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  Abstract- In this paper, we consider sufficiency conditions for the stability of trivial solutions of measure differential equations. The 

bound for  k1


Bk
1

  in the Pandit's problem is estimated in a systematic way and used to establish criteria for the stability of 

trivial solutions. Results on asymptotic stability for testable perturbed measure differential equations are obtained using some growth 

properties, Pandit inequality and Brascamp-Lieb inequality. An example is used to illustrate the application of results obtained. 
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I. INTRODUCTION 

Physical and biological systems governed by ordinary differential equations (odes) are often assumed 

to be continuous([1],[2]&[4]).In practice, it has been discovered that some models in applied sciences 

such as control theory, economics and engineering are not always continuous as often assumed. The 

state of a system may sometimes be discontinuous and the solution characterized by short time 

perturbations (impulses) whose actions are negligible when compared to the total time taken by the 

whole process ([4], [6], [7], [12].& [13]). 

 

The study of impulsive systems through functions with bounded variation or measure differential 

equations as it is often called is essentially aimed at providing a broad framework for studying 

impulsive systems using distribution theory. This theory is more general than that of ordinary 

differential equations (o.d.e.). Hence, measure differential equations (m.d.e.) circumvent some 

shortcomings in the (o.d.e.) (see [10], [12], [13] & [17]). 

 

Measure differential equations, primarily was motivated as a field of study from pulse frequency 

modulation models for biological neutral nets and automatic control systems ([8], [11], [12], [14] and 

[17]). In spite of appreciable advances made in the field of impulsive differential equations, there are 

still much needed to be studied in the field. For instance, several analogues of ode models are now 

available but few are present in the literature on measure differential equations. 
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In the present paper, the crux of our study is to investigate the asymptotic stability of some testability 

measure differential equations using an analogue of Gronwall-Bellman inequality due to Pandit ([16] 

& [17]) and Brascamp-Lieb inequality (see [3]). We will obtain sufficiency conditions for asymptotic 

stability of the m.d.e. and it applied to an example.  

  
 

II. PRELIMINARY DEFINITIONS AND NOTATIONS 
Let  Rn

  denote a  n   dimensional Euclidean space with norm  

x max
1in

|x i|

 

Let  
1

1 if 
( ) ( ), ( ) {

0 if 

k

k k k

k k

t t
u t t a H t H t

t t






  


   

Let  ( )nM J   be the set of  n  n   matrices defined on  J  0,   with the norm  

xMnJ 
i1

n


j1

n

|x ij|,  x  MnJ

 

Furthermore, the following notation will be adopted:  VJ,Rn   will represent the set of 

vector-valued functions defined on  J   and whose components are of bounded variation. 

The set  

V f  sup


k1

n
|fx k  fx k1|: x k  Px 0 ,x k,

Px 0 ,x kbeing the partition of J  0,for k  1,2,, 3

 

 is finite for every f  VJ,Rn  . 

The space of bounded variation (BV) will be represented as  BVJ  BVJ,Rn  . This is a Banach 

space with the norm  

x  Vx,J  x0 , x  BVJ
 

Where  

Vx,J  sup
x0

V f

 

is the total variation of  f   on  J   as defined above. ( )nGL J   will represent the class of  n  n   

invertible matrices on  J  . SLnJ   denotes a subclass of  GLnJ   defined as  

SLnJ  A  GLnJ : detA  1
 

 ( )i A   is the set of eigenvalues of the matrix  A  MnJ  .Furthermore,  CL   will represent 

the closure of the set     and finally.  



    International Journal of Mathematics Trends and Technology – Volume 13 Number 2 – Sep 2014 

 
 

ISSN: 2231-5373                   http://www.ijmttjournal.org Page 26 

 

RH
n  x  Rn : x H  .

 
 
 II.A Distribution and their Derivatives 

 

The formulation of measure differential equations relies on distribution derivatives. Therefore, there 

is the need for us to give a preliminary treatment on the distribution theory relevant to our research 

work. 

 

Let  Cc
J   be a linear space of a class of infinitely partially differentiable complex valued 

functions defined on the set  J   which has a compact support i.e., the set   

 

Supp V  CLX  Rn : x  0   (1)                                                

is compact. The support of  x   is the smallest closed set on  Rn
  outside of which the function  

x   vanishes. It's canonical norm being  

xCc
  sup

x
|x| ,    Cc

.

 

The space  Cc
   is called the space of Test functions and it is a normed linear space. Any 

continuous linear functional on  Cc
   is what we shall henceforth call distributions, that is, the 

dual space of continuous functions on  Cc
  . 

 

The distribution on J can be identified with the Lebesque-Stieltjes' measure  dt  , on the closed 

interval  J0  0,T  J   and  

 

0
0 0 0( ) ( ) ( ), ( ), ( , )n

J
F s d s C J BV J R                                                                 (2)                                 

 

Definition 1 

The derivative  DF   of a distribution  F   on J  is the distribution defined as   

   
/( ) ( )DF F                                                                            (3)

                                                 

Where  

/  d
dx

 

The notation  D   will be adopted for distribution derivative.  

 

Remark 1 

The space of distribution on J  is a matrisable complete locally convex topological space (LCTS) 

with the topology  
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max sup

, | | 0 0( )  | ( ) |, ( )r

M K x K r mP x C J   

      (4)                         

 

Where  K   is a compact subset of    ,  r  r1 ,r2 ,,rn  Rn
 ,  1| | | |m

i ir r   ,  m   is a 

positive integer and the multi-index derivative,  r
  is defined as  

r  r

xr  r

x1
r ,x2

r ,,xm
m  . 

The dual space of  Cc
   with the topology defined in eq. (4) is a Frechet space. For definiteness, 

we restrict our study to some subset of this space. 

 

With this background information on distribution theory, we may now proceed to formulate the 

measure differential equations. For further insight into distribution theories refer to [Shilov and 

Gurevich [18], Taylor [19], Treves [20] and Yosida [21]). 

 

 
III.  STATEMENT OF THE PROBLEM 

 

Consider the measure differential equations  

 

( ) ( ) ( , ( )) ( , ( ))Dx t Ax t f t x t g t x t Du                                                            (5)                                     

 

Where ( ), , ( , ) and .n n

nA M J f g BV J R x R    

 : nu J R   is a right continuous functions with bounded variation on every compact subinterval  

J0  0,T  J  ; f : J  RH
n  Rn

  is a Lebesque integrable function and g : J  RH
n  Rn

  is 

integrable with respect to Lebesque-Stieltjes' measure  du  . 

The function  ut   is assumed to be impulsive for an increasing sequence of times  

t i, i  1,2, .such that  0  t1  t2 . . . tk, limk tk  .   

 

It will also be assumed that  ut   is right continuous and of bounded variation. Moreover, its 

discontinuities at the impulsive points  t i   are isolated. It was shown in ([16] & [17]) that a 

necessary and sufficient condition for  xt  xt, t0 ,x0   to be a solution of eq. (5) passing through  

t0 ,x0   is that the integral equation  

 

0 0

0 0 0( , , ) ( , ( )) [ ( ) ( , ( ))] ( )

t t

t t

x t t x x f s x s ds Ax s g s x s du s                                                           (6) 

Must be satisfied. 

 

 Remark 2 

If  u  0   in eq. (5) then the whole study reduces to that of the classical perturbation in ordinary 

differential equations. In the monograph ([17], pp. 12) Pandit and Deo presented results that showed 

that the solution of the (m.d.e.) exists and is unique. Similar results were established by Pandit [16].  

 



    International Journal of Mathematics Trends and Technology – Volume 13 Number 2 – Sep 2014 

 
 

ISSN: 2231-5373                   http://www.ijmttjournal.org Page 28 

 

Definition 2 

The set of impulsive points  t i1


  in the subinterval  t, t  w  ,  w  0   of  J   for  

i  1,2,  is called a counting number. We will denote this by  #t, t  w   and  

 

*#[ , ]
lim
w

t t w
K

w


                                                                            (7) 

 K
  Will be called a counting ratio if the limit in eq. (7) exists and is finite. If this condition is 

satisfied we shall call the system in the eq. (5) a testable measure differential equation. If otherwise, 

we refer to the system as attestable measure differential equation. 

 

Definition 3 

The zero solution  x  0   of the system in the eq. (5) is called: 

(a) Stable if 0 0( 0)( )( ( , ) 0)t t J t          

xt, t0 ,x 0 ;
 

(b) Uniformly stable if the number in (a) does not depend on 0t J   

(c) Attractive if  

 t0  J   t0  0    0
 

 t  t0   : xt, t0 ,x 0  ;
 

(d) Equi-attractive if the number     from (c) does not depend on  0

n

Hx R  ; 

(e) Asymptotically stable if it is stable and attractive. 

 

In this paper, asymptotic stability will be studied relation to the zero solution since stability is 

invariant with respect to non singular change of the equilibrium point. 

 

Consider the prototype (m.d.e.)  

 

Dx AxDu                                                                                   (8)                                     

Where  A   and  u   satisfy the foregoing conditions stipulated in the preliminaries. Furthermore, 

let  

 

That is, the multipliers  k   are not eigenvalues of  A  . The unique solution of the eq. (8) is  

Bk  I  kA k  1,2,,

Bk  GLnJ I  SLnJ.

9
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xt 
k1

n1

Bk
1ett0Ax 0 ;xt0  x 0

 
(See [14]) 

 

Remark 3 

If  iA  k
1 , k  0   for  k  1,2,  . Then the set  iI  A1

  is the resolvent of  

A  MnJ   and it is analytic if    iA   for  i  1,2, . 

 

Definition 4 

The spectrum of  A  MnJ   is defined as  

SpecA  max
i

| iA|, i  1,2,,n.

 
III.B  Auxiliary Results 

 

We state without proofs the following auxiliary lemmas: 

 

Lemma 1 (see Pandit [14]) 

 

Let  gt,xt   be a non-negative function and integrable on  J   is the sense described above. 

Suppose that  f   is non-negative and locally integrable on  J   such that  kftk  1   for such  

x  1  . Suppose further that the series  kftk   converges absolutely. If  

xt  C  
t0

t

gs,xsds  
t0

t

fs,xsdus t  J

 
Then  

xt  P1C exp 
t0

t

fsgsus t  J

 
Where  

P 
k1



1  kftk

 
We will consider the Brascamp-Lieb inequality which is a powerful extension of Holders' inequality 

for  1  i  m  . 

 

Lemma 2 (Brascamp-Lieb inequality) (See [3]) 

Let  1  i  m   and  Bi : Rn  Rd
  be subjective map and  ci0,1.  the best constant  

k0,   such that the inequality 
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
Rn

i1
m f iBixc idx  ki1

m 
Rn

f idxc i

 
 

Holds for all integrable functions  f i : Rn  J   can be computed by taking any centered Gaussian 

function  f ix  exp  Aix,x    

Where  A i  's are symmetric positive definite matrices of size  D   and  k  D1/2
 .    

 
D  infA i0

det 
k1

n

CiB i
A iB i

i1
n detA iCi   

Where  Bi


  is adjoint matrix to  Bi.   

 
IV. Main Results 

We will estimate the bounds for  k1

n1
Bk
1

  and consequently relative it to the estimation of the 

solution of eq. (8) and this will be followed by the asymptotic stability theorems.  

 

Lemma 3  


k1

n1

Bk
1  ce

ns
, c  1

 
Where  

  max
1in

Re ik

 
And 

1
1

1

:
n

s k

k

Q B






                                                                      (10) 

 

Proof  

Bk  I  kA
 

Thus  

Bk
1  I  kA1 Bk  GLnJ

 
Therefore,  
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1

1

1 1
1 1

1 1

1
1

1

( )

|| ( ) ||

 

(by Lemma 5.1) in [ 12]

n

kk

n

n n

k k

k k

n

k

k

A

Q

B I A

I A

e

ce











 
 

 






 

 





 

  

 

 

Remark 4 

In [12] it was demonstrated that the sum of the multipliers,  Qs   is related to the counting ratio by the 

relation  as    KIn  ,    0   and even showed that  
k1

n1
Bk
1

  gives the bound for  

#t0,t
 , we will generalize Lemma 1 using a stronger condition that the matrix  Bk   in eq. (9) is not 

a sparse matrix. 

 

Theorem 1 

Suppose that  Bk   for  k  1,2,,   is a matrix which is not sparse such that there exists a constant  

N  0   such that  0  |PkA| 1  A N  ,  N    for  k  0,1,2,  . 

 

 PkA   is the characteristic polynomial for matrix  A   

 

Then  


k1



Bk
1  CeS k

n
Bkn

 CeS k
n

Nn

, C  1.
 

Where  

Sk

n 
k1



k
n ; n  1,2,

 
And  

Smk

n 
k1

m

k
n , m  1,2,,n; Smn

n  Sk

n
n  .

 
Proof  
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Bk
1  I  kA1

 
Let  

Qs  lim
m

k0

m

I  kA1 .

 
Then  

Qs  lim
m

k0

m

log
e
I  kA1

 lim
m

0

m

kA  k
2 A2

2

k

3

3
A3   SpecA  1

 Sk

1
A  Sk

2 A2

2
 O Sk

3 A3

3
 

Let  J   be  n  n   matrix in Jordan canonical form with the property that  

Ak  JPkJ1 , k  0,1,2,
 

And  

J  diagJ0 ,J1 ,J2 ,,Jn,
 

That is, quasi-diagonal is  J 1   for  i  1,2,,n  , such that  J i  iIi  Ni  .N i   Being  n  n   

nilpotent matrix and  Ii   is  n  n   identity matrix.  

Hence  

log
e
Q  JSk

0
J1  JSk

1
PJ1  JSk

2 P2

2
J1  OJSk

3 P3

3!
J1.

 
Define 

 

SkP 
r1



Sk

r Pr

r

 

Such that the sequence  Sk

r   is convergent in some compact subset  J   of  J   and  

SpecP  1  , then  

Q  JeSk

rPJ1

 
Hence,  
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Q  JJ1 
k1



JeS k
r
PJ1

 C1C2eS k
n

Nn

 
Where  

C1  JJ1 1
 

And  

C2  max
i
|C i|   i  1,2,,

 
Therefore,  


k1



e
Sk
r

PJ

Cke
Sk
n

Pn

 

For  k  1,2,,   

Hence  

Q C1Ck expSk

n
Nn; Ck : C1C2Ck.

 
Theorem 2 

The trivial solution,  xt, t0  0,x0  0   if eq. (6) is asymptotically stable if  

  maxReiA  0  t  t0  as

 
Proof 
The solution of eq. (9) is  

xt  xt, t0 ,x 0 
k1

n1

Bk
1ett0Ax 0

 
Hence by Lemma 5.1 in [12], we have the estimate  

xt, t0 ,x 0  
k1

n1

Bk
1 ett0Ax 0

 C1eC2ett0x 0,

 C1C2x 0e
Qstt0 , C1 ,C2  1.

 

Thus given    0   and set   
1 2

ln .sC C
Q


    Therefore     0   such that whenever  
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x0    it implies that xt, t0 ,x0 ,  t  t0    .Hence  xt, t0 ,x0  0   is attractive 

and even stable by Definition 3 therefore  x  0   is asymptotically stable.  

 

Remark 5 

In fact  xt, t0 ,x0  0   is equi-attractive since  t,x0 ,   is independent of  x 0  . Moreover,  

xt, t0 ,x0 0   as  t   . 

 

Next we consider a Theorem which gives a sufficient condition for asymptotic stability of perturbed 

measure differential equations.  

 

Theorem 3 
 

Consider the (m.d.e.)  

 

Where  AMnJ   .Suppose that following conditions are also satisfied: 

 

There exists a constant such that 

 

H1:   max1in ReiA  0   

H2:  ft,xt xt   for some small real number    0  . 

 

Then the trivial solution  x  0   of eq. (12) is asymptotically stable. 

 

Proof 

 

The solution of the eq. (12) is  

0 0

0

1 1
( ) ( )1 1

0 0

1 1

( , , ) ( , ( ))

tn n
t t A s t A

k o k

k kt

x t t x B e x B e f s x s ds
 

  

 

     (13)                       

 

 
0( )

0 0 0 0( , , ) ( , , ) sQ t tdeft t x x t t x e
  


   (14)                                       

 

Then  

0

0 0 0|| ( , , ) || || || ( )

t

t

t t x C C s ds         (15)                                     

 

Using the Gronwall-Bellman inequality, we get  

 

0( )

0 0 0|| ( , , ) || || ||
C t t

t t x C e
  

   (16)                                            

 

Dx  AxDu  ft,xt12
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Hence  

xt, t0 ,x 0  Ce
asx 0e

Ctt0e
astt0

 Cx 0e
Ctt0

 
The proof follows immediately if we choose  

  1  1
C   ln 

c
C    0.

 
 

This ends the proof. 

 

Corollary 1 
Let all the conditions in the Theorem 3 be satisfied except H2 which is replaced by  

ft,xt  
Rn

pti1
m f iK ixidx

 

Where  pt   is a polynomial of degree  n   in  t   and there exists a constant  f0   such that  

|i1
m f ixi | f0 .   

 

Then the trivial solution to the eq. (12) is asymptotically stable. 

 

Proof 

Just like the Theorem 3 by setting  p0  max|pt|   and applying the Brascamp-Lieb inequality to 

get 

||t|| C||0 || kp0 |i1
m f i

i |||s||ds
 

Where  t   is define in the eq. (14).Application of Gronwall's inequality leads to   

 

||xt, t0 ,x0|| C||x0 ||eC
_
p0f0ktt0  . 

 

Therefore if we choose   _

0 0

11 ln
C

C p f k




 


 

    and hence the proof. 

 

Remark 6 
 

The application of Gronwall-Bellman inequality poses no difficulty in the eq. (15) to get eq. (16).  

Suppose we replace the eq. (12) by  

 

( , )Dx Ax f t x Du                                                                        (17)                                        

 

In this case, Gronwall-Bellman inequality is inapplicable. In this situation, it becomes necessary to 

use the Lebesque-Stieltjes' integrable version of the Gronwall-Bellman inequality (GBI). 
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We will present a measure differential equation analogue of (GBI) due to Pandit ([16], see Lemma 

4.2) and subsequently apply it to obtain stability theorems later.  

 

Remark 7 

The condition that  k1

 kftk   converges absolutely guarantees the absolute convergence of  

P 
k1



1  kftk,

 
We will indeed demonstrate this assertion in Lemma 4. Let us now derive the scalar analogue of the 

bound for  k1
1  k  . 

 

Lemma 4 
Let  

P1 
k1



1  kftk kftk  1 and 
k1



kftk

 
is absolutely convergent. 

 Define    ea s
1

 e
2/2a s

2

 and let  

as
n 

k1



k
n

 

Then  P1~e
~
a s

1

e
~
a s

2

 T
~
.   

 

Proof 

From  P1  
k1

 1  k   we have  

log
e
P1  lim

k0

k1

m

log
e
1  k

 

Since  k  1   for  k  1,2,   then the power series of  log1  k   is absolutely 

convergent and hence  


k1



log1  k

 
But  

log1  k  k 
k

2

2
2 

k
2

3
3  .
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Hence,  


k1



log1  k  
k1



k  1

2

k1



k
2  3

3

k1



k
3  

 

Since     is an arbitrarily small real number by hypothesis, we may neglect the term  
3

3
as
3

  and 

higher terms. Thus  

log
e
P1  as

1  2

2
as
2

 
Or  

P1  ea s
1

 e
 2

2
a s
2

 T
 

 

This ends the proof. 

 

Theorem 4 
Consider the measure differential equations  

 

( ) ( ) ( , ( )) ( , ( ))Dx t Ax t Du f t x t dt g t x t                         (18) 

 

Where  A  MnJ  , the vector-valued functions,  ft,xt   and  Gt,xt   are integrable in 

Lebesque-Stieltjes and Lebesque sense respectively for  x  Rn
 . 

 

Suppose further that the following conditions are also satisfied: 

 

H1: Remax1in iA  0  ; 

H2: Gt,xt gtxt   

Where  gt   is a non-negative function for  t  J   and it also satisfies the property that  

lim
t

sup 
t

t1

gsu/s  0

 

H3:  ft,xt xt  Where     is an arbitrary small real number. 

 

Then the trivial solution  x  0   of eq. (18) is asymptotically stable. 

 

Proof 

The solution  xt   of the eq. (18) is  
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xt 
k1



Bk
1eAtt0x 0  

t0

t

eAstGs,xsdus

 
t0

t 
k0



Bk
1eAstfs,xsds 19

xt  C1ea sett0x 0
t0

t

C1estgsxsdus

 
 

 
t0

t

C1ea sestxsds

 

Let  
d e f
 xtett0   where    Remax1in iA   and  C1  1.  

Then  

0 0

01 1|| || || || ( ) ( ) ( ) ( )s

t t

Q

t t

C e C g s s du s s ds        (20)                                

Without loss of generality (w.l.g.) we can choose  C1  1  .Then, by Lemma 2, we have the 

estimation  

 ea s0P1 exp 
t0

t

gsu/s t  J

Where  1

1(1 )k kP   
    has the property that  

  1  . 

Whence  

0

0

Re ( ) 1 /

0|| ( ) || || || exp( ( ) ( ))s

t

Q A t t

t

x t e e P g s u s    (21)                       

Now,  by condition H2. in the hypothesis  


t0

t

gsu/s  
t0

t


t

t1

gsu/s

 

For which  t   exists in such a way that  t  t  J  . Therefore, the integral  


t0

t
gsu/s

  can 

be evaluated as  


t0

t

gsu/s  gtMt, t0

 
Where  

Mt, t0  ut  ut0.
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Now let  gt,Mt1 , t  b  ,  then by Lebesque-Stieltjes integrability condition imposed on  

gs  , the second integral  


t

t1

gsu/s  0 t  .

 

Thus  P1
  is convergent since it is an infinite product of an absolutely convergent sequence real 

numbers  1  k k  1,2,.  where  k  1  .Hence, we can majorize  P1
  by some real 

number  Tas  (See Lemma 3). 

 

Now given    0   choose  
1 1/ 1 1

0( , , ) log ( ) b

e st x a                               (22) 

Then we can find a real number    0   such that if  x0   . Then  xt    for  

t  t0     .For the proof of this claim, we proceed as follows: If  x0    then     0    

e
as

e
Re iAtt0x 0P1 exp 

t0

t

gsu/s

 
 

 ea sett0eb  
 

Therefore,  

e
Re iAtt0  11ea sb

 

But    0  1   by hypothesis, thus  

t  t0  log
e
11  as  b

 
i.e.  

t  t0  log
e
111/  as1  b1  t0  .

 
This ends the proof.   

 

Theorem 5 

 

Consider the intergro-measure differential equations  

 

0

( , ( ) ( , ) ( )
t

t
Dx Ax f t x t Du k s t x s ds                           (23) 

Assume that 
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H1: There exist k0  0   and    0   such that 

       |ks, t| k0

st
est

  

H2: For every    0   and    0   such that 

           |ft,xt| |xt|   

H3: There exist  P,P1GL2J   such that  

e
Att0  Pe

Jtt0P1

And |eJst| est

 

Then the trivial solution to the eq. (23) is asymptotically stable for  0  t  s.   

 

Proof 

 

 It is not difficult to show that 

 

|xt| Ce
astt0 |x 0 |

t0

t

CPe
Jst0P1 fs,xsds

 
t0

t 
t0

s

k1
 Bk

1e
astt0 k 0

s  t
estds

 

And clearly if we let    max1in ReiA  0   and  |ft,xt|
~
 |xt|  , lims

est

st
 0   then 

the trivial solution to the eq. (23) is asymptotically stable for  0  t  s  . Hence the proof. 

 

Example 
Consider the measure differential equation 

 

( , )Dx AxDu f t x                                  (E1) 

 

 

Where  

A 

3 1 0 0 0 0

0 3 1 0 0 0

0 0 3 1 0 0

0 0 3 1 0 0

0 0 0 0 3 1

0 0 0 0 0 3
  

 ft,x  f1 , f2 , f3 , f4 , f5 , f6T,T   is the transpose of the vector  ft,x.   
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f1  0.78e2tx 1  0.802t  11x 2  0.23x 3

0.20t2  21x 4  0.30x 5  0.20x 6  d1 .

f2  0.2t4  2t2  11ecos tx 1  0.89e2tx 2  0.12etx 3

0.23x 4 cos2t  0.12sinetx 5  3.2x 6  d2 .

f3  0.90x 1  0.20e2t2t  11x 2  0.80x 3

0.50cos t3 1

1t2
x 4  0.20x 5  0.06x 6  d3 .

f4  0.25ex1 x 1  0.20x 2  0.50x 3

0.80x 4  0.80sinetx 5  0.78et2

x 6  d4 .

f5  0.50ecos tx 1  0.34x 2  etx 3

0.23x 4 cos3t  0.78sine2tx 5  7.5x 6  d5 .

f6  0.30x 1  0.701  t61x 2  0.58t  11x 3

0.12x 4  0.56e2tx 5  0.35x 6  d6 .

  

Clearly,    ReA  3  0   

 

 ||f1 || 0.8||x||d1 , ||f2 || 089||x||d2 , ||f3 || 0.90||x||d3 ,   

 ||f4 || 0.80||x||d4 , ||f5 || 0.78||x||d5   And  ||f6 || 0.7||x||d6  .  

 

Therefore   

 ||ft,x|| max0.80,0.89,0.90,0.80,0.78,0.70, |di|||x||   

If we choose  
~
 max1i60.09, |di|  1,  hence  ||ft,x||

~
 ||x||.   

 

Then the trivial solution  x  0   of eq. (E1) is asymptotically stable by Theorem 4 for  

Gt,xt  0   in the eq. (18). 
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