Neighbourly Regular Strength of Bipartite Graphs

Selvam Avadayappan ${ }^{\# 1}$ and M.Muthuchelvam ${ }^{* 2}$
\#Department of Mathematics
V.H.N.S.N.College, Virudhunagar - 626 001, India.
*Department of Mathematics
Kathir College of Engineering, Coimbatore - 641 062, India.

Abstract

A graph is said to be a neighbourly irregular graph (or simply an NI graph) if every pair of its adjacent vertices have distinct degrees. Let \mathbf{G} be a simple graph of order n. Let $\mathbf{N I}(\mathbf{G})$ denote the set of all NI graphs in which \mathbf{G} is an induced subgraph. The neighbourly regular strength of G is denoted by $\operatorname{NRS}(G)$ and is defined as the minimum positive integer k for which there is an NI graph in $\mathrm{NI}(\mathbf{G})$ of order $\mathbf{n + k}$. In this paper, we show that $\mathrm{NRS}(\mathrm{G}) \leq \mathbf{2}$ for any bipartite graph \mathbf{G}. In addition, we show that NRS(T) is either 0 or $\mathbf{1}$ for any tree \mathbf{T}.

Keywords - Regular graph, irregular graph, neighbourly irregular graph and neighbourly regular strength of a graph.

I. Introduction

Throughout this paper we consider only undirected, finite and simple graphs. Notations and terminology that we do not define here can be found in [10]. Let G be a graph of order n. For $1 \leq i \leq n-1$, the subset $V_{i}(G)$ (or simply V_{i}) is defined as the set of all vertices of degree i in G. That is, $V_{i}(G)=\{v \in V(G) \mid d(v)=i\}$. Note that $\left|V_{i}\right| \leq n$ for all $i, 0 \leq i \leq n-1$. If G is r-regular, then $V_{r}(G)=V(G)$ and $V_{i}(G)$ is empty for all $\mathrm{i} \neq \mathrm{r}$. In fact, $\left|\mathrm{V}_{\mathrm{r}}\right|=\mathrm{n}$ if and only if G is r-regular. A graph which is not regular is called irregular [3].

For a vertex v, let $N_{i}(v)$ be the set of all vertices adjacent to v with degree i, that is, $N_{i}(v)=\{w \in N(v) \mid d(w)=i\}$. In other words, $N_{i}(v)=N(v) \cap V_{i}(G)$. If $d(v)=i$, then we define $N_{i}[v]=N_{i}(v) \cup\{v\}$. Any vertex of even (odd) degree is called an even (odd) vertex. A vertex of degree one is called a pendant vertex. For any two graphs G and H, the join $G \vee H$ is the graph obtained by joining each vertex in G to each vertex in H. A spanning 1-regular subgraph of G is called a 1-factor of G and is denoted by F. P_{n} denotes the path of order n, C_{n} denotes the cycle of length n and W_{n} denotes the wheel of order n.

We know that in any graph, all the degrees cannot be distinct, that is, any graph has at least two vertices of the same degree. Let I_{n} denote a graph with vertex set $V=\left\{v_{1}, v_{2}, \ldots, v_{n}\right\}$ and the edge set $E=\left\{v_{n+1-i} v_{j}, 1 \leq i \leq\left\lfloor\frac{n}{2}\right\rfloor\right.$, $\left.i \leq j \leq n-i\right\}$, (where $\lfloor x\rfloor$ denotes the largest integer which is less than or equal to x) which has precisely two vertices with same degree [7]. In [13], the graph I_{n} is referred as a pairlone graph and is denoted by PL_{n}. It has been proved in [13] that, for any $\mathrm{n} \geq 2$, there exists a unique pairlone graph of order n .

In [12], S. Gnaana Bhragsam and Ayyaswamy introduced a new concept of neighbourly irregular graph. A simple graph G is said to be a neighbourly irregular graph (or simply an NI graph) if no two adjacent vertices of G have the same degree. For example, the complete bipartite graph $\mathrm{K}_{\mathrm{m}, \mathrm{n}}, \mathrm{m} \neq \mathrm{n}$, is an NI graph. For more types of irregular graphs, one can refer [1], [2], [3], [6], [8], [9], [11], [14] and [15].

II Neighbourly regular strength of a graph

In [12], it has been proved that any graph of order n is an induced subgraph of an NI graph of order at most $n(n+1) / 2$. But in [4], it has been proved that any graph of order n is an induced subgraph of an NI graph of order at most $2 \mathrm{n}-1$. Based on this result, a new concept called neighbourly regular strength of a graph has been introduced and studied in [4]. More results on NRS have been obtained in [5].

For a simple graph G of order n, the neighbourly regular strength $\operatorname{NRS}(\mathrm{G})$ of G is the minimum number k for which there is an NI graph $\mathrm{NI}(\mathrm{G})$ in $\mathbf{N I}(\mathbf{G})$ of order $\mathrm{n}+\mathrm{k}$, where $\mathbf{N I}(\mathbf{G})$ denotes the set of all NI graphs in which G is an induced subgraph. For example, $\operatorname{NRS}\left(\mathrm{P}_{4}\right)=1, \operatorname{NRS}\left(\mathrm{C}_{5}\right)=2$ and $\operatorname{NRS}\left(\mathrm{W}_{4}\right)=2$. The respective NI graphs in $\mathbf{N I}\left(\mathbf{P}_{4}\right), \mathbf{N I}\left(\mathbf{C}_{5}\right)$ and $\mathbf{N I}\left(\mathbf{W}_{4}\right)$ are shown in Fig 1.

$\mathrm{NI}\left(\mathrm{P}_{4}\right)$

$\mathrm{NI}\left(\mathrm{C}_{5}\right)$

$\mathrm{NI}\left(\mathrm{W}_{4}\right)$

Fig 1
The following facts on NRS can be verified easily [4]:
Fact $1 \operatorname{NRS}(G)=0$ for any NI graph G.
Fact $2 \operatorname{NRS}(G-v)=0$ or 1 for any NI graph G. For, if $G-v$ is NI, then $\operatorname{NRS}(G-v)=0$. Otherwise since $G-v$ is an induced subgraph of $G, \operatorname{NRS}(G-v)=1$. For example, consider the path P_{3} which is NI. $\operatorname{NRS}\left(P_{3}-v\right)=\left\{\begin{array}{c}0 \text { if } d(v)=2 \\ 1 \text { otherwise }\end{array}\right.$.
Fact 3 Let G be the disjoint union of graphs $\mathrm{G}_{1}, \mathrm{G}_{2}, \ldots, \mathrm{G}_{\mathrm{m}}$. Then $\operatorname{NRS}(\mathrm{G}) \leq \sum_{i=1}^{m} N R S\left(G_{i}\right)$.
Fact 4 NRS of a graph does not have the hereditary property. That is, H is a subgraph of G does not imply that $\operatorname{NRS}(H) \leq$ $\operatorname{NRS}(\mathrm{G})$. For example, $\operatorname{NRS}\left(\mathrm{K}_{2,3}\right)=0$ where as $\operatorname{NRS}\left(\mathrm{K}_{3,3}\right)=1$.
Fact $5 \mathrm{NRS}\left(\mathrm{K}_{\mathrm{n}, \mathrm{m}}\right)=\left\{\begin{array}{l}0 \text { if } \mathrm{n} \neq \mathrm{m} \\ 1 \text { otherw ise }\end{array}\right.$.
Fact $6 \operatorname{NRS}\left(P_{n}\right)=\left\{\begin{array}{l}0 \text { if } n=1 \text { or } 3 \\ 1 \\ \text { otherwise }\end{array}\right.$.
Fact $7 \operatorname{NRS}\left(\mathrm{C}_{\mathrm{n}}\right)=\left\{\begin{array}{l}1 \text { if } \mathrm{n} \text { is even and } \mathrm{n} \neq 6 \\ 2 \text { otherwise }\end{array}\right.$.
Fact $8 \operatorname{NRS}\left(W_{n}\right)=\left\{\begin{array}{c}1 \text { for any odd } n \geq 5 \\ 2 \text { for any even } n \geq 6 \\ 3 \text { for } n=4\end{array}\right.$.
Fact $9 \operatorname{NRS}\left(\mathrm{I}_{\mathrm{n}}\right)=\left\{\begin{array}{l}0 \text { if } \mathrm{n} \text { is odd } \\ 1 \text { otherwise }\end{array}\right.$.
Let G be any NI graph with clique number $\omega(\mathrm{G})=\mathrm{k}$. Since the k vertices in the clique must have distinct degrees in G ,
$\Delta(\mathrm{G}) \geq 2 \mathrm{k}-2$. This forces that
Fact 10 Any NI graph with clique number k has at least $2 k-1$ vertices.
Since $\omega\left(\mathrm{K}_{\mathrm{n}}\right)=\mathrm{n}, \omega\left(\mathrm{NI}\left(\mathrm{K}_{\mathrm{n}}\right)\right) \geq \mathrm{n}$. Thus by Fact 10, it is easy to observe that
Fact $11 \operatorname{NRS}\left(\mathrm{~K}_{\mathrm{n}}\right) \geq \mathrm{n}-1$ for any $\mathrm{n} \geq 1$.
Fact 12 Let G be an NI graph of order n. For any $m \geq 1, G \vee K_{m}{ }^{c}$ is NI if and only if $V_{n-m}(G)$ is empty.
Fact 13 If G is NI, then G is the only NI graph in $\mathbf{N I}(\mathbf{G})$ of order $n+N R S(G)$. If G is not an NI graph, then the number of NI graphs of order $\mathrm{n}+\mathrm{NRS}(\mathrm{G})$ in $\mathbf{N I}(\mathbf{G})$ need not be unique. For example, consider the cycle of order 6 . Clearly $\mathrm{NRS}\left(\mathrm{C}_{6}\right)=2$. Two NI graphs of order 8 in $\mathbf{N I}\left(\mathbf{C}_{6}\right)$ are shown in Fig 2.

Fig 2
The following results on NRS have been proved:

Theorem A [4] For any graph G of order $n, \operatorname{NRS}(G) \leq n-1$.
Theorem B [4] For any graph G of order $n, \operatorname{NRS}(G)=n-1$ if and only if $G \cong K_{n}$.
Theorem C [4] $\operatorname{NRS}(G) \leq n-3$, for any connected irregular graph G of order n.
Theorem D [4] For any non-negative integer s and for any $n \geq s+3$, there exists a graph G of order n with $\operatorname{NRS}(G)=s$.
Theorem E [4] For any graph $G, \operatorname{NRS}(G) \geq \max \left\{\omega\left(\left\langle\mathrm{V}_{\mathrm{i}}\right\rangle\right)\right\}-1$, where maximum runs over $\mathrm{i}, 2 \leq \mathrm{i} \leq \mathrm{n}-1$.
Theorem F [5] For any connected regular graph G, $\operatorname{NRS}(G)=\left\{\begin{array}{cc}\chi(G) \text { if } G \cong K_{m, m}-F & \text { where } m \geq 2 \\ \chi(G)-1 & \text { otherwise }\end{array}\right.$.
Theorem G [5] Let G be any graph of order $n, n \geq 6$. $\operatorname{NRS}(G)=n-2$ if and only if $G \cong K_{1} \cup K_{n-1}$.
In this paper, the bound on NRS of any bipartite graph has been obtained. It is well known that, trees are special class in bipartite graphs. It has been proved that the NRS of any non- NI tree is one.

III NRS of bipartite graphs
While determining the neighbourly regular strength of a graph, it is easy to observe from the Fact 10 and the Theorem E that the clique number of the particular graph plays a vital role. The clique number of a bipartite graph is always two. The following theorem shows that NRS of any bipartite graph is at most two.
Theorem 1 For any bipartite graph G, $\operatorname{NRS}(\mathrm{G}) \leq 2$.
Proof Let G be a bipartite graph with bipartition (X,Y). If G is an NI graph, then $\operatorname{NRS}(\mathrm{G})=0$ and hence the result follows. Note that by Theorem F, the result holds when G is regular. So assume that G is irregular and not NI. Let E_{x} and E_{y} denote the set of all even vertices in X and Y respectively and let O_{x} and O_{y} denote the set of all odd vertices in X and Y respectively. Since G is not an NI graph, among the four sets at least two must be non-empty.

Suppose exactly two sets in $\left\{\mathrm{E}_{\mathrm{x}}, \mathrm{E}_{\mathrm{y}}, \mathrm{O}_{\mathrm{x}}, \mathrm{O}_{\mathrm{y}}\right\}$ are non-empty. Then either E_{x} and E_{y} are non-empty or O_{x} and O_{y} are non-empty. Assume that E_{x} and E_{y} are non-empty. Now construct a new graph G_{1} from G by introducing a new vertex u and joining u with the vertices in E_{x}. If G_{1} is NI, then the result follows. Otherwise, construct a graph G_{2} from G_{1} by introducing a new vertex w and joining it with u. Clearly $G_{2} \in \mathbf{N I}(\mathbf{G})$. Hence $\operatorname{NRS}(G) \leq 2$. A similar construction can be used to prove the case when O_{x} and O_{y} are non-empty.

Suppose exactly three sets in $\left\{\mathrm{E}_{\mathrm{x}}, \mathrm{E}_{\mathrm{y}}, \mathrm{O}_{\mathrm{x}}, \mathrm{O}_{\mathrm{y}}\right\}$ are non-empty. Consider the case that $\mathrm{E}_{\mathrm{x}}, \mathrm{E}_{\mathrm{y}}$ and O_{x} are non-empty. Construct a new graph G_{1} from G by introducing a new vertex u and joining u with the vertices in E_{x}. Note that in G_{1}, the vertices in X are all odd and the vertices in Y are all even. Hence for any edge $x y$ in G, we have $d(x) \neq d(y)$ in G_{1}. If G_{1} is NI, then the result follows. Otherwise, add a new vertex w and a new edge uw in G_{1}. The resulting graph is in $\mathbf{N I}(\mathbf{G})$ and hence $\mathrm{NRS}(\mathrm{G}) \leq 2$. One can use a similar construction for the remaining three possibilities of three non-empty sets.

Suppose E_{x}, E_{y}, O_{x} and O_{y} are all non-empty. Construct a new graph G_{1} from G by introducing two new vertices u_{1} and u_{2}, and joining u_{1} with all the vertices in E_{x} and u_{2} with all the vertices in $O_{y}-V_{1}(G)$. Note that in G_{1}, the vertices in X are all odd and any vertex in Y is either an even vertex or a pendant vertex. Hence for any edge $x y$ in $G, d(x) \neq d(y)$ in G_{1}. If G_{1} is NI, then $\operatorname{NRS}(\mathrm{G}) \leq 2$. Otherwise
(i) $\mathrm{d}\left(\mathrm{u}_{1}\right)=\mathrm{d}(\mathrm{u})$ for some $\mathrm{u} \in \mathrm{N}\left(\mathrm{u}_{1}\right)$ or
(ii) $\mathrm{d}\left(\mathrm{u}_{2}\right)=\mathrm{d}(\mathrm{v})$ for some $\mathrm{v} \in \mathrm{N}\left(\mathrm{u}_{2}\right)$ in G_{1}.

If both (i) and (ii) holds, then u_{1} is odd and u_{2} is even. In such a case, $G_{1}+u_{1} u_{2}$ is in $\mathbf{N I}(\mathbf{G})$ of order $n+2$ and hence $\operatorname{NRS}(\mathrm{G}) \leq 2$.

If only (i) holds, then clearly u_{1} is odd and $d\left(u_{1}\right) \geq 3$. If u_{2} is even or $d\left(u_{2}\right)=1$, then $G_{1}+u_{1} u_{2}$ is the required NI graph. Otherwise, u_{2} is odd and $d\left(u_{2}\right) \geq 3$.

Now construct a new graph G_{2} from G_{1} by joining the vertices in X with u_{2} and the vertices in Y with u_{1} respectively. If G_{2} is an NI graph, then the result follows. Suppose G_{2} is not an NI graph. Clearly in G_{2}, the vertices in X are even and the vertices in Y are odd. Also note that in $G_{2}, d\left(u_{1}\right) \geq|Y|+3, d\left(u_{2}\right) \geq|X|+3$ and $d(v)=d_{G}(v)+1$ or $d_{G}(v)+2$ for any vertex v in $V(G)$. Hence in $\mathrm{G}_{2}, \mathrm{~d}(\mathrm{u})<\mathrm{d}\left(\mathrm{u}_{1}\right)$ for any $\mathrm{u} \in \mathrm{X}$ and $\mathrm{d}(\mathrm{v})<\mathrm{d}\left(\mathrm{u}_{2}\right)$ for any $\mathrm{v} \in \mathrm{Y}$. Thus $\Delta\left(\mathrm{G}_{2}\right)=\mathrm{d}\left(\mathrm{u}_{1}\right)$ or $\mathrm{d}\left(\mathrm{u}_{2}\right)$. Clearly, if $\Delta\left(\mathrm{G}_{2}\right)=\mathrm{d}\left(\mathrm{u}_{1}\right)=$ $d\left(u_{2}\right)$, then G_{2} is an NI graph. Without loss of generality, assume that $\Delta\left(G_{2}\right)=d\left(u_{1}\right)$ and so $d\left(u_{1}\right)>d\left(u_{2}\right)$. Since G_{2} is not an NI graph, $\mathrm{d}\left(\mathrm{u}_{2}\right)=\mathrm{d}(\mathrm{v})$ for some v in $\mathrm{N}\left(\mathrm{u}_{2}\right)$. Clearly $\mathrm{G}_{2}+\mathrm{u}_{1} \mathrm{u}_{2}$ is in $\mathbf{N I}(\mathbf{G})$ of order $\mathrm{n}+2$ and hence $\mathrm{NRS}(\mathrm{G}) \leq 2$. Using the similar arguments, one can easily prove that $\mathrm{NRS}(\mathrm{G}) \leq 2$ if $\Delta\left(\mathrm{G}_{2}\right)=\mathrm{d}\left(\mathrm{u}_{2}\right)$.

Suppose only (ii) holds. Then clearly u_{2} is even and $d\left(u_{2}\right) \geq 4$. If u_{1} is odd, or $d\left(u_{1}\right)=2$ and $N_{3}\left(u_{1}\right)$ (The set of all vertices adjacent to u_{1} of degree 3$)=\phi$, then $G_{1}+u_{1} u_{2}$ is a required NI graph. If $d\left(u_{1}\right)=2$ and $N_{3}\left(u_{1}\right) \neq \phi$, then $\left(G_{1}-u_{1} w\right)+u_{2} w$ where $w \in N_{3}\left(u_{1}\right)$ is in $\operatorname{NI}(\mathbf{G})$. Otherwise, u_{1} is even and $d\left(u_{1}\right) \geq 4$. Now construct G_{2} as in above. Note that in $G_{2}, d\left(u_{1}\right) \geq|Y|+4$, $\mathrm{d}\left(\mathrm{u}_{2}\right) \geq|\mathrm{X}|+4$ and $\mathrm{d}(\mathrm{v})=\mathrm{d}_{\mathrm{G}}(\mathrm{v})+1$ or $\mathrm{d}_{\mathrm{G}}(\mathrm{v})+2$ for any v in $\mathrm{V}(\mathrm{G})$. Hence as discussed above, $\mathrm{NRS}(\mathrm{G}) \leq 2$.

Theorem 1 means that, for any bipartite graph $G, \operatorname{NRS}(G)$ can be 0,1 or 2 . For example, $\operatorname{NRS}\left(\mathrm{K}_{1, \mathrm{n}}\right)=0$ for all $\mathrm{n} \geq 2$, $\operatorname{NRS}\left(\mathrm{P}_{\mathrm{n}}\right)=1$ for all $\mathrm{n} \geq 4$, and $\operatorname{NRS}\left(\mathrm{K}_{\mathrm{n}, \mathrm{n}}-\mathrm{F}\right)=2$ for all $\mathrm{n} \geq 2$. This means that the bound attained in Theorem 1 is sharp.

As an illustration, consider the graph G shown in Fig 3. Clearly G is non-NI in which E_{x} and E_{y} are non-empty and O_{x} and O_{y} are non-empty. Thus a new graph G_{1} shown in Fig 3 is constructed form G by introducing two new vertices u_{1} and u_{2}. Note that in $G_{1}, d\left(u_{1}\right)=d(u)$ for some $u \in N\left(u_{2}\right)$. Therefore, the graph G_{2} shown in Fig 3 is constructed form G_{1} as in the proof of Theorem 1. Clearly $\Delta\left(\mathrm{G}_{2}\right)=\mathrm{d}\left(\mathrm{u}_{1}\right)=\mathrm{d}\left(\mathrm{u}_{2}\right)$. Hence G_{2} is an NI graph in $\mathbf{N I}(\mathbf{G})$.

Fig 3
Theorem 2 Any bipartite graph of order n is an induced subgraph of a bipartite NI graph of order at most $\mathrm{n}+3$.
Proof If G is an NI graph then the result holds. Suppose G is not an NI graph. Let G be a bipartite graph of order n with bipartition (X, Y). Let E_{x} and E_{y} denote the set of all even vertices in X and Y respectively and let O_{x} and O_{y} denote the set of all odd vertices in X and Y respectively. Suppose it is not the case that $\mathrm{E}_{\mathrm{x}}, \mathrm{E}_{\mathrm{y}}, \mathrm{O}_{\mathrm{x}}$ and O_{y} are all non-empty in G . Then for such graphs the NI graphs constructed in Theorem 1 are bipartite and of order at most $\mathrm{n}+2$.

Suppose E_{x}, E_{y}, O_{x} and O_{y} are all non-empty. Construct G_{1} from G by introducing two new vertices u_{1} and u_{2}, and joining u_{1} with all the vertices in E_{x} and u_{2} with all the vertices in $O_{y}-V_{1}(G)$. Clearly G_{1} is bipartite. If G_{1} is an NI graph, then the proof is complete. Otherwise, as discussed in Theorem 1, $d\left(u_{1}\right)=d(u)$ for some $u \in N\left(u_{1}\right)$ or $d\left(u_{2}\right)=d(v)$ for some $v \in N\left(u_{2}\right)$ in G_{1}. If $d\left(u_{1}\right)=d(u)$ for some $u \in N\left(u_{1}\right)$ and $d\left(u_{2}\right)=d(v)$ for some $v \in N\left(u_{2}\right)$, then u_{1} is odd and u_{2} is even. In this case, $G_{1}+u_{1} u_{2}$ is a required bipartite NI graph. If $d\left(u_{1}\right)=d(u)$ for some $u \in N\left(u_{1}\right)$, then construct a new graph G_{2} from G_{1} by introducing a new vertex u_{3} and joining it with u_{1}. Clearly G_{2} is a bipartite NI graph of order $n+3$ in which G is an induced subgraph. Similarly the same process can be followed if $d\left(u_{2}\right)=d(u)$ for some $u \in N\left(u_{2}\right)$. This completes the proof.

For example, consider the graph G shown in Fig 3. A bipartite NI graph in which G is an induced subgraph obtained by the process as in the proof of Theorem 2 is shown in Fig 4.

Fig 4
IV NRS of trees
It is well known that in a tree T, the number of pendant vertices is greater than or equal to Δ. That is, $\left|\mathrm{V}_{1}(\mathrm{~T})\right| \geq \Delta$. The number of pendant vertices in a tree T is exactly two if and only if T is a path. That is, $\left|V_{1}(T)\right|=2$ if and only if $T \cong P_{n}$, for some $\mathrm{n} \geq 2$. For $\Delta \geq 3$, the following lemma characterizes the trees with exactly Δ pendant vertices.
Lemma 1 Let T be a tree with $\Delta \geq 3$. The number of pendant vertices in T is exactly Δ if and only if T has exactly one vertex of degree Δ and the remaining vertices are of degree either one or two, that is, if and only if T is isomorphic to $\mathrm{K}_{1, \Delta}$ or to a subdivision of $K_{1, \Delta}$.
Proof Let T be a tree of order n . Let $\left|\mathrm{V}_{\mathrm{i}}\right|=\mathrm{n}_{\mathrm{i}}$ for each i. $1 \leq \mathrm{i} \leq \Delta$. It is well known that for any graph $\mathrm{G}, \sum_{v \in V} d(v)=2 m$, where m is the number of edges in G . Therefore, in $\mathrm{T}, \sum_{i=1}^{\Delta} i n_{i}=2(\mathrm{n}-1)$. Clearly $\mathrm{n}_{1}=2+\sum_{i=3}^{\Delta}(i-2) n_{i}$.

If $\mathrm{n}_{1}=\Delta$, then $\Delta-2=\sum_{i=3}^{\Delta-1}(i-2) n_{i}+(\Delta-2) \mathrm{n}_{\Delta}$ and so $\mathrm{n}_{\Delta}=1$ and $\mathrm{n}_{\mathrm{i}}=0$ for each $\mathrm{i}, 3 \leq \mathrm{i} \leq \Delta-1$. Conversely if $\mathrm{n}_{\Delta}=1$ and $\mathrm{n}_{\mathrm{i}}=0$ for $3 \leq \mathrm{i} \leq \Delta-1$, then $\mathrm{n}_{1}=\Delta$.

For a given set of k integers $m_{1}, m_{2}, \ldots m_{k}$ where $m_{i} \geq 2$ for each i, construct a tree of order $m_{1}+m_{2}+\ldots+m_{k}+1-k$ which is obtained by identifying a pendant vertex in each of the paths $P_{m_{1}}, P_{m_{2}}, \ldots P_{m_{k}}$ and denote it by $\mathrm{P}\left(\mathrm{m}_{1}, \mathrm{~m}_{2}, \ldots \mathrm{~m}_{k}\right)$. For example, $\mathrm{P}(2,3,3,3,4)$ is shown in Fig 5.

Clearly any path $\mathrm{P}_{\mathrm{n}}, \mathrm{n} \geq 3$ is $\mathrm{P}(\mathrm{n}-1,2)$. Note that the number of pendant vertices in any tree T of order $\mathrm{n} \geq 3$ is exactly Δ if and only if T is isomorphic to $P\left(m_{1}, m_{2}, \ldots, m_{\Delta}\right)$. It is easy to observe that $P\left(m_{1}, m_{2}, \ldots m_{k}\right)$ is NI if and only if $m_{i} \leq 3$, for each $\mathrm{i}, 1 \leq \mathrm{i} \leq \mathrm{k}$ and $\mathrm{k} \geq 3$. Thus,
Lemma 2 For any tree T with $\Delta \geq 3$ and $\left|\mathrm{V}_{1}(\mathrm{~T})\right|=\Delta$, T is NI if and only if its radius is at most 2 .
The bound attained in Lemma 2 is sharp. For example, the radius of the NI tree $\mathrm{P}(3,3,3)$ shown in Fig 6 is 2.

Lemma 3 Let T be any tree of order n . If $\left|\mathrm{V}_{1}(\mathrm{~T})\right|=\Delta$, then $\operatorname{NRS}(\mathrm{T})=0$ or 1 .
Proof Let T be any tree of order n with $\left|\mathrm{V}_{1}(\mathrm{~T})\right|=\Delta$. If T itself is NI , then $\operatorname{NRS}(\mathrm{T})=0$. Assume that $\operatorname{NRS}(\mathrm{T}) \geq 1$. If $\Delta=2$, then T is a path and so the results holds trivially. Suppose $\Delta \geq 3$. Then by Lemma 1, T has exactly one vertex of degree Δ and the remaining vertices are of degree either one or two. Let u be the vertex of degree Δ in T . As T is bipartite, let (X, Y) be the bipartition of T. Without loss of generality, assume that u is in X. Since T is not NI, $V_{2}(T)$ is neither empty nor independent in T. Hence both $\mathrm{V}_{2}(\mathrm{~T}) \cap \mathrm{X}$ and $\mathrm{V}_{2}(\mathrm{~T}) \cap \mathrm{Y}$ are non-empty.

Construct a new graph G from T by introducing a new vertex w and joining it with the vertices in $V_{2}(T) \cap X$. If G is NI, then the result holds. Otherwise, $d(w)=\left|V_{2}(T) \cap X\right|=3$.

If $d(u)>3$, then $G+u w$ is in $\mathbf{N I}(\mathbf{T})$ of order $n+1$. Suppose $d(u)=3=\Delta$. Then $\left|V_{1}(T)\right|=3$. If $V_{1}(T) \cap Y \neq \phi$, let $v \in$ $\mathrm{V}_{1}(\mathrm{~T}) \cap \mathrm{Y}$. Then $\mathrm{G}+\mathrm{wv}$ is in $\mathbf{N I}(T)$. Otherwise, $\mathrm{V}_{1}(\mathrm{~T}) \subseteq \mathrm{X}$. But $\left|\mathrm{V}_{2}(\mathrm{~T}) \cap \mathrm{X}\right|=3$. Clearly $\left|\mathrm{V}_{2}(\mathrm{~T}) \cap \mathrm{Y}\right| \geq 4$. In this case, construct a graph G from T by introducing a new vertex w and joining it with the vertex u and the vertices in Y . Clearly G is in $\mathbf{N I}(\mathbf{T})$ of order $\mathrm{n}+1$. Thus NRS $(\mathrm{T})=1$.

For example, an NI graph in $\mathbf{N I}(\mathbf{P}(\mathbf{4}, \mathbf{4}, \mathbf{4}, \mathbf{4}))$ is shown in Fig 7

Fig 7

Lemma 4 Let T be any tree of order n . If $\left|\mathrm{V}_{1}(\mathrm{~T})\right|>\Delta$, then $\operatorname{NRS}(\mathrm{T})=0$ or 1 .
Proof If T is an NI tree, then the result is obvious.
Suppose T is not an NI tree. Let (X,Y) be the bipartition of T. Without loss of generality, assume that $\left|\mathrm{V}_{1}(\mathrm{~T}) \cap \mathrm{X}\right| \geq$ $\left|\mathrm{V}_{1}(\mathrm{~T}) \cap \mathrm{Y}\right|$. Now construct a new graph G from T by introducing a new vertex w and joining it with the even vertices in Y and the odd vertices in $\mathrm{X}-\mathrm{V}_{1}(\mathrm{~T})$.

In G, the vertices in Y are odd and any vertex in X is either an even vertex or a pendant vertex. Hence for any edge xy in $T, d_{G}(x) \neq d_{G}(y)$. Note that for any vertex $v \in V(T), d_{G}(v)=d_{T}(v)$ or $d_{T}(v)+1$. Clearly in $G, N_{i}(w)=\phi$ for each $i>\Delta(T)+1$.

Let $\mathrm{d}_{\mathrm{G}}(\mathrm{w})=\mathrm{d}$. If $\mathrm{N}_{\mathrm{d}}(\mathrm{w})=\phi$ in G , then G is NI. Suppose $\mathrm{N}_{\mathrm{d}}(\mathrm{w}) \neq \phi$. Note that by the construction of $\mathrm{G}, \mathrm{d} \geq 3$. Since the vertices in Y are odd, any vertex v in $\mathrm{V}_{1}(\mathrm{~T}) \cap \mathrm{X}$ is not adjacent to the vertex of degree 2. Since $\left|\mathrm{V}_{1}(\mathrm{~T})\right| \geq \Delta(\mathrm{T})+1$ and $\left|\mathrm{V}_{1}(\mathrm{~T}) \cap \mathrm{X}\right| \geq\left|\mathrm{V}_{1}(\mathrm{~T}) \cap \mathrm{Y}\right|$, we have $\left|\mathrm{V}_{1}(\mathrm{~T}) \cap \mathrm{X}\right| \geq\left\lceil\frac{\Delta(T)+1}{2}\right\rceil$.
Case 1 Suppose $\mathrm{d} \leq\left\lceil\frac{\Delta(T)+1}{2}\right\rceil$.
Let k be the least positive integer such that $\mathrm{N}_{\mathrm{d}+\mathrm{k}}(\mathrm{w})=\phi$. If $1 \leq \mathrm{k} \leq \mathrm{d}-1$, then join k vertices from $\mathrm{V}_{1}(\mathrm{~T}) \cap \mathrm{X}$ with w in G . Otherwise, w is adjacent to the vertices of degree $d+i$ for each $i, 0 \leq i \leq d-1$. Now join d vertices from $V_{1}(T) \cap X$ with w in G. The above constructions are possible, since $\mathrm{d} \leq\left\lceil\frac{\Delta(T)+1}{2}\right\rceil \leq\left|\mathrm{V}_{1}(\mathrm{~T}) \cap \mathrm{X}\right|$.
Case 2 Suppose d> $\left\lceil\frac{\Delta(T)+1}{2}\right\rceil$.
Now join all the vertices of $\mathrm{V}_{1}(\mathrm{~T}) \cap \mathrm{X}$ to w in G . Note that in the resulting graph, $\mathrm{d}(\mathrm{w}) \neq \mathrm{d}(\mathrm{v})$ for each vertex v in $\mathrm{N}(\mathrm{w})$, as $\mathrm{d}(\mathrm{w})>\left\lceil\frac{\Delta(T)+1}{2}\right\rceil+\left\lceil\frac{\Delta(T)+1}{2}\right\rceil \geq \Delta(\mathrm{T})+1$.

Clearly in both the cases the resultant graph is in $\mathbf{N I}(\mathbf{T})$ of order $\mathrm{n}+1$ and hence $\operatorname{NRS}(\mathrm{T})=1$.
Combining Lemma 3 and Lemma 4, we have
Theorem 3 For any tree $T, \operatorname{NRS}(T)=0$ or 1 .
Theorem 4 Any tree of order n is an induced subgraph of an NI tree of order at most $\mathrm{n}+\left\lfloor\frac{n-\left|V_{1}(T)\right|}{2}\right\rfloor$.
Proof Let T be any tree of order n . If T is NI, then the result is obvious. Suppose T is not an NI tree. Let (X, Y) be the bipartition of T. Let E_{x} and E_{y} denote the set of all even vertices in X and Y respectively and let O_{x} and O_{y} denote the set of all odd vertices in X and Y respectively. Let $p=\left|E_{x}\right|+\left|\mathrm{O}_{y}-V_{1}(T)\right|$ and $q=\left|\mathrm{E}_{y}\right|+\left|\mathrm{O}_{x}-\mathrm{V}_{1}(\mathrm{~T})\right|$. Without loss of generality, assume that
$\mathrm{p} \leq \mathrm{q}$. Note that $\mathrm{p} \leq\left\lfloor\frac{n-\left|V_{1}(T)\right|}{2}\right\rfloor$. Now for each vertex v in $\mathrm{E}_{\mathrm{x}} \cup\left(\mathrm{O}_{\mathrm{y}}-\mathrm{V}_{1}(\mathrm{~T})\right)$ introduce a new vertex and join it with v . Let the resultant tree be T_{1}. Clearly in T_{1}, all vertices in X are odd with degree at least 3 and the vertices in Y are either even or a pendant vertex. Thus T_{1} is an NI tree in which T is an induced subgraph and hence the result.

The bound obtained in the above theorem is sharp. For example, consider the path $P_{n}, n \geq 3$. P_{n} is an induced subgraph of an NI tree of order $\mathrm{n}+\left\lfloor\frac{n-\left|V_{1}(T)\right|}{2}\right\rfloor$. As an illustration, the NI trees in which P_{6} and P_{7} are induced subgraphs are respectively shown in Fig 8.

Fig 8
V Conclusion

- $\quad \operatorname{NRS}(\mathrm{G}) \leq 2$ for any bipartite graph G .
- $\operatorname{NRS}(T)=0$ or 1 for any tree T.

References

[1] Yousef Alavi, Alfred J Boals, Gary Chartrand, Ortrud R.Oellermann and Paul Erdos, k - path irregular graphs, Congressus Numeratium, 65 (1988), 201210.
[2] Yousef Alavi, F.Buckley, M.Shamula and S.Ruiz, Highly irregular m-chromatic graphs, Discrete Mathematics, 72(1988), 3-13.
[3] Yousef Alavi, Gary Chartrand, F.R.K.Chung, Paul Erdos, R.L.Graham, Ortrud R.Oellermann, Highly irregular graphs, Journal of Graph Theory, 11 (1987), 235-249.
[4] Selvam Avadayappan and M.Muthuchelvam, Neighbourly regular strength of a graph, ARS combinatoria, Canada (To appear).
[5] Selvam Avadayappan and M.Muthuchelvam, A special NI graph, International Journal of Advanced Scientific and Technical Research Issue 4, Vol 1, (2014), 814-822.
[6] Selvam Avadayappan and M.Muthuchelvam, More results on neighbourly regular strength of a graph. (Submitted).
[7] Selvam Avadayappan, P.Santhi and R.Sridevi, Some results on neighbourly irregular graphs, Acta Ciencia Indica, Vol XXXIIM, No. 3 (2006), 10071012.
[8] Selvam Avadayappan, P.Santhi, Neighbourly irregular product graphs, Mathematics Computing and Modeling, 96-101.
[9] Selvam Avadayappan, P.Santhi, Some results on neighbourhood highly irregular graphs, ARS Combinatoria, 98(2011), 299-314.
[10] R.Balakrishnan and K.Ranganathan, $\underline{\text { A Text Book of Graph Theory, Springer, NewYork (2000). }}$
[11] R.Balakrishnan and A.Selvam, k-neighbourhood regular graphs, Proceedings of the National Workshop on Graph Theory and its Applications, (1996), 35-45.
[12] S.Gnaana Bhragsam and S.K.Ayyaswamy, Neighbourly irregular graphs, Indian Journal of Pure and Applied Mathematics, 35(3) (March 2004), 389399.
[13] Ebrahim Salehi, On P_{3}-degree of graphs, The Journal of Combinatorial Mathematics and Combinatorial Computing, 62 (2007), 45-51.
[14] A. Selvam, Highly irregular bipartite graphs, Indian Journal of Pure and Applied Mathematics, 27(6) (June 1996), 527-536.
[15] V.Swaminathan and A.Subramanian, Neighbourhood highly irregular graphs, International Journal of Management and Systems 8(2) (May-August 2002), 227-231.

