Proving the Beal Conjecture

David T. Mage ${ }^{\# 1}$
\# World Health Organization (retired) 18 West Periwinkle Lane, Newark, DE, USA

Abstract

Fermat's Last Theorem stated, without proof, that the equation, $\mathbf{X}^{\mathbf{n}}+\mathbf{Y}^{\mathbf{n}}=\mathbf{Z}^{\mathbf{n}}$, where $\mathbf{X}, \mathbf{Y}, \mathbf{Z}$ and \mathbf{n} are integers greater than 2, had no solution for X, Y and Z co-primes. This Theorem was proven by Andrew Wiles in 1994 using mathematical techniques unknown to Fermat 350 years ago. Andrew Beal posed a related conjecture that the equation $X^{a}+Y^{b}=Z^{c}$ had no solution for X, Y, $\mathbf{Z}, \mathrm{a}, \mathrm{b}$, and c , where they are all integers greater than 2 , and X, Y and Z are co-primes. A simple mathematical proof available to Fermat is used here to prove the Beal conjecture.

Keywords- Fermat, Wiles, Beal, Pythagoras.

I. Introduction

In 1993 Beal [1] conjectured that if $X^{a}+Y^{b}=Z^{c}(1)$ where X, Y, Z, a, b, c are all integers greater than 2 , then X, Y and Z have a common prime factor [2]. The impossibility of the situation where integers $\mathrm{a}=\mathrm{b}=\mathrm{c}=\mathrm{n}>2$ was first postulated by Fermat who claimed a simple proof thereof that was lost to history [3]. Perhaps it might have run as follows:

For any right triangle with Base $=\mathrm{X}($ any odd integer $>1)$, Height $=\mathrm{Y}=\left(\mathrm{X}^{2}-1\right) / 2($ an even integer $)$ and Hypotenuse $=$ $\mathrm{Z}=\mathrm{Y}+1$ (an odd integer), we can write the Pythagorean relationship $\mathrm{X}^{2}+\mathrm{Y}^{2}=\mathrm{Z}^{2}$ (2). [N.B. X cannot be even because Y would be an odd integer divided by 2.]

Then multiplying each term by finite X^{n-2} we obtain, $X^{n}+X^{n-2} Y^{2}=X^{n-2} Z^{2}(3)$ and we can then write it as $\quad X^{n}+$ $\mathrm{Y}^{\mathrm{n}}\left(\mathrm{X}^{\mathrm{n}-2} / \mathrm{Y}^{\mathrm{n}-2}\right)=\mathrm{Z}^{\mathrm{n}}\left(\mathrm{X}^{\mathrm{n}-2} / \mathrm{Z}^{\mathrm{n}-2}\right)$ (4).

We now compare this to Fermat's target relationship for $n>2, X^{n}+Y^{n}=Z^{n}(5)$. From (4) and (5) if both are true we get the following equality by eliminating X^{n} : $\quad Z^{n}-Y^{n}=Z^{n}\left(X^{n-2} / Z^{n-2}\right)-Y^{n}\left(X^{n-2} / Y^{n-2}\right)$ (6).
But (6) can only be true if the parenthetical multipliers are both equal to 1 and that is only possible if $n=2$. Therefore Fermat's last Theorem is proven, that there is no solution possible for $\mathrm{X}, \mathrm{Y}, \mathrm{Z}$ and n if they are all integers greater than 2 with no common primes.

II. PROVING THE BEAL CONJECTURE

The Beal conjecture (1) is also proven by the same technique, from (2) as follows: $\mathrm{X}^{2}+\mathrm{Y}^{2}=\mathrm{Z}^{2}$ (2). Multiplying by X^{a-2} we obtain $X^{a}+X^{a-2} Y^{2}=X^{a-2} Z^{2}$ (7), which can be rewritten as $X^{a}+Y^{b}\left(X^{a-2} / Y^{b-2}\right)=Z^{c}\left(X^{a-2} / Z^{c-2}\right)$ (8). Eliminating X^{a} from (1) and (8) we obtain
$\mathrm{Z}^{\mathrm{c}}-\mathrm{Y}^{\mathrm{b}}=\mathrm{Z}^{\mathrm{c}}\left(\mathrm{X}^{\mathrm{a}-2} / \mathrm{Z}^{\mathrm{c}-2}\right)-\mathrm{Y}^{\mathrm{b}}\left(\mathrm{X}^{\mathrm{a}-2} / \mathrm{Y}^{\mathrm{b}-2}\right)(9)$. But (9) can only be true if the parenthetical multipliers are both equal to 1 and that is only possible if $\mathrm{a}=\mathrm{b}=\mathrm{c}=2$.

III. Conclusion

Beal's Conjecture is proven, that there is no solution possible for (1) with $\mathrm{X}, \mathrm{Y}, \mathrm{Z}$ and $\mathrm{a}, \mathrm{b}, \mathrm{c}$ if they are all integers greater than 2, if X, Y, and Z are co-primes.

References

[1] (2014) The Beal Conjecture website. [Online]. Available: http://www.bealconjecture.com/
[2] R. D. Mauldin, " A Generalization of Fermat's Last Theorem: The Beal Conjecture and Prize Problem," Notices of the AMS, vol. 44, pp. 1436-1439, Nov. 1997.
[3] S. Singh, Fermat's Enigma, New York, NY: Walker and Company, 1997.

