{2}, \frac{\mathrm{e}\left(\mathrm{w}, \mathrm{w}^{\prime}\right)}{2}\right\} \\
& =\mathrm{c}_{2} \cdot \max \left\{\mathrm{e}\left(\mathrm{w}, \mathrm{w}^{\prime}\right), 0,0, \mathrm{~d}\left(\mathrm{z}, \mathrm{z}^{\prime}\right), \frac{\mathrm{e}\left(\mathrm{w}, \mathrm{w}^{\prime}\right)}{2}\right\} \\
& <\mathrm{d}\left(\mathrm{z}, \mathrm{z}^{\prime}\right)
\end{aligned}
$$

Hence $\mathrm{d}\left(\mathrm{z}, \mathrm{z}^{\prime}\right)<\mathrm{e}\left(\mathrm{w}, \mathrm{w}^{\prime}\right)<\mathrm{d}\left(\mathrm{z}, \mathrm{z}^{\prime}\right)$
Which is a contradiction.
Thus $\mathrm{z}=\mathrm{z}^{\prime}$.
So the point z is the unique common fixed point of $\left\{\mathrm{S}_{\mathrm{n}} \mathrm{A}_{\mathrm{n}}\right\}$ and $\left\{T_{n} B_{n}\right\}$. Similarly we prove w is a unique common fixed point of $\left\{B_{n} S_{n}\right\}$ and $\left\{A_{n} T_{n}\right\}$.

Remark :2.5: If we put $\mathrm{A}_{\mathrm{i}}=\mathrm{A}, \mathrm{B}_{\mathrm{j}}=\mathrm{B}, \mathrm{S}_{\mathrm{p}}=\mathrm{S}$ and $\mathrm{T}_{\mathrm{q}}=\mathrm{T}$ in the above theorem 2.4 , we get the following corollary.
Corollory 2.6: Let (X, d) and (Y, e) be complete metric spaces. Let A, B be mappings of X into Y and S, T be mappings of Y into X satisfying the inequalities.
$\mathrm{d}\left(\mathrm{SAx}, \mathrm{TB} x^{\prime}\right) \leq \mathrm{c}_{1} . \max \left\{\mathrm{d}\left(\mathrm{x}, \mathrm{x}^{\prime}\right), \mathrm{d}(\mathrm{x}, \mathrm{SAx}), \mathrm{d}\left(\mathrm{x}^{\prime}, \mathrm{TBx}^{\prime}\right)\right.$,

$$
\left.\mathrm{e}\left(\mathrm{Ax}, \mathrm{Bx}^{\prime}\right), \frac{d\left(x, T B x^{\prime}\right)}{2} \frac{d\left(S A x, x^{\prime}\right)}{2}\right\}
$$

$\mathrm{e}\left(\mathrm{BSy}, \mathrm{ATy}^{\prime}\right) \leq \mathrm{c}_{2} . \max \left\{\mathrm{e}\left(\mathrm{y}, \mathrm{y}^{\prime}\right), \mathrm{e}(\mathrm{y}, \mathrm{BSy}), \mathrm{e}\left(\mathrm{y}^{\prime}, \mathrm{ATy}^{\prime}\right)\right.$,

$$
\left.\mathrm{d}(\text { Sy,Ty' }), \frac{e\left(y, A T y^{\prime}\right)}{2}, \frac{e\left(B S y, y^{\prime}\right)}{2}\right\}
$$

for all $\mathrm{x}, \mathrm{x}^{\prime}$ in X and $\mathrm{y}, \mathrm{y}^{\prime}$ in Y where $0 \leq \mathrm{c}_{1}<1$ and $0 \leq \mathrm{c}_{2}<1$. If one of the mappings A, B, S and T is continuous, then SA and TB have a unique common fixed point z in X and BS and AT have a unique common fixed point w in Y . Further, $\mathrm{Az}=$ $\mathrm{Bz}=\mathrm{w}$ and $\mathrm{Sw}=\mathrm{Tw}=\mathrm{z}$.

Theorem2.7:Let (X, d) and (Y, e) be complete metric spaces.
Let $\left\{A_{n}\right\},\left\{B_{n}\right\}(n \in N)$ be sequence of mappings of X into
Y and $\left\{\mathrm{S}_{\mathrm{n}}\right\},\left\{\mathrm{T}_{\mathrm{n}}\right\},(\mathrm{n} \in \mathrm{N})$ be sequence of mappings of Y into X satisfying the inequalities.

$$
\begin{array}{r}
\mathrm{d}\left(\mathrm{~S}_{\mathrm{p}} \mathrm{~A}_{\mathrm{i}} \mathrm{x}, \mathrm{~T}_{\mathrm{q}} \mathrm{~B}_{\mathrm{j}} \mathrm{x}^{\prime}\right) \leq \mathrm{c}_{1} \cdot \max \left\{\mathrm{~d}\left(\mathrm{x}, \mathrm{x}^{\prime}\right), \mathrm{d}\left(\mathrm{x}, \mathrm{~S}_{\mathrm{p}} \mathrm{~A}_{\mathrm{i}} \mathrm{x}\right), \mathrm{e}\left(\mathrm{~A}_{\mathrm{i}} \mathrm{x}, \mathrm{~B}_{\mathrm{j}} \mathrm{x}^{\prime}\right),\right. \\
\mathrm{d}\left(\mathrm{x}, \mathrm{~T}_{\mathrm{q}} \mathrm{~B}_{\mathrm{j}} \mathrm{x}^{\prime}\right) / 2, \mathrm{~d}\left(\mathrm{~S}_{\mathrm{p}} \mathrm{~A}_{\mathrm{i}} \mathrm{x}, \mathrm{x}^{\prime}\right) / 2, \\
\left.\mathrm{~d}\left(\mathrm{x}, \mathrm{~S}_{\mathrm{p}} \mathrm{~A}_{\mathrm{i}} \mathrm{x}\right) \cdot \mathrm{d}\left(\mathrm{x}^{\prime}, \mathrm{T}_{\mathrm{q}} \mathrm{~B}_{\mathrm{j}} \mathrm{x}^{\prime}\right) / \mathrm{d}\left(\mathrm{x}, \mathrm{x}^{\prime}\right)\right\}----(2.7 .1) \\
\mathrm{e}\left(\mathrm{~B}_{\mathrm{j}} \mathrm{~S}_{\mathrm{p}} \mathrm{y}, \mathrm{~A}_{\mathrm{i}} \mathrm{~T}_{\mathrm{q}} \mathrm{y}^{\prime}\right) \leq \mathrm{c}_{2} \cdot \max \left\{\mathrm{e}\left(\mathrm{y}, \mathrm{y}^{\prime}\right), \mathrm{e}\left(\mathrm{y}, \mathrm{~B}_{\mathrm{j}} \mathrm{~S}_{\mathrm{p}} \mathrm{y}\right), \mathrm{d}\left(\mathrm{~S}_{\mathrm{p}} \mathrm{y}, \mathrm{~T}_{\mathrm{q}} \mathrm{y}^{\prime}\right),\right. \\
\mathrm{e}\left(\mathrm{y}, \mathrm{~A}_{\mathrm{i}} \mathrm{~T}_{\mathrm{q}} \mathrm{y}^{\prime}\right) / 2, \mathrm{e}\left(\mathrm{~B}_{\mathrm{j}} \mathrm{~S}_{\mathrm{p}} \mathrm{y}, \mathrm{y}^{\prime}\right) / 2 \\
\left.\mathrm{e}\left(\mathrm{y}, \mathrm{~B}_{\mathrm{j}} \mathrm{~S}_{\mathrm{p}} \mathrm{y}\right) \cdot \mathrm{e}\left(\mathrm{y}^{\prime}, \mathrm{A}_{\mathrm{i}} \mathrm{~T}_{\mathrm{q}} \mathrm{y}^{\prime}\right) / \mathrm{e}\left(\mathrm{y}, \mathrm{y}^{\prime}\right)\right\}-----(2.7 .2)
\end{array}
$$

International Journal of Mathematics Trends and Technology - Volume 13 Number 1-Sep 2014

for all $\mathrm{i} \neq \mathrm{j} \neq \mathrm{p} \neq \mathrm{q}, \mathrm{x}, \mathrm{x}^{\prime}$ in X and $\mathrm{y}, \mathrm{y}^{\prime}$ in Y where $0 \leq \mathrm{c}_{1}<1$ and $0 \leq c_{2}<1$. If one of the mappings $\left\{A_{n}\right\},\left\{B_{n}\right\},\left\{S_{n}\right\}$ and $\left\{T_{n}\right\}$ is continuous, then $\left\{S_{n} A_{n}\right\}$ and $\left\{T_{n} B_{n}\right\}$ have a common fixed point z in X and $\left\{\mathrm{B}_{\mathrm{n}} \mathrm{S}_{\mathrm{n}}\right\}$ and $\left\{\mathrm{A}_{\mathrm{n}} \mathrm{T}_{\mathrm{n}}\right\}$ have a common fixed point w in Y. Further, $\left\{A_{n}\right\} z=\left\{B_{n}\right\} z=w$ and $\left\{S_{n}\right\} w$ $=\left\{\mathrm{T}_{\mathrm{n}}\right\} \mathrm{w}=\mathrm{z}$.
Proof: Let x_{0} be an arbitrary point in X and we define the sequences $\left\{x_{n}\right\}$ in X and $\left\{y_{n}\right\}$ in Y by

$$
\begin{aligned}
& A_{n} x_{2 n-2}=y_{2 n-1}, S_{n} y_{2 n-1}=x_{2 n-1}, B_{n} x_{2 n-1}=y_{2 n ;}, T_{n} y_{2 n}=x_{2 n} \\
& \text { for } n=1,2,3 \ldots \ldots
\end{aligned}
$$

Now we have

$$
\begin{aligned}
d\left(x_{2 n+1}, x_{2 n}\right)= & d\left(S_{n} A_{n} x_{2 n}, T_{n} B_{n} x_{2 n-1}\right) \\
\leq & c_{1} \cdot \max \left\{d\left(x_{2 n}, x_{2 n-1}\right), d\left(x_{2 n}, S_{n} A_{n} x_{2 n}\right),\right. \\
& \quad\left(A_{n} x_{2 n}, B_{n} x_{2 n-1}\right), d\left(x_{2 n}, T_{n} B_{n} x_{2 n-1}\right) / 2, \\
& d\left(S_{n} A_{n} x_{2 n}, x_{2 n-1}\right) / 2, \\
& \left.d\left(x_{2 n}, S_{n} A_{n} x_{2 n}\right) . d\left(x_{2 n-1}, T_{n} B_{n} x_{2 n-1}\right) / d\left(x_{2 n}, x_{2 n-1}\right)\right\} \\
= & c_{1} \cdot \max \left\{d\left(x_{2 n}, x_{2 n-1}\right), d\left(x_{2 n}, x_{2 n+1}\right), e\left(y_{2 n+1}, y_{2 n}\right),\right. \\
& d\left(x_{2 n}, x_{2 n}\right) / 2, d\left(x_{2 n-1}, x_{2 n+1}\right) / 2, \\
& \left.d\left(x_{2 n}, x_{2 n+1}\right), d\left(x_{2 n-1}, x_{2 n}\right) / d\left(x_{2 n}, x_{2 n-1}\right)\right\} \\
= & c_{1} . \max \left\{d\left(x_{2 n}, x_{2 n-1}\right), d\left(x_{2 n}, x_{2 n+1}\right), e\left(y_{2 n+1}, y_{2 n}\right), 0,\right. \\
\leq & \left.\quad\left[d\left(x_{2 n-1}, x_{2 n}\right)+d\left(x_{2 n}, x_{2 n+1}\right)\right] / 2, d\left(x_{2 n}, x_{2 n+1}\right)\right\} \\
& \left.\left.\max \left\{d\left(x_{2 n-1}, x_{2 n}\right), e\left(y_{2 n+1}, y_{2 n}\right)\right\}\right)\right\}----(2.7 .3)
\end{aligned}
$$

Now

$$
\begin{aligned}
& e\left(y_{2 n}, y_{2 n+1}\right)=e\left(B_{n} S_{n} y_{2 n-1}, A_{n} T_{n} y_{2 n}\right) \\
& \leq \mathrm{c}_{2} . \max \left\{\mathrm{e}\left(\mathrm{y}_{2 \mathrm{n}-1}, \mathrm{y}_{2 \mathrm{n}}\right), \mathrm{e}\left(\mathrm{y}_{2 \mathrm{n}-1}, \mathrm{~B}_{\mathrm{n}} \mathrm{~S}_{\mathrm{n}} \mathrm{y}_{2 \mathrm{n}-1}\right),\right. \\
& d\left(S_{n} y_{2 n-1}, T_{n} y_{2 n}\right), e\left(y_{2 n-1}, A_{n} T_{n} y_{2 n}\right) / 2 \text {, } \\
& \mathrm{e}\left(\mathrm{~B}_{\mathrm{n}} \mathrm{~S}_{\mathrm{n}} \mathrm{y}_{2 \mathrm{n}-1}, \mathrm{y}_{2 \mathrm{n}}\right) / 2, \\
& \left.e\left(y_{2 n-1}, B_{n} S_{n} y_{2 n-1}\right) \cdot e\left(y_{2 n}, A_{n} T_{n} y_{2 n}\right) / e\left(y_{2 n-1}, y_{2 n}\right)\right\} \\
& =c_{2} \cdot \max \left\{e\left(y_{2 n-1}, y_{2 n}\right), e\left(y_{2 n-1}, y_{2 n}\right), d\left(x_{2 n-1}, x_{2 n}\right)\right. \text {, } \\
& e\left(y_{2 n-1}, y_{2 n+1}\right) / 2, e\left(y_{2 n}, y_{2 n}\right) / 2 \text {, } \\
& \left.e\left(y_{2 n-1}, y_{2 n}\right) . e\left(y_{2 n}, y_{2 n+1}\right) / e\left(y_{2 n-1}, y_{2 n}\right)\right\} \\
& \leq \mathrm{c}_{2} \cdot \max \left\{\mathrm{e}\left(\mathrm{y}_{2 \mathrm{n}-1}, \mathrm{y}_{2 \mathrm{n}}\right), \mathrm{d}\left(\mathrm{x}_{2 \mathrm{n}-1}, \mathrm{x}_{2 \mathrm{n}}\right)\right\}-----(2.7 .4)
\end{aligned}
$$

Similarly,

$$
\begin{aligned}
& \mathrm{d}\left(\mathrm{x}_{2 \mathrm{n}}, \mathrm{x}_{2 \mathrm{n}-1}\right) \quad \leq \mathrm{c}_{1} . \max \left\{\mathrm{d}\left(\mathrm{x}_{2 \mathrm{n}-2}, \mathrm{x}_{2 \mathrm{n}-1}\right), \mathrm{e}\left(\mathrm{y}_{2 \mathrm{n}-1}, \mathrm{y}_{2 \mathrm{n}}\right)\right\}----(2.7 .5) \\
& \left.\mathrm{e}\left(\mathrm{y}_{2 \mathrm{n}}, \mathrm{y}_{2 \mathrm{n}-1}\right) \leq \mathrm{c}_{2} . \max \left\{\mathrm{e}\left(\mathrm{y}_{2 \mathrm{n}-1}, \mathrm{y}_{2 \mathrm{n}-2}\right), \mathrm{d}\left(\mathrm{x}_{2 \mathrm{n}-1}, \mathrm{x}_{2 \mathrm{n}-2}\right)\right\}---2.7 .6\right)
\end{aligned}
$$

from inequalities (2.7.3), (2.7.4), (2.7.5) and (2.7.6), we have

$$
\mathrm{d}\left(\mathrm{x}_{\mathrm{n}+1}, \mathrm{x}_{\mathrm{n}}\right) \leq \mathrm{c}_{1}{ }^{\mathrm{n}} \mathrm{c}_{2}{ }^{\mathrm{n}-1} \cdot \max \left\{\mathrm{~d}\left(\mathrm{x}_{1}, \mathrm{x}_{0}\right), \mathrm{e}\left(\mathrm{y}_{1}, \mathrm{y}_{2}\right)\right\} \rightarrow 0 \text { as } \mathrm{n} \rightarrow \infty
$$

Thus $\left\{X_{n}\right\}$ is a Cauchy sequence in (X, d). Since (X, d) is complete, $\left\{\mathrm{X}_{\mathrm{n}}\right\}$ converges to a point z in X . Similarly using inequalities (2.7.3), (2.7.4), (2.7.5) and (2.7.6), we prove $\left\{y_{n}\right\}$ is a Cauchy sequence in (Y, e) with the limit w in Y .
Suppose $\left\{\mathrm{A}_{\mathrm{n}}\right\}$ is continuous, then

$$
\lim _{n \rightarrow \infty} \mathrm{~A}_{\mathrm{n}} \mathrm{x}_{2 \mathrm{n}}=\mathrm{A}_{\mathrm{n}} \mathrm{Z}=\lim _{n \rightarrow \infty} \mathrm{y}_{2 \mathrm{n}+1}=\mathrm{w}
$$

Now we prove $\mathrm{S}_{\mathrm{n}} \mathrm{A}_{\mathrm{n}} \mathrm{Z}=\mathrm{z}$. .
Suppose $\mathrm{S}_{\mathrm{n}} \mathrm{A}_{\mathrm{n}} \mathrm{z} \neq \mathrm{z}$.
We have

$$
\begin{aligned}
& \mathrm{d}\left(\mathrm{~S}_{\mathrm{n}} \mathrm{~A}_{\mathrm{n}} \mathrm{z}, \mathrm{z}\right)=\lim _{n \rightarrow \infty} \mathrm{~d}\left(\mathrm{~S}_{\mathrm{n}} \mathrm{~A}_{\mathrm{n}} \mathrm{z}, \mathrm{~T}_{\mathrm{n}} \mathrm{~B}_{\mathrm{n}} \mathrm{X}_{2 \mathrm{n}-1}\right) \\
& \leq \lim _{n \rightarrow \infty} \mathrm{c}_{1} . \max \left\{\mathrm{d}\left(\mathrm{z}, \mathrm{x}_{2 \mathrm{n}-1}\right), \mathrm{d}\left(\mathrm{z}, \mathrm{~S}_{\mathrm{n}} \mathrm{~A}_{\mathrm{n}} \mathrm{z}\right),\right. \\
& \mathrm{e}\left(\mathrm{~A}_{\mathrm{n}} \mathrm{z}, \mathrm{~B}_{\mathrm{n}} \mathrm{x}_{2 \mathrm{n}-1}\right), \mathrm{d}\left(\mathrm{z}, \mathrm{~T}_{\mathrm{n}} \mathrm{~B}_{\mathrm{n}} \mathrm{x}_{2 \mathrm{n}-1}\right) / 2, \\
& \mathrm{~d}\left(\mathrm{~S}_{\mathrm{n}} \mathrm{~A}_{\mathrm{n}} \mathrm{z}, \mathrm{x}_{2 \mathrm{n}-1}\right) / 2 \text {, } \\
& \left.d\left(z, S_{n} A_{n} z\right) \cdot d\left(x_{2 n-1}, T_{n} B_{n} x_{2 n-1}\right) / d\left(z, x_{2 n-1}\right)\right\} \\
& \leq \lim _{n \rightarrow \infty} \mathrm{c}_{1} \cdot \max \left\{\mathrm{~d}\left(\mathrm{z}, \mathrm{x}_{2 \mathrm{n}-1}\right), \mathrm{d}\left(\mathrm{z}, \mathrm{~S}_{\mathrm{n}} \mathrm{~A}_{\mathrm{n}} \mathrm{z}\right),\right. \\
& \mathrm{e}\left(\mathrm{~A}_{\mathrm{n}} \mathrm{z}, \mathrm{y}_{2 \mathrm{n}}\right), \mathrm{d}\left(\mathrm{z}, \mathrm{x}_{2 \mathrm{n}}\right) / 2 \mathrm{~d}\left(\mathrm{~S}_{\mathrm{n}} \mathrm{~A}_{\mathrm{n}} \mathrm{z}, \mathrm{x}_{2 \mathrm{n}-1}\right) / 2 \text {, } \\
& \left.\mathrm{d}\left(\mathrm{z}, \mathrm{~S}_{\mathrm{n}} \mathrm{~A}_{\mathrm{n}} \mathrm{z}\right) \cdot \mathrm{d}\left(\mathrm{x}_{2 \mathrm{n}-1}, \mathrm{x}_{2 \mathrm{n}}\right) / \mathrm{d}\left(\mathrm{z}, \mathrm{x}_{2 \mathrm{n}-1}\right)\right\} \\
& =\mathrm{c}_{1} \cdot \max \left\{\mathrm{~d}(\mathrm{z}, \mathrm{z}), \mathrm{d}\left(\mathrm{z}, \mathrm{~S}_{\mathrm{n}} \mathrm{~A}_{\mathrm{n}} \mathrm{z}\right), \mathrm{e}(\mathrm{w}, \mathrm{w}), \mathrm{d}(\mathrm{z}, \mathrm{z}) / 2,\right. \\
& \left.\mathrm{d}\left(\mathrm{~S}_{\mathrm{n}} \mathrm{~A}_{\mathrm{n}} \mathrm{z}, \mathrm{z}\right) / 2, \mathrm{~d}(\mathrm{z}, \mathrm{z}) \cdot \mathrm{d}\left(\mathrm{~S}_{\mathrm{n}} \mathrm{~A}_{\mathrm{n}} \mathrm{z}, \mathrm{z}\right) / \mathrm{d}(\mathrm{z}, \mathrm{z})\right\} \\
& \leq \mathrm{c}_{1} \cdot \mathrm{~d}\left(\mathrm{z}, \mathrm{~S}_{\mathrm{n}} \mathrm{~A}_{\mathrm{n}} \mathrm{z}\right) \\
& <\mathrm{d}\left(\mathrm{z}, \mathrm{~S}_{\mathrm{n}} \mathrm{~A}_{\mathrm{n}} \mathrm{z}\right) \quad\left(\text { Since } 0 \leq \mathrm{c}_{1}<1\right)
\end{aligned}
$$

Which is a contradiction.
Thus $\mathrm{S}_{\mathrm{n}} \mathrm{A}_{\mathrm{n}} \mathrm{Z}=\mathrm{z}$.
Hence $S_{\mathrm{n}} \mathrm{w}=\mathrm{z}$. $\left(\right.$ Since $\left.\mathrm{A}_{\mathrm{n}} \mathrm{z}=\mathrm{w}\right)$
Now we prove $B_{n} S_{n} w=w$.
Suppose $B_{n} S_{n} W \neq w$.
We have

$$
\begin{aligned}
& \mathrm{e}\left(\mathrm{~B}_{\mathrm{n}} \mathrm{~S}_{\mathrm{n}} \mathrm{w}, \mathrm{w}\right)=\lim _{n \rightarrow \infty} \mathrm{e}\left(\mathrm{~B}_{\mathrm{n}} \mathrm{~S}_{\mathrm{n}} \mathrm{w}, \mathrm{y}_{2 \mathrm{n}+1}\right) \\
&= \lim _{n \rightarrow \infty} \mathrm{e}\left(\mathrm{~B}_{\mathrm{n}} \mathrm{~S}_{\mathrm{n}} \mathrm{w}, \mathrm{~A}_{\mathrm{n}} \mathrm{~T}_{\mathrm{n}} \mathrm{y}_{2 \mathrm{n}}\right) \\
& \leq \lim _{n \rightarrow \infty} \mathrm{c}_{2} \max \left\{\mathrm{e}\left(\mathrm{w}, \mathrm{y}_{2 \mathrm{n}}\right), \mathrm{e}\left(\mathrm{w}, \mathrm{~B}_{\mathrm{n}} \mathrm{~S}_{\mathrm{n}} \mathrm{w}\right),\right. \\
& \mathrm{d}\left(\mathrm{~S}_{\mathrm{n}} \mathrm{w}, \mathrm{~T}_{\mathrm{n}} \mathrm{y}_{2 \mathrm{n}}\right), \mathrm{e}\left(\mathrm{w}, \mathrm{~A}_{\mathrm{n}} \mathrm{~T}_{\mathrm{n}} \mathrm{y}_{2 \mathrm{n}}\right) / 2, \mathrm{e}\left(\mathrm{~B}_{\mathrm{n}} \mathrm{~S}_{\mathrm{n}} \mathrm{w}, \mathrm{y}_{2 \mathrm{n}}\right) / 2, \\
&\left.\quad \mathrm{e}\left(\mathrm{w}, \mathrm{~B}_{\mathrm{n}} \mathrm{~S}_{\mathrm{n}} \mathrm{w}\right) . \mathrm{e}\left(\mathrm{y}_{2 \mathrm{n}}, \mathrm{~A}_{\mathrm{n}} \mathrm{~T}_{\mathrm{n}} \mathrm{y}_{2 \mathrm{n}}\right) / \mathrm{e}\left(\mathrm{w}, \mathrm{y}_{2 \mathrm{n}}\right)\right\} \\
&< \mathrm{e}\left(\mathrm{w}, \mathrm{~B}_{\mathrm{n}} \mathrm{~S}_{\mathrm{n}} \mathrm{w}\right) \quad\left(\text { Since } 0 \leq \mathrm{c}_{2}<1\right)
\end{aligned}
$$

Which is a contradiction.

Thus $\mathrm{B}_{\mathrm{n}} \mathrm{S}_{\mathrm{n}} \mathrm{w}=\mathrm{w}$.
Hence $B_{n} z=w$. (Since $\left.S_{n} w=z\right)$
Now we prove $T_{n} B_{n} z=z$.
Suppose $\mathrm{T}_{\mathrm{n}} \mathrm{B}_{\mathrm{n}} \mathrm{z} \neq \mathrm{z}$.

$$
\begin{aligned}
\mathrm{d}\left(\mathrm{z}, \mathrm{~T}_{\mathrm{n}} \mathrm{~B}_{\mathrm{n}} \mathrm{z}\right) & =\lim _{n \rightarrow \infty} \mathrm{~d}\left(\mathrm{x}_{2 \mathrm{n}+1}, \mathrm{~T}_{\mathrm{n}} \mathrm{~B}_{\mathrm{n}} \mathrm{z}\right) \\
& =\lim _{n \rightarrow \infty} \mathrm{~d}\left(\mathrm{~S}_{\mathrm{n}} \mathrm{~A}_{\mathrm{n}} \mathrm{x}_{2 \mathrm{n}}, \mathrm{~T}_{\mathrm{n}} \mathrm{~B}_{\mathrm{n}} \mathrm{z}\right) \\
& \leq \lim _{n \rightarrow \infty} \mathrm{c}_{1} \cdot \max \left\{\mathrm{~d}\left(\mathrm{x}_{2 \mathrm{n}}, \mathrm{z}\right), \mathrm{d}\left(\mathrm{x}_{2 \mathrm{n}}, \mathrm{~S}_{\mathrm{n}} \mathrm{~A}_{\mathrm{n}} \mathrm{x}_{2 \mathrm{n}}\right), \mathrm{e}\left(\mathrm{~A}_{\mathrm{n}} \mathrm{x}_{2 \mathrm{n}},\right.\right.
\end{aligned},
$$

$\left.\mathrm{d}\left(\mathrm{SAx}_{2 \mathrm{n}}, \mathrm{z}\right) / 2, \mathrm{~d}\left(\mathrm{x}_{2 \mathrm{n}}, \mathrm{S}_{\mathrm{n}} \mathrm{A}_{\mathrm{n}} \mathrm{x}_{2 \mathrm{n}}\right) \cdot \mathrm{d}\left(\mathrm{z}, \mathrm{T}_{\mathrm{n}} \mathrm{B}_{\mathrm{n}} \mathrm{z}\right) / \mathrm{d}\left(\mathrm{x}_{2 \mathrm{n}}, \mathrm{z}\right)\right\}$
$<\mathrm{d}\left(\mathrm{z}, \mathrm{T}_{\mathrm{n}} \mathrm{B}_{\mathrm{n}} \mathrm{z}\right) \quad\left(\right.$ Since $\left.0 \leq \mathrm{c}_{1}<1\right)$
Which is a contradiction.
Thus $\mathrm{T}_{\mathrm{n}} \mathrm{B}_{\mathrm{n}} \mathrm{z}=\mathrm{z}$.
Hence $T_{n} w=z$. $\quad\left(\right.$ Since $\left.B_{n} z=w\right)$
Now we prove $A_{n} T_{n} w=w$.
Suppose $A_{n} \mathrm{~T}_{\mathrm{n}} \mathrm{w} \neq \mathrm{w}$.

$$
\begin{aligned}
& \mathrm{e}\left(\mathrm{w}, \mathrm{~A}_{\mathrm{n}} \mathrm{~T}_{\mathrm{n}} \mathrm{w}\right)=\lim _{n \rightarrow \infty} \mathrm{e}\left(\mathrm{y}_{2 \mathrm{n}}, \mathrm{~A}_{\mathrm{n}} \mathrm{~T}_{\mathrm{n}} \mathrm{w}\right) \\
&=\lim _{n \rightarrow \infty} \mathrm{e}\left(\mathrm{~B}_{\mathrm{n}} \mathrm{~S}_{\mathrm{n}} \mathrm{y}_{2 \mathrm{n}-1}, \mathrm{~A}_{\mathrm{n}} \mathrm{~T}_{\mathrm{n}} \mathrm{w}\right) \\
& \leq \lim _{n \rightarrow \infty} \mathrm{c}_{2} . \max \left\{\mathrm{e}\left(\mathrm{y}_{2 \mathrm{n}-1}, \mathrm{w}\right), \mathrm{e}\left(\mathrm{y}_{2 \mathrm{n}-1}, \mathrm{~B}_{\mathrm{n}} \mathrm{~S}_{\mathrm{n}} \mathrm{y}_{2 \mathrm{n}-1}\right),\right. \\
& \mathrm{d}\left(\mathrm{~S}_{\mathrm{n}} \mathrm{y}_{2 \mathrm{n}-1}, \mathrm{~T}_{\mathrm{n}} \mathrm{w}\right), \mathrm{e}\left(\mathrm{y}_{2 \mathrm{n}-1}, \mathrm{~A}_{\mathrm{n}} \mathrm{~T}_{\mathrm{n}} \mathrm{w}\right) / 2, \mathrm{e}\left(\mathrm{~B}_{\mathrm{n}} \mathrm{~S}_{\mathrm{n}} \mathrm{y}_{2 \mathrm{n}-1}, \mathrm{w}\right) / 2, \\
&\left.\mathrm{e}\left(\mathrm{y}_{2 \mathrm{n}-1}, \mathrm{~B}_{\mathrm{n}} \mathrm{~S}_{\mathrm{n}} \mathrm{y}_{2 \mathrm{n}-1}\right) . \mathrm{e}\left(\mathrm{w}, \mathrm{~A}_{\mathrm{n}} \mathrm{~T}_{\mathrm{n}} \mathrm{w}\right) / \mathrm{e}\left(\mathrm{y}_{2 \mathrm{n}-1}, \mathrm{w}\right)\right\} \\
&<\mathrm{e}\left(\mathrm{w}, \mathrm{~A}_{\mathrm{n}} \mathrm{~T}_{\mathrm{n}} \mathrm{w}\right) \quad\left(\text { Since } 0 \leq \mathrm{c}_{2}<1\right)
\end{aligned}
$$

Which is a contradiction.
Thus $\mathrm{A}_{\mathrm{n}} \mathrm{T}_{\mathrm{n}} \mathrm{w}=\mathrm{w}$.
The same results hold if one of the mappings $\left\{B_{n}\right\},\left\{S_{n}\right\}$ and $\left\{T_{n}\right\}$ is continuous.

So the point z is the common fixed point of $\left\{\mathrm{S}_{\mathrm{n}} \mathrm{A}_{\mathrm{n}}\right\}$ and $\left\{T_{n} B_{n}\right\}$. Similarly we prove w is a common fixed point of $\left\{\mathrm{B}_{\mathrm{n}} \mathrm{S}_{\mathrm{n}}\right\}$ and $\left\{\mathrm{A}_{\mathrm{n}} \mathrm{T}_{\mathrm{n}}\right\}$.
Uniqueness: Let z^{\prime} be another common fixed point of $\left\{\mathrm{S}_{\mathrm{n}} \mathrm{A}_{\mathrm{n}}\right\}$ and $\left\{T_{n} B_{n}\right\}$ in X, w^{\prime} be another common fixed point of $\left\{B_{n} S_{n}\right\}$ and $\left\{A_{n} T_{n}\right\}$ in Y.
We have $\mathrm{d}\left(\mathrm{z}, \mathrm{z}^{\prime}\right)=\mathrm{d}\left(\mathrm{S}_{\mathrm{n}} \mathrm{A}_{\mathrm{n}} \mathrm{z}, \mathrm{T}_{\mathrm{n}} \mathrm{B}_{\mathrm{n}} \mathrm{z}^{\prime}\right)$

$$
\begin{gathered}
\leq \mathrm{c}_{1} \cdot \max \left\{\mathrm{~d}\left(\mathrm{z}, \mathrm{z}^{\prime}\right), \mathrm{d}\left(\mathrm{z}, \mathrm{~S}_{\mathrm{n}} \mathrm{~A}_{\mathrm{n}} \mathrm{z}\right), \mathrm{e}\left(\mathrm{~A}_{\mathrm{n}} \mathrm{z}, \mathrm{~B}_{\mathrm{n}} \mathrm{z}^{\prime}\right),\right. \\
\mathrm{d}\left(\mathrm{z}, \mathrm{~T}_{\mathrm{n}} \mathrm{~B}_{\mathrm{n}} \mathrm{z}^{\prime}\right) / 2, \mathrm{~d}\left(\mathrm{~S}_{\mathrm{n}} \mathrm{~A}_{\mathrm{n}} \mathrm{z}, \mathrm{z}^{\prime}\right) / 2
\end{gathered}
$$

$$
\begin{aligned}
& \left.\mathrm{d}\left(\mathrm{z}, \mathrm{~S}_{\mathrm{n}} \mathrm{~A}_{\mathrm{n}} \mathrm{z}\right) \cdot \mathrm{d}\left(\mathrm{z}^{\prime}, \mathrm{T}_{\mathrm{n}} \mathrm{~B}_{\mathrm{n}} \mathrm{z}^{\prime}\right) / \mathrm{d}\left(\mathrm{z}, \mathrm{z}^{\prime}\right)\right\} \\
& =\mathrm{c}_{1} . \max \left\{\mathrm{d}\left(\mathrm{z}, \mathrm{z}^{\prime}\right), \mathrm{d}(\mathrm{z}, \mathrm{z}), \mathrm{e}\left(\mathrm{w}, \mathrm{w}^{\prime}\right), \mathrm{d}\left(\mathrm{z}, \mathrm{z}^{\prime}\right) / 2\right. \text {, } \\
& \left.\mathrm{d}\left(\mathrm{z}, \mathrm{z}^{\prime}\right) / 2, \mathrm{~d}(\mathrm{z}, \mathrm{z}) \cdot \mathrm{d}\left(\mathrm{z}^{\prime}, \mathrm{z}^{\prime}\right) / \mathrm{d}\left(\mathrm{z}, \mathrm{z}^{\prime}\right)\right\} \\
& \text { < e(w, w') } \\
& e\left(w, w^{\prime}\right)=e\left(B_{n} S_{n} w, A_{n} T_{n} w^{\prime}\right) \\
& \leq \mathrm{c}_{2} \cdot \max \left\{\mathrm{e}\left(\mathrm{w}, \mathrm{w}^{\prime}\right), \mathrm{e}\left(\mathrm{w}, \mathrm{~B}_{\mathrm{n}} \mathrm{~S}_{\mathrm{n}} \mathrm{w}\right), \mathrm{d}\left(\mathrm{~S}_{\mathrm{n}} \mathrm{w}, \mathrm{~T}_{\mathrm{n}} \mathrm{w}^{\prime}\right),\right. \\
& e\left(w, A_{n} T_{n} w^{\prime}\right) / 2, \quad e\left(B_{n} S_{n} w, w^{\prime}\right) / 2, \\
& \left.e\left(w, B_{n} S_{n} w\right) \cdot e\left(w^{\prime}, A_{n} T_{n} w^{\prime}\right) / e\left(w, w^{\prime}\right)\right\} \\
& \text { < } \mathrm{d}\left(\mathrm{z}, \mathrm{z}^{\prime}\right) \\
& \text { Hence } \mathrm{d}\left(\mathrm{z}, \mathrm{z}^{\prime}\right)<\mathrm{e}\left(\mathrm{w}, \mathrm{w}^{\prime}\right)<\mathrm{d}\left(\mathrm{z}, \mathrm{z}^{\prime}\right) \\
& \text { Which is a contradiction. }
\end{aligned}
$$

Thus $\mathrm{z}=\mathrm{z}^{\prime}$.
So the point z is the unique common fixed point of $\left\{\mathrm{S}_{\mathrm{n}} \mathrm{A}_{\mathrm{n}}\right\}$ and $\left\{T_{n} B_{n}\right\}$. Similarly we prove w is a unique common fixed point of $\left\{B_{n} S_{n}\right\}$ and $\left\{A_{n} T_{n}\right\}$.
Remark :2.8: If we put $\mathrm{A}_{\mathrm{i}}=\mathrm{A}, \mathrm{B}_{\mathrm{j}}=\mathrm{B}, \mathrm{S}_{\mathrm{p}}=\mathrm{S}$ and $\mathrm{T}_{\mathrm{q}}=\mathrm{T}$ in the above theorem 2.7, we get the following corollary.
Corollory 2.9: Let (X, d) and (Y, e) be complete metric spaces.
Let A, B be mappings of X into Y and S , T be mappings of Y into X satisfying the inequalities.
$d\left(S A x, T B x^{\prime}\right) \leq c_{1} . \max \left\{d\left(x, x^{\prime}\right), d(x, S A x), e\left(A x, B x^{\prime}\right)\right.$,
$\left.\mathrm{d}\left(\mathrm{x}, \mathrm{TBx} \mathrm{x}^{\prime}\right) / 2, \mathrm{~d}\left(\mathrm{SAx}, \mathrm{x}^{\prime}\right) / 2, \mathrm{~d}(\mathrm{x}, \mathrm{SAx}) \cdot \mathrm{d}\left(\mathrm{x}^{\prime}, \mathrm{TBx}^{\prime}\right) / \mathrm{d}\left(\mathrm{x}, \mathrm{x}^{\prime}\right)\right\}$
$e\left(B S y, A T y^{\prime}\right) \leq c_{2} \cdot \max \left\{e\left(y, y^{\prime}\right), e(y, B S y), d\left(S y, T y^{\prime}\right), e(y\right.$, ATy')/2, e(BSy , y')/2, e(y,BSy).e(y',ATy') / e(y, y')\} for all $\mathrm{x}, \mathrm{x}^{\prime}$ in X and $\mathrm{y}, \mathrm{y}^{\prime}$ in Y where $0 \leq \mathrm{c}_{1}<1$ and $0 \leq \mathrm{c}_{2}<1$. If one of the mappings A, B, S and T is continuous, then SA and TB have a unique common fixed point z in X and BS and AT have a unique common fixed point w in Y. Further, $A z=$ $\mathrm{Bz}=\mathrm{w}$ and $\mathrm{Sw}=\mathrm{Tw}=\mathrm{z}$.
Theorem 2.10: Let (X, d) and (Y, e) be complete metric spaces. Let $\left\{A_{n}\right\},\left\{B_{n}\right\}(n \in N)$ be sequence of mappings of X into Y and $\left\{S_{n}\right\},\left\{T_{n}\right\},(n \in N)$ be sequence of mappings of Y into X satisfying the inequalities.

$$
\begin{gathered}
\mathrm{d}\left(\mathrm{~S}_{\mathrm{p}} \mathrm{~A}_{\mathrm{i}} \mathrm{x}, \mathrm{~T}_{\mathrm{q}} \mathrm{~B}_{\mathrm{j}} \mathrm{x}^{\prime}\right) \leq \mathrm{c}_{1} \cdot \max \left\{\mathrm{~d}\left(\mathrm{x}, \mathrm{x}^{\prime}\right), \mathrm{d}\left(\mathrm{x}, \mathrm{~S}_{\mathrm{p}} \mathrm{~A}_{\mathrm{i}} \mathrm{x}\right), \mathrm{e}\left(\mathrm{~A}_{\mathrm{i}} \mathrm{x}, \mathrm{~B}_{\mathrm{j}} \mathrm{x}^{\prime}\right),\right. \\
\\
\quad\left[\mathrm{d}\left(\mathrm{x}, \mathrm{~T}_{\mathrm{q}} \mathrm{~B}_{\mathrm{j}} \mathrm{x}^{\prime}\right)+\mathrm{d}\left(\mathrm{~S}_{\mathrm{p}} \mathrm{~A}_{\mathrm{i}} \mathrm{X}, \mathrm{x}^{\prime}\right)\right] / 2, \\
\left.\mathrm{~d}\left(\mathrm{x}, \mathrm{~S}_{\mathrm{p}} \mathrm{~A}_{\mathrm{i}} \mathrm{x}\right) \cdot \mathrm{d}\left(\mathrm{x}^{\prime}, \mathrm{T}_{\mathrm{q}} \mathrm{~B}_{\mathrm{j}} \mathrm{x}^{\prime}\right) / \mathrm{d}\left(\mathrm{x}, \mathrm{x}^{\prime}\right)\right\}-\cdots--(\mathbf{2 . 1 0 . 1}) \\
\mathrm{e}\left(\mathrm{~B}_{\mathrm{j}} \mathrm{~S}_{\mathrm{p}} \mathrm{y}, \mathrm{~A}_{\mathrm{i}} \mathrm{~T}_{\mathrm{q}} \mathrm{y}^{\prime}\right) \leq \mathrm{c}_{2} \cdot \max \left\{\mathrm{e}\left(\mathrm{y}, \mathrm{y}^{\prime}\right), \mathrm{e}\left(\mathrm{y}, \mathrm{~B}_{\mathrm{j}} \mathrm{~S}_{\mathrm{p}} \mathrm{y}\right),\right.
\end{gathered}
$$

$\mathrm{d}\left(\mathrm{S}_{\mathrm{p}} \mathrm{y}, \mathrm{T}_{\mathrm{q}} \mathrm{y}^{\prime}\right),\left[\mathrm{e}\left(\mathrm{y}, \mathrm{A}_{\mathrm{i}} \mathrm{T}_{\mathrm{q}} \mathrm{y}^{\prime}\right)+\mathrm{e}\left(\mathrm{B}_{\mathrm{j}} \mathrm{S}_{\mathrm{p}} \mathrm{y}, \mathrm{y}^{\prime}\right)\right] / 2$ $\left.\mathrm{e}\left(\mathrm{y}, \mathrm{B}_{\mathrm{j}} \mathrm{S}_{\mathrm{p}} \mathrm{y}\right) . \mathrm{e}\left(\mathrm{y}^{\prime}, \mathrm{A}_{\mathrm{i}} \mathrm{T}_{\mathrm{q}} \mathrm{y}^{\prime}\right) / \mathrm{e}\left(\mathrm{y}, \mathrm{y}^{\prime}\right)\right\}$----- (2.10.2) for all $\mathrm{i} \neq \mathrm{j} \neq \mathrm{p} \neq \mathrm{q}, \mathrm{x}, \mathrm{x}^{\prime}$ in X and $\mathrm{y}, \mathrm{y}^{\prime}$ in Y where $0 \leq \mathrm{c}_{1}<1$ and $0 \leq c_{2}<1$. If one of the mappings $\left\{A_{n}\right\},\left\{B_{n}\right\},\left\{S_{n}\right\}$ and $\left\{T_{n}\right\}$ is continuous, then $\left\{S_{n} A_{n}\right\}$ and $\left\{T_{n} B_{n}\right\}$ have a common fixed point z in X and $\left\{\mathrm{B}_{\mathrm{n}} \mathrm{S}_{\mathrm{n}}\right\}$ and $\left\{\mathrm{A}_{\mathrm{n}} \mathrm{T}_{\mathrm{n}}\right\}$ have a common fixed point w in Y. Further, $\left\{A_{n}\right\} z=\left\{B_{n}\right\} z=w$ and $\left\{S_{n}\right\} w$ $=\left\{T_{n}\right\} w=z$.

Proof: Let x_{0} be an arbitrary point in X and we define the sequences $\left\{x_{n}\right\}$ in X and $\left\{y_{n}\right\}$ in Y by

$$
\begin{aligned}
& \mathrm{A}_{\mathrm{n}} \mathrm{x}_{2 \mathrm{n}-2}=\mathrm{y}_{2 \mathrm{n}-1} \mathrm{~S}_{\mathrm{n}} \mathrm{y}_{2 \mathrm{n}-1}=\mathrm{x}_{2 \mathrm{n}-1}, \mathrm{~B}_{\mathrm{n}} \mathrm{x}_{2 \mathrm{n}-1}=\mathrm{y}_{2 \mathrm{n} ;} ; \mathrm{T}_{\mathrm{n}} \mathrm{y}_{2 \mathrm{n}}=\mathrm{x}_{2 \mathrm{n}} \\
& \text { for } \mathrm{n}=1,2,3 \ldots
\end{aligned}
$$

Now we have

$$
\begin{aligned}
& d\left(x_{2 n+1}, x_{2 n}\right)=d\left(S_{n} A_{n} x_{2 n}, T_{n} B_{n} x_{2 n-1}\right) \\
& \leq \mathrm{c}_{1} \cdot \max \left\{\mathrm{~d}\left(\mathrm{x}_{2 \mathrm{n}}, \mathrm{x}_{2 \mathrm{n}-1}\right), \mathrm{d}\left(\mathrm{x}_{2 \mathrm{n}}, \mathrm{~S}_{\mathrm{n}} \mathrm{~A}_{\mathrm{n}} \mathrm{x}_{2 \mathrm{n}}\right),\right. \\
& e\left(A_{n} x_{2 n}, B_{n} x_{2 n-1}\right),\left[d\left(x_{2 n}, T_{n} B_{n} x_{2 n-1}\right)+d\left(S_{n} A_{n} x_{2 n}, x_{2 n-1}\right)\right] / 2, \\
& \left.d\left(x_{2 n}, S_{n} A_{n} x_{2 n}\right) . d\left(x_{2 n-1}, T_{n} B_{n} x_{2 n-1}\right) / d\left(x_{2 n}, x_{2 n-1}\right)\right\} \\
& =c_{1} . \max \left\{d\left(x_{2 n}, x_{2 n-1}\right), d\left(x_{2 n}, x_{2 n+1}\right), e\left(y_{2 n+1}, y_{2 n}\right),\right. \\
& {\left[\mathrm{d}\left(\mathrm{x}_{2 \mathrm{n}}, \mathrm{x}_{2 \mathrm{n}}\right)+\mathrm{d}\left(\mathrm{x}_{2 \mathrm{n}-1}, \mathrm{x}_{2 \mathrm{n}+1}\right)\right] / 2,} \\
& \left.d\left(x_{2 n}, x_{2 n+1}\right), d\left(x_{2 n-1}, x_{2 n}\right) / d\left(x_{2 n}, x_{2 n-1}\right)\right\} \\
& =c_{1} . \max \left\{d\left(x_{2 n}, x_{2 n-1}\right), d\left(x_{2 n}, x_{2 n+1}\right), e\left(y_{2 n+1}, y_{2 n}\right)\right. \text {, } \\
& \left.\left[\mathrm{d}\left(\mathrm{x}_{2 \mathrm{n}-1}, \mathrm{x}_{2 \mathrm{n}}\right)+\mathrm{d}\left(\mathrm{x}_{2 \mathrm{n}}, \mathrm{x}_{2 \mathrm{n}+1}\right)\right] / 2, \mathrm{~d}\left(\mathrm{x}_{2 \mathrm{n}}, \mathrm{x}_{2 \mathrm{n}+1}\right)\right\} \\
& \leq \mathrm{c}_{1} \cdot \max \left\{\mathrm{~d}\left(\mathrm{x}_{2 \mathrm{n}-1}, \mathrm{x}_{2 \mathrm{n}}\right), \mathrm{e}\left(\mathrm{y}_{2 \mathrm{n}+1}, \mathrm{y}_{2 \mathrm{n}}\right)\right\}-\cdots---(2.10 .3)
\end{aligned}
$$

Now

$$
\begin{aligned}
& e\left(y_{2 n}, y_{2 n+1}\right)=e\left(B_{n} S_{n} y_{2 n-1}, A_{n} T_{n} y_{2 n}\right) \\
& \leq \mathrm{c}_{2} . \max \left\{\mathrm{e}\left(\mathrm{y}_{2 \mathrm{n}-1}, \mathrm{y}_{2 \mathrm{n}}\right), \mathrm{e}\left(\mathrm{y}_{2 \mathrm{n}-1}, \mathrm{~B}_{\mathrm{n}} \mathrm{~S}_{\mathrm{n}} \mathrm{y}_{2 \mathrm{n}-1}\right),\right. \\
& d\left(S_{n} y_{2 n-1}, T_{n} y_{2 n}\right), \\
& {\left[\mathrm{e}\left(\mathrm{y}_{2 \mathrm{n}-1}, \mathrm{~A}_{\mathrm{n}} \mathrm{~T}_{\mathrm{n}} \mathrm{y}_{2 \mathrm{n}}\right)+\mathrm{e}\left(\mathrm{~B}_{\mathrm{n}} \mathrm{~S}_{\mathrm{n}} \mathrm{y}_{2 \mathrm{n}-1}, \mathrm{y}_{2 \mathrm{n}}\right)\right] / 2 \text {, }} \\
& \left.e\left(y_{2 n-1}, B_{n} S_{n} y_{2 n-1}\right) \cdot e\left(y_{2 n}, A_{n} T_{n} y_{2 n}\right) / e\left(y_{2 n-1}, y_{2 n}\right)\right\} \\
& =c_{2} \cdot \max \left\{e\left(y_{2 n-1}, y_{2 n}\right), e\left(y_{2 n-1}, y_{2 n}\right), d\left(x_{2 n-1}, x_{2 n}\right),\right. \\
& {\left[e\left(y_{2 n-1}, y_{2 n+1}\right)+e\left(y_{2 n}, y_{2 n}\right)\right] / 2,} \\
& \left.e\left(y_{2 n-1}, y_{2 n}\right) \cdot e\left(y_{2 n}, y_{2 n+1}\right) / e\left(y_{2 n-1}, y_{2 n}\right)\right\} \\
& \leq \mathrm{c}_{2} \cdot \max \left\{\mathrm{e}\left(\mathrm{y}_{2 \mathrm{n}-1}, \mathrm{y}_{2 \mathrm{n}}\right), \mathrm{d}\left(\mathrm{x}_{2 \mathrm{n}-1}, \mathrm{x}_{2 \mathrm{n}}\right)\right\}----(2.10 .4)
\end{aligned}
$$

Similarly,

$$
\begin{aligned}
& \mathrm{d}\left(\mathrm{x}_{2 \mathrm{n}}, \mathrm{x}_{2 \mathrm{n}-1}\right) \leq \mathrm{c}_{1} \cdot \max \left\{\mathrm{~d}\left(\mathrm{x}_{2 \mathrm{n}-2}, \mathrm{x}_{2 \mathrm{n}-1}\right), \mathrm{e}\left(\mathrm{y}_{2 \mathrm{n}-1}, \mathrm{y}_{2 \mathrm{n}}\right)\right\}--(2.10 .5) \\
& \mathrm{e}\left(\mathrm{y}_{2 \mathrm{n}}, \mathrm{y}_{2 \mathrm{n}-1}\right) \leq \mathrm{c}_{2} \cdot \max \left\{\mathrm{e}\left(\mathrm{y}_{2 \mathrm{n}-1}, \mathrm{y}_{2 \mathrm{n}-2}\right), \mathrm{d}\left(\mathrm{x}_{2 \mathrm{n}-1}, \mathrm{x}_{2 \mathrm{n}-2}\right)\right\}--(2.10 .6)
\end{aligned}
$$

from inequalities (2.10.3), (2.10.4), (2.10.5) and (2.10.6), we have
$\mathrm{d}\left(\mathrm{x}_{\mathrm{n}+1}, \mathrm{x}_{\mathrm{n}}\right) \leq \mathrm{c}_{1}{ }^{\mathrm{n}} \mathrm{c}_{2}{ }^{\mathrm{n}-1} \cdot \max \left\{\mathrm{~d}\left(\mathrm{x}_{1}, \mathrm{x}_{0}\right), \mathrm{e}\left(\mathrm{y}_{1}, \mathrm{y}_{2}\right)\right\} \rightarrow 0$ as $\mathrm{n} \rightarrow \infty$ Thus $\left\{x_{n}\right\}$ is a Cauchy sequence in (X,d). Since (X,d) is complete, $\left\{x_{n}\right\}$ converges to a point z in X. Similarly using inequalities (2.10.3), (2.10.4), (2.10.5) and (2.1.6), we prove $\left\{y_{n}\right\}$ is a Cauchy sequence in (Y,e) with the limit w in Y.
Suppose $\left\{A_{n}\right\}$ is continuous, then

$$
\lim _{n \rightarrow \infty} \mathrm{~A}_{\mathrm{n}} \mathrm{X}_{2 \mathrm{n}}=\mathrm{A}_{\mathrm{n}} \mathrm{Z}=\lim _{n \rightarrow \infty} \mathrm{y}_{2 \mathrm{n}+1}=\mathrm{w}
$$

Now we prove $S_{n} A_{n} z=z$.
Suppose $\mathrm{S}_{\mathrm{n}} \mathrm{A}_{\mathrm{n}} \mathrm{z} \neq \mathrm{z}$.
We have

$$
\begin{aligned}
& \mathrm{d}\left(\mathrm{~S}_{\mathrm{n}} \mathrm{~A}_{\mathrm{n}} \mathrm{z}, \mathrm{z}\right)=\lim _{n \rightarrow \infty} \mathrm{~d}\left(\mathrm{~S}_{\mathrm{n}} \mathrm{~A}_{\mathrm{n}} \mathrm{z}, \mathrm{~T}_{\mathrm{n}} \mathrm{~B}_{\mathrm{n}} \mathrm{x}_{2 \mathrm{n}-1}\right) \\
& \leq \lim _{n \rightarrow \infty} \mathrm{c}_{1} \cdot \max \left\{\mathrm{~d}\left(\mathrm{z}, \mathrm{x}_{2 \mathrm{n}-1}\right), \mathrm{d}\left(\mathrm{z}, \mathrm{~S}_{\mathrm{n}} \mathrm{~A}_{\mathrm{n}} \mathrm{z}\right), \mathrm{e}\left(\mathrm{~A}_{\mathrm{n}} \mathrm{z}, \mathrm{~B}_{\mathrm{n}} \mathrm{x}_{2 \mathrm{n}-1}\right),\right. \\
& \quad\left[\mathrm{d}\left(\mathrm{z}, \mathrm{~T}_{\mathrm{n}} \mathrm{~B}_{\mathrm{n}} \mathrm{x}_{2 \mathrm{n}-1}\right)+\mathrm{d}\left(\mathrm{~S}_{\mathrm{n}} \mathrm{~A}_{\mathrm{n}} \mathrm{z}, \mathrm{x}_{2 \mathrm{n}-1}\right)\right] / 2, \\
& \left.\mathrm{~d}\left(\mathrm{z}, \mathrm{~S}_{\mathrm{n}} \mathrm{~A}_{\mathrm{n}} \mathrm{z}\right) \cdot \mathrm{d}\left(\mathrm{x}_{2 \mathrm{n}-1}, \mathrm{~T}_{\mathrm{n}} \mathrm{~B}_{\mathrm{n}} \mathrm{x}_{2 \mathrm{n}-1}\right) / \mathrm{d}\left(\mathrm{z}, \mathrm{x}_{2 \mathrm{n}-1}\right)\right\} \\
& \leq \lim _{n \rightarrow \infty} \mathrm{c}_{1} \cdot \max \left\{\mathrm{~d}\left(\mathrm{z}, \mathrm{x}_{2 \mathrm{n}-1}\right), \mathrm{d}\left(\mathrm{z}, \mathrm{~S}_{\mathrm{n}} \mathrm{~A}_{\mathrm{n}} \mathrm{z}\right), \mathrm{e}\left(\mathrm{~A}_{\mathrm{n}} \mathrm{z}, \mathrm{y}_{2 \mathrm{n}}\right),\right. \\
& \quad\left[\mathrm{d}\left(\mathrm{z}, \mathrm{x}_{2 \mathrm{n}}\right)+\mathrm{d}\left(\mathrm{~S}_{\mathrm{n}} \mathrm{~A}_{\mathrm{n}} \mathrm{z}, \mathrm{x}_{2 \mathrm{n}-1}\right)\right] / 2, \\
& \left.\quad \mathrm{~d}\left(\mathrm{z}, \mathrm{~S}_{\mathrm{n}} \mathrm{~A}_{\mathrm{n}} \mathrm{z}\right) \cdot \mathrm{d}\left(\mathrm{x}_{2 \mathrm{n}-1}, \mathrm{x}_{2 \mathrm{n}}\right) / \mathrm{d}\left(\mathrm{z}, \mathrm{x}_{2 \mathrm{n}-1}\right)\right\} \\
& =\mathrm{c}_{1} \cdot \max \left\{\mathrm{~d}(\mathrm{z}, \mathrm{z}), \mathrm{d}\left(\mathrm{z}, \mathrm{~S}_{\mathrm{n}} \mathrm{~A}_{\mathrm{n}} \mathrm{z}\right), \mathrm{e}(\mathrm{w}, \mathrm{w}),\right. \\
& {\left[\begin{array}{l}
\left.\left[\mathrm{d}(\mathrm{z}, \mathrm{z})+\mathrm{d}\left(\mathrm{~S}_{\mathrm{n}} \mathrm{~A}_{\mathrm{n}} \mathrm{z}, \mathrm{z}\right)\right] / 2, \mathrm{~d}(\mathrm{z}, \mathrm{z}) \cdot \mathrm{d}\left(\mathrm{~S}_{\mathrm{n}} \mathrm{~A}_{\mathrm{n}} \mathrm{z}, \mathrm{z}\right) / \mathrm{d}(\mathrm{z}, \mathrm{z})\right\} \\
\leq \mathrm{c}_{1} \cdot \mathrm{~d}\left(\mathrm{z}, \mathrm{~S}_{\mathrm{n}} \mathrm{~A}_{\mathrm{n}} \mathrm{z}\right) \\
\quad<\mathrm{d}\left(\mathrm{z}, \mathrm{~S}_{\mathrm{n}} \mathrm{~A}_{\mathrm{n}} \mathrm{z}\right) \quad\left(\text { Since } 0 \leq \mathrm{c}_{1}<1\right)
\end{array}\right.}
\end{aligned}
$$

Which is a contradiction.
Thus $\mathrm{S}_{\mathrm{n}} \mathrm{A}_{\mathrm{n}} \mathrm{Z}=\mathrm{z}$.
Hence $\mathrm{S}_{\mathrm{n}} \mathrm{w}=\mathrm{z}$. $\left(\right.$ Since $\left.\mathrm{A}_{\mathrm{n}} \mathrm{z}=\mathrm{w}\right)$
Now we prove $B_{n} S_{n} w=w$.
Suppose $\mathrm{B}_{\mathrm{n}} \mathrm{S}_{\mathrm{n}} \mathrm{w} \neq \mathrm{w}$.
We have

$$
\begin{aligned}
& \mathrm{e}\left(\mathrm{~B}_{\mathrm{n}} \mathrm{~S}_{\mathrm{n}} \mathrm{w}, \mathrm{w}\right)= \\
& =\lim _{n \rightarrow \infty} \mathrm{e}\left(\mathrm{~B}_{\mathrm{n}} \mathrm{~S}_{\mathrm{n}} \mathrm{w}, \mathrm{y}_{2 \mathrm{n}+1}\right) \\
& =\lim _{n \rightarrow \infty} \mathrm{e}\left(\mathrm{~B}_{\mathrm{n}} \mathrm{~S}_{\mathrm{n}} \mathrm{w}, \mathrm{~A}_{\mathrm{n}} \mathrm{~T}_{\mathrm{n}} \mathrm{y}_{2 \mathrm{n}}\right) \\
& \leq \lim _{n \rightarrow \infty} \mathrm{c}_{2} \max \left\{\mathrm{e}\left(\mathrm{w}, \mathrm{y}_{2 \mathrm{n}}\right), \mathrm{e}\left(\mathrm{w}, \mathrm{~B}_{\mathrm{n}} \mathrm{~S}_{\mathrm{n}} \mathrm{w}\right), \mathrm{d}\left(\mathrm{~S}_{\mathrm{n}} \mathrm{w}, \mathrm{~T}_{\mathrm{n}} \mathrm{y}_{2 \mathrm{n}}\right),\right. \\
& \quad\left[\mathrm{e}\left(\mathrm{w}, \mathrm{~A}_{\mathrm{n}} \mathrm{~T}_{\mathrm{n}} \mathrm{y}_{2 \mathrm{n}}\right)+\mathrm{e}\left(\mathrm{~B}_{\mathrm{n}} \mathrm{~S}_{\mathrm{n}} \mathrm{w}, \mathrm{y}_{2 \mathrm{n}}\right)\right] / 2, \\
& \left.\quad \mathrm{e}\left(\mathrm{w}, \mathrm{~B}_{\mathrm{n}} \mathrm{~S}_{\mathrm{n}} \mathrm{w}\right) . \mathrm{e}\left(\mathrm{y}_{2 \mathrm{n}}, \mathrm{~A}_{\mathrm{n}} \mathrm{~T}_{\mathrm{n}} \mathrm{y}_{2 \mathrm{n}}\right) / \mathrm{e}\left(\mathrm{w}, \mathrm{y}_{2 \mathrm{n}}\right)\right\} \\
& <
\end{aligned}
$$

Which is a contradiction.

Thus $\mathrm{B}_{\mathrm{n}} \mathrm{S}_{\mathrm{n}} \mathrm{w}=\mathrm{w}$.
Hence $B_{n} z=w$. (Since $\left.S_{n} w=z\right)$
Now we prove $T_{n} B_{n} z=z$.
Suppose $\mathrm{T}_{\mathrm{n}} \mathrm{B}_{\mathrm{n}} \mathrm{z} \neq \mathrm{z}$.

$$
\begin{aligned}
& \mathrm{d}\left(\mathrm{z}, \mathrm{~T}_{\mathrm{n}} \mathrm{~B}_{\mathrm{n}} \mathrm{z}\right)=\lim _{n \rightarrow \infty} \mathrm{~d}\left(\mathrm{x}_{2 \mathrm{n}+1}, \mathrm{~T}_{\mathrm{n}} \mathrm{~B}_{\mathrm{n}} \mathrm{z}\right) \\
&=\lim _{n \rightarrow \infty} \mathrm{~d}\left(\mathrm{~S}_{\mathrm{n}} \mathrm{~A}_{\mathrm{n}} \mathrm{x}_{2 \mathrm{n}}, \mathrm{~T}_{\mathrm{n}} \mathrm{~B}_{\mathrm{n}} \mathrm{z}\right) \\
& \leq \lim _{n \rightarrow \infty} \mathrm{c}_{1} . \max \left\{\mathrm{d}\left(\mathrm{x}_{2 \mathrm{n}}, \mathrm{z}\right), \mathrm{d}\left(\mathrm{x}_{2 \mathrm{n}}, \mathrm{~S}_{\mathrm{n}} \mathrm{~A}_{\mathrm{n}} \mathrm{x}_{2 \mathrm{n}}\right),\right. \\
& \mathrm{e}\left(\mathrm{~A}_{\mathrm{n}} \mathrm{x}_{2 \mathrm{n}}, \mathrm{~B}_{\mathrm{n}} \mathrm{z}\right),\left[\mathrm{d}\left(\mathrm{x}_{2 \mathrm{n}}, \mathrm{~T}_{\mathrm{n}} \mathrm{~B}_{\mathrm{n}} \mathrm{z}\right)+\mathrm{d}\left(\mathrm{SAx}_{2 \mathrm{n}}, \mathrm{z}\right)\right] / 2, \\
&\left.\mathrm{~d}\left(\mathrm{x}_{2 \mathrm{n}}, \mathrm{~S}_{\mathrm{n}} \mathrm{~A}_{\mathrm{n}} \mathrm{x}_{2 \mathrm{n}}\right) . \mathrm{d}\left(\mathrm{z}, \mathrm{~T}_{\mathrm{n}} \mathrm{~B}_{\mathrm{n}} \mathrm{z}\right) / \mathrm{d}\left(\mathrm{x}_{2 \mathrm{n}}, \mathrm{z}\right)\right\} \\
&<\mathrm{d}\left(\mathrm{z}, \mathrm{~T}_{\mathrm{n}} \mathrm{~B}_{\mathrm{n}} \mathrm{z}\right) \quad\left(\text { Since } 0 \leq \mathrm{c}_{1}<1\right)
\end{aligned}
$$

Which is a contradiction.
Thus $\mathrm{T}_{\mathrm{n}} \mathrm{B}_{\mathrm{n}} \mathrm{z}=\mathrm{z}$.
Hence $T_{n} w=z$. $\quad\left(\right.$ Since $\left.B_{n} Z=w\right)$
Now we prove $A_{n} T_{n} w=w$.
Suppose $A_{n} T_{n} w \neq w$.

$$
\begin{aligned}
& \mathrm{e}\left(\mathrm{w}, \mathrm{~A}_{\mathrm{n}} \mathrm{~T}_{\mathrm{n}} \mathrm{w}\right)=\lim _{n \rightarrow \infty} \mathrm{e}\left(\mathrm{y}_{2 \mathrm{n}}, \mathrm{~A}_{\mathrm{n}} \mathrm{~T}_{\mathrm{n}} \mathrm{w}\right) \\
&=\lim _{n \rightarrow \infty} \mathrm{e}\left(\mathrm{~B}_{\mathrm{n}} \mathrm{~S}_{\mathrm{n}} \mathrm{y}_{2 \mathrm{n}-1}, \mathrm{~A}_{\mathrm{n}} \mathrm{~T}_{\mathrm{n}} \mathrm{w}\right) \\
& \leq \lim _{n \rightarrow \infty} \mathrm{c}_{2} \cdot \max \left\{\mathrm{e}\left(\mathrm{y}_{2 \mathrm{n}-1}, \mathrm{w}\right), \mathrm{e}\left(\mathrm{y}_{2 \mathrm{n}-1}, \mathrm{~B}_{\mathrm{n}} \mathrm{~S}_{\mathrm{n}} \mathrm{y}_{2 \mathrm{n}-1}\right),\right. \\
& \mathrm{d}\left(\mathrm{~S}_{\mathrm{n}} \mathrm{y}_{2 \mathrm{n}-1}, \mathrm{~T}_{\mathrm{n}} \mathrm{w}\right), {\left[\mathrm{e}\left(\mathrm{y}_{2 \mathrm{n}-1}, \mathrm{~A}_{\mathrm{n}} \mathrm{~T}_{\mathrm{n}} \mathrm{w}\right)+\mathrm{e}\left(\mathrm{~B}_{\mathrm{n}} \mathrm{~S}_{\mathrm{n}} \mathrm{y}_{2 \mathrm{n}-1}, \mathrm{w}\right)\right] / 2, } \\
&\left.\mathrm{e}\left(\mathrm{y}_{2 \mathrm{n}-1}, \mathrm{~B}_{\mathrm{n}} \mathrm{~S}_{\mathrm{n}} \mathrm{y}_{2 \mathrm{n}-1}\right) \cdot \mathrm{e}\left(\mathrm{w}, \mathrm{~A}_{\mathrm{n}} \mathrm{~T}_{\mathrm{n}} \mathrm{w}\right) / \mathrm{e}\left(\mathrm{y}_{2 \mathrm{n}-1}, \mathrm{w}\right)\right\} \\
&<\mathrm{e}\left(\mathrm{w}, \mathrm{~A}_{\mathrm{n}} \mathrm{~T}_{\mathrm{n}} \mathrm{w}\right) \quad\left(\text { Since } 0 \leq \mathrm{c}_{2}<1\right)
\end{aligned}
$$

Which is a contradiction.
Thus $\mathrm{A}_{\mathrm{n}} \mathrm{T}_{\mathrm{n}} \mathrm{W}=\mathrm{w}$.
The same results hold if one of the mappings $\left\{B_{n}\right\},\left\{S_{n}\right\}$ and $\left\{T_{n}\right\}$ is continuous.
So the point z is the common fixed point of $\left\{\mathrm{S}_{\mathrm{n}} \mathrm{A}_{\mathrm{n}}\right\}$ and $\left\{T_{n} B_{n}\right\}$. Similarly we prove w is a common fixed point of $\left\{B_{n} S_{n}\right\}$ and $\left\{A_{n} T_{n}\right\}$.
Uniqueness: Let z^{\prime} be another common fixed point of $\left\{\mathrm{S}_{\mathrm{n}} \mathrm{A}_{\mathrm{n}}\right\}$ and $\left\{T_{n} B_{n}\right\}$ in X, w^{\prime} be another common fixed point of $\left\{B_{n} S_{n}\right\}$ and $\left\{A_{n} T_{n}\right\}$ in Y.
We have $\mathrm{d}\left(\mathrm{z}, \mathrm{z}^{\prime}\right)=\mathrm{d}\left(\mathrm{S}_{\mathrm{n}} \mathrm{A}_{\mathrm{n}} \mathrm{z}, \mathrm{T}_{\mathrm{n}} \mathrm{B}_{\mathrm{n}} \mathrm{z}^{\prime}\right)$

$$
\begin{aligned}
\leq \mathrm{c}_{1} . \max \{ & \mathrm{d}\left(\mathrm{z}, \mathrm{z}^{\prime}\right), \mathrm{d}\left(\mathrm{z}, \mathrm{~S}_{\mathrm{n}} \mathrm{~A}_{\mathrm{n}} \mathrm{z}\right), \mathrm{e}\left(\mathrm{~A}_{\mathrm{n}} \mathrm{z}, \mathrm{~B}_{\mathrm{n}} \mathrm{z}^{\prime}\right), \\
& {\left[\mathrm{d}\left(\mathrm{z}, \mathrm{~T}_{\mathrm{n}} \mathrm{~B}_{\mathrm{n}} \mathrm{z}^{\prime}\right)+\mathrm{d}\left(\mathrm{~S}_{\mathrm{n}} \mathrm{~A}_{\mathrm{n}} \mathrm{z}, \mathrm{z}^{\prime}\right)\right] / 2, } \\
& \left.\mathrm{~d}\left(\mathrm{z}, \mathrm{~S}_{\mathrm{n}} \mathrm{~A}_{\mathrm{n}} \mathrm{z}\right) \cdot \mathrm{d}\left(\mathrm{z}^{\prime}, \mathrm{T}_{\mathrm{n}} \mathrm{~B}_{\mathrm{n}} \mathrm{z}^{\prime}\right) / \mathrm{d}\left(\mathrm{z}, \mathrm{z}^{\prime}\right)\right\}
\end{aligned}
$$

$$
\begin{aligned}
& =c_{1} \cdot \max \left\{\mathrm{~d}\left(\mathrm{z}, \mathrm{z}^{\prime}\right), \mathrm{d}(\mathrm{z}, \mathrm{z}), \mathrm{e}\left(\mathrm{w}, \mathrm{w}^{\prime}\right),\left[\mathrm{d}\left(\mathrm{z}, \mathrm{z}^{\prime}\right)+\right.\right. \\
& \left.\left.\quad \mathrm{d}\left(\mathrm{z}, \mathrm{z}^{\prime}\right)\right] / 2, \mathrm{~d}(\mathrm{z}, \mathrm{z}) \cdot \mathrm{d}\left(\mathrm{z}^{\prime}, \mathrm{z}^{\prime}\right) / \mathrm{d}\left(\mathrm{z}, \mathrm{z}^{\prime}\right)\right\} \\
& <\mathrm{e}\left(\mathrm{w}, \mathrm{w}^{\prime}\right) \\
& \mathrm{e}\left(\mathrm{w}, \mathrm{w}^{\prime}\right)=\mathrm{e}\left(\mathrm{~B}_{\mathrm{n}} \mathrm{~S}_{\mathrm{n}} \mathrm{w}, \mathrm{~A}_{\mathrm{n}} \mathrm{~T}_{\mathrm{n}} \mathrm{w}^{\prime}\right) \\
& \leq \mathrm{c}_{2} \cdot \max \left\{\mathrm{e}\left(\mathrm{w}, \mathrm{w}^{\prime}\right), \mathrm{e}\left(\mathrm{w}, \mathrm{~B}_{\mathrm{n}} \mathrm{~S}_{\mathrm{n}} \mathrm{w}\right),\right. \\
& \mathrm{d}\left(\mathrm{~S}_{\mathrm{n}} \mathrm{w}, \mathrm{~T}_{\mathrm{n}} \mathrm{w}^{\prime}\right),\left[\mathrm{e}\left(\mathrm{w}, \mathrm{~A}_{\mathrm{n}} \mathrm{~T}_{\mathrm{n}} \mathrm{w}^{\prime}\right)+\mathrm{e}\left(\mathrm{~B}_{\mathrm{n}} \mathrm{~S}_{\mathrm{n}} \mathrm{w}, \mathrm{w}^{\prime}\right)\right] / 2, \\
& \left.\quad \mathrm{e}\left(\mathrm{w}, \mathrm{~B}_{\mathrm{n}} \mathrm{~S}_{\mathrm{n}} \mathrm{w}\right) \cdot \mathrm{e}\left(\mathrm{w}^{\prime}, \mathrm{A}_{\mathrm{n}} \mathrm{~T}_{\mathrm{n}} \mathrm{w}^{\prime}\right) / \mathrm{e}\left(\mathrm{w}, \mathrm{w}^{\prime}\right)\right\} \\
& <\mathrm{d}\left(\mathrm{z}, \mathrm{z}^{\prime}\right)
\end{aligned}
$$

Hence $\mathrm{d}\left(\mathrm{z}, \mathrm{z}^{\prime}\right)<\mathrm{e}\left(\mathrm{w}, \mathrm{w}^{\prime}\right)<\mathrm{d}\left(\mathrm{z}, \mathrm{z}^{\prime}\right)$
Which is a contradiction.
Thus $\mathrm{z}=\mathrm{z}^{\prime}$.
So the point z is the unique common fixed point of $\left\{S_{n} A_{n}\right\}$ and $\left\{T_{n} B_{n}\right\}$. Similarly we prove w is a unique common fixed point of $\left\{B_{n} S_{n}\right\}$ and $\left\{A_{n} T_{n}\right\}$.
Remark :2.11: If we put $\mathrm{A}_{\mathrm{i}}=\mathrm{A}, \mathrm{B}_{\mathrm{j}}=\mathrm{B}, \mathrm{S}_{\mathrm{p}}=\mathrm{S}$ and $\mathrm{T}_{\mathrm{q}}=\mathrm{T}$ in the above theorem 2.10, we get the following corollary. Corollory 2.12: Let (X, d) and (Y, e) be complete metric spaces. Let A, B be mappings of X into Y and S , T be mappings of Y into X satisfying the inequalities.
$d\left(S A x, T B x^{\prime}\right) \leq c_{1} . \max \left\{d\left(x, x^{\prime}\right), d(x, S A x), e\left(A x, B x^{\prime}\right)\right.$,

$$
\begin{aligned}
& {\left[\mathrm{d}\left(\mathrm{x}, \mathrm{TBx} \mathrm{x}^{\prime}\right)+\mathrm{d}\left(\mathrm{SAx}, \mathrm{x}^{\prime}\right)\right] / 2} \\
& \left.\mathrm{~d}(\mathrm{x}, \mathrm{SAx}) \cdot \mathrm{d}\left(\mathrm{x}^{\prime}, \mathrm{TBx} \mathrm{x}^{\prime}\right) / \mathrm{d}\left(\mathrm{x}, \mathrm{x}^{\prime}\right)\right\}
\end{aligned}
$$

$e\left(B S y, A T y^{\prime}\right) \leq c_{2} . \max \left\{e\left(y, y^{\prime}\right), e(y, B S y), d\left(S y, T y^{\prime}\right)\right.$,

$$
\begin{array}{r}
{\left[\mathrm{e}\left(\mathrm{y}, \mathrm{ATy} \mathrm{y}^{\prime}\right)+\mathrm{e}\left(\mathrm{BSy}, \mathrm{y}^{\prime}\right)\right] / 2} \\
\left.\mathrm{e}(\mathrm{y}, \mathrm{BSy}) . \mathrm{e}\left(\mathrm{y}^{\prime}, \mathrm{ATy} \mathrm{y}^{\prime}\right) / \mathrm{e}\left(\mathrm{y}, \mathrm{y}^{\prime}\right)\right\}
\end{array}
$$

for all $\mathrm{x}, \mathrm{x}^{\prime}$ in X and $\mathrm{y}, \mathrm{y}^{\prime}$ in Y where $0 \leq \mathrm{c}_{1}<1$ and $0 \leq \mathrm{c}_{2}<1$. If one of the mappings A, B, S and T is continuous, then SA and TB have a unique common fixed point z in X and BS and AT have a unique common fixed point w in Y . Further, $\mathrm{Az}=$ $\mathrm{Bz}=\mathrm{w}$ and $\mathrm{Sw}=\mathrm{Tw}=\mathrm{z}$.

REFERENCES

[1] Abdulkrim Aliouche, Brain Fisher, A related fixed point theorem for two pairs of mappings on two complete metric spaces, Hacettepe Journal of Mathematics and Statistics 34, (2005), 39-45.
[2] Y.J. Cho . S.M. Kang, S.S Kim, Fixed points in two metric spaces, Novi Sad J.Math., 29(1),(1999), 47-53.
[3] Y.J. Cho , Fixed points for compatible mappings of type Japonica, 38(3), (1993), 497-508.
[4] A. Constantin , Common fixed points of weakly commuting Mappings in 2- metric spaces, Math. Japonica, 36(3), (1991), 507-514
[5] A .Constantin , On fixed points in noncomposite metric spaces, Publ. Math. Debrecen, 40(3-4), (1992), 297-302.
[6] B. Fisher, Fixed point on two metric spaces, Glasnik Mate., 16(36), (1981), 333-337 [7] Fisher B., Related fixed point on two metric spaces, Math. Seminor Notes, Kobe Univ.,10 (1982), 17-26.
[7] A. Valeriu Popa , General fixed point theorem for two pair of mappings on two metric spaces, Novi Sad J. Math., 35(2), (2005), 7983.
[8] T.Veerapandi , T.Thiripura Sundari , J.Paulraj Joseph , Some fixed point theorems in two complete metric spaces, International Journal of mathematical archive, 3(3), (2012), 826-837.
[9] T.Veerapandi , T.Thiripura Sundari., J. Paulraj Joseph , Some common fixed point theorems in two complete metric spaces,International Journal of mathematical archive, 4(5), (2013),251-273.

