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Abstract-This paper analyses  Bi-level Threshold policy for a 
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I. INTRODUCTION: 

Queueing systems in which the server is sometimes inactive 
(taking vacations or working elsewhere) while customers are 

waiting for service may find many applications in the 
performance modelling of computer and communication 
systems. Vacation concept was introduced by Levi and 
Yechalli in 1975 and two standard policies, single and 
multiple vacations are defined. Lee et al. (2003) analyzed a 
batch arrival systems MX / G / 1 under bilevel threshold with 
early setup and with / without server vacation. In the present 
model the bi-level threshold policy is analyzed under  
multiple vacation policy. Single vacation models represent a 
machine maintenance or postproduction operation, while 
multiple vacation models may correspond to an efficient 
utilization of servers for secondary jobs. Queuing models 
with server interruptions have proved to be a useful 
abstraction in situations, where a single server operates more 
than one service to the arriving customers. Wang and Ke 
(2002) analyzed the control policy for M / G / 1 queueing 
system with an unreliable server. Later, Ke (2004b) 
generalizes the previous model to MX / G / 1 queue with 
startup time where the server breakdowns occur according to 
Poisson process and the repair time has general 

distribution. Because of the complexity, the most general 
models are investigated under the assumption that the server 
is perfect and never fails. However in practice, the server 
may breakdown at any time and need to be repaired. The 
phenomena of the server breakdowns, can be encountered in 
the area of computers, communication networks, flexible 
manufacturing systems etc. The performance of the system 
may be affected heavily by these breakdowns and limited 
service capacity. Queuing systems with server unreliable 
situations are the topic of worth investigating from the 
performance point of view. Recently Julia Rose Mary (2011) 
analysed a more general batch arrival repairable queueing 
system in which the server provides c-kinds of general 
heterogeneous service and the arriving customer has the 
option of choosing any one of the c-kinds of service. In the 
present model, the author analyses a batch arrival queueing 
system MX/GSOS/1 with Second Optional Service facility in 
which the server is subject to breakdown during the service 
and take multiple vacations whenever the system becomes 
empty. The system is studied under steady state and the total 
PGF of the system size is derived through different partial 
generating functions. Various performance and measures are 

calculated to analyze the system analytically as well as 
numerically. Some particular cases are also deduced. 
 

II.  MODEL DESCRIPTION: 

The customers arrive in batches according to the time 
homogeneous Compound Poisson process with group arrival 
rate  . 

A. Idle period: 

The server is turned off and leaves the system for a vacation 
of random length V1 as soon as the system empties. After 
returning from the vacation, if the server finds m or more 
customers in the system, then he immediately starts a setup 
operation of random length D. Otherwise he takes repeated 
number of vacations V2 ,V3 … until he finally finds at least 
m customers accumulated in the system. The random 
variables V1,V2,… are assumed to be independently and 
identically distributed with generic representation V. At the 
end of the setup operation , if the queue length is greater than 
or equal to N, then the server begins to serve the customers 
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one by one exhaustively. Otherwise, the server remains 
dormant in the system waiting for the queue length to reach 

or exceed N. Here the idle period is made up of vacation 
period, setup period and dormant period. The vacation 

time (V) and setup time (D) assumed to follow general 
distributions V(x) and D(x) with finite moments. 

B. Busy period: 

During busy period, the server provides two kinds of general 
heterogeneous service to the customers. The customers are 
served, one at a time according to the order of their arrivals. 
Each customers undergoes the First Essential Service(FES). 
After completing the FES, the customer may leave the 
system with probability(1-r) or may offer for Second 
Optional Service (SOS) in an additional channel with 
probability r ( 10  r ). It is assumed that the service 
times of FES and SOS respectively follow heterogeneous 
general distributions Si(x), i=1,2 with density function si(x) 
and finite moments E(Si

k), i,k=1,2. 

C. Breakdowns and repairs: 

The server is subjected to breakdowns at any time while 
serving customers. It is assumed that the life time of the 
server follows exponential distribution with parameter ai 
(i=1,2) according as the breakdowns occur during the FES or 
SOS of the server. Whenever the breakdowns occur, the 
server is sent for repair immediately and the customer just 
being served, waits in the service facility for the server to 
return from repair facility and then to complete the remaining 
service. The repair times Ri(i=1,2) of the server follow 
general distributions Ri(y) with density functions ri(y) and 
finite kth moments E(Ri

k),k=1,2. Immediately after the server 
is fixed , the customer waiting in the service facility is taken 
up for service. Further it is assumed that the service time for 
a customer is cumulative and after repair, the server is as 
good as new. The server continues this type of service until 
the system becomes empty. The arriving customers always 
join the system and form a single waiting line based on the 
order of the batches. It is further assumed that the customer 
with in a batch are pre-ordered for service. The customers are 
served one by one according to the order in the queue. i.e., 
the server is turned off only when the system becomes empty 
and leaves the system for vacation. Thus busy period and 
breakdown period constitute completion period .The system 
will be turned on again for setup only when the server turns 
from the vacation. Thus the cycle is made up of completion 
period and idle period. Finally, various stochastic processes 
involved in the system are assumed to be independent of each 

other. This model is denoted by MV/1/G/M SOS
X

)N,m(  

III. SYSTEM SIZE DISTRIBUTION AT RANDOM 
EPOCH 

 For the multiple vacation model, the buildup period is 0. The 
state of the system is denoted by Y(t)=0,1,2,3,4,5 and 6 when 
the server is on vacation , doing setup work, in dormant state, 

busy with FES,SOS and  in repair mode due to FES and SOS 
respectively. 

The definitions of the state dependent probabilities are 
explained below: 

Let Z(t)=j (j=1,2,…) denote that the server is on jth vacation 
at time t counting from the idle period initiation point. 

Qn,j(x,t)dt = Pr (N(t)=n,xV0(t)x+dt,Y(t)=0,Z(t)=j,j1) 

        ),1,,Pr(, 0  tYdtxtDxntNdttxDn

     mn   
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        ),3,,Pr(, 0
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     1n  

Bn,i(y) denotes the case where Y(t) =5,6 

),5)t(Y,dtY)t(Ry,x)t(S,n)t(NPr(dt)t,y,x(B 0
1

0
11,n 

     1n   

),6)t(Y,dtY)t(Ry,x)t(S,n)t(NPr(dt)t,y,x(B 0
2

0
22,n 

     1n   

)(tU n  denotes the probability that there are n customers in 
the system  at time t, when the system is in  dormant state. 

    2,1,, , itxPandtxD inn  denote the probability that 
there are n customers in the system at  arbitrary epoch with 
the remaining  setup time and service time lie in the interval 
[x,x+ t ]. 
Qn,j(x,t)denotes the joint probability that at time t, there are n 
customers in the system, the server is in the jth vacation and 
the remaining vacation time lies in the interval (x,x+dt). 

Bn,i(x, y, t) dt, i = 1, 2 is the joint probability that at time t, 
there are n customers in the system, the remaining service 
time for the customer under service is equal to x, and the 
server is being repaired with the remaining repair time 
between y and y + dt, where x = 0, n = 0. 
Further       2,10,0,0 , iPDQ innn  denote the 
probability that there are n customers in the system at the 
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termination of vacation period, setup period and service time 
respectively. 

          Following the arguments of Cox (1955) and observing 
the changes of states during the interval (t,t+dt) for any time 
t, the steady state equations are obtained: 

A. Vacation state 

)())0()1)(0(()()( 2,11,11,01,0 xvPrPxQxQ
dx

d
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E. Busy with SOS 
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F. Breakdown in FES: 

)y(r)x(Pa)y,x(Bλ)y,x(B
x 11,111,11,1 

  












1n

1k
k1,kn

11,n11,n1,n

g)y,x(Bλ

)y(r)x(Pa)y,x(Bλ)y,x(B
x  

    n2 

 



International Journal of Mathematics Trends and Technology – Volume 14 Number 1 –Oct 2014 

ISSN: 2231-5373                   http://www.ijmttjournal.org Page 27 
 

G. Breakdown in SOS: 
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Taking the LST of the  steady state equations with respect to 
x, we have 
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Taking LST w.r.to y, equations (15) to (18), imply  
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IV. PROBABILITY GENERATING FUNCTIONS 

To obtain the partial probability generating functions of the 
number of customers in the system, the following Probability 
Generating Functions are defined, 
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Following the algebraic manipulation , the expressions for 
the  partial PGFs of the system size for the present  model are 
listed below 

Let n denote the probability that n-customers arrive during 
the vacation time V(t), then  
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To derive the total PGF of the system size distribution, the 
following generating functions are considered. 

Let PI(z)       =  Probability generating function of the system 
size when the server is  

 Idle (vacation + setup + dormant) state 

ie PI(z)       =   
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(adding equation (31) to (34)) 

Thus the total PGF of the system size distribution is given by 
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The constant P1(0) can be calculated by using the 
normalizing condition 
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Substituting for P1(0) in (equation (37)) the total PGF=

)z(PR
N,m is given by 
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Equation (41) justifies the decomposition property. 

V. DECOMPOSITION PROPERTY 

The PGF of the system size distribution of the (m,N) policy   
( X

)N,m(M )/GSOS/1/MV Breakdown  queueing  model  is 
decomposed into a product of two random variables one of 
which is the PGF of the system size of the classical SOS 
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)N,m(M )/GSOS/1 with  server breakdown without 
vacation and without N-policy namely 
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size distribution during the idle period under the steady state  
condition Rρ <1 

 

VI. PERFORMANCE MEASURES 

System size probabilities and mean system size: 

In this section, the steady-state system size probabilities and 
the expected number of customers in the system, when the 
server is in different states are calculated. 

 

A. The server in idle state 

Let PV,Pset and Pdor denote  the steady state system size 
probabilities and LV,Lset and Ldor denote the average number 
of customers, present in the system when the system is in 
vacation state , doing setup operation and in dormant state 
respectively. Then the measures can be calculated from the 
partial PGFs of the system size given in equations (28) to 
(30)  
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Thus the probability that the server is idle (PI) and the mean 
number of customers accumulated in the system when the 
server is idle (L1) are given by 
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By adding equation(42), (44) and (46) 
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B. The server in busy state: 

         The probability that the server is busy with FES(PFES) 
and SOS(Psos)and the expected number of customers in the 
system (LFES and LSOS) when the server is in the respective 
states are obtained by using the equations (31) and (32).

 Thus PFES=probability that the server is busy in FES
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SOSP = probability that  the server is busy in SOS 
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C. The server is in breakdown state: 

The probabilities that the server is in breakdown states due to 
FES (PBR1) and (PBR2) and the expected number of customers 
in the system (LBR1 and LBR2) in the corresponding states are 
obtained by using the equations (33) and (34). 

PBR1=probability that the server is in breakdown state due to 
FES 
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2BRP probability that the server is in breakdown state due 
to SOS  
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Thus the probability that the server is in breakdown state and 
the corresponding system size are given by 
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D. Mean system size 

Thus the expected number of customers waiting in the 
system for the present model  is given by 
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gives the mean system size MX/G/1 queueing model with 
server breakdown without N-policy and without vacation. 

VII. PARTICULAR CASE 
 

(1) If r=1, then all the customers are allowed to undergo 
both types of services one followed by the other, thus the 
equation (31.a) at r=1 and r=0 respectively imply, 
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(3) The results of the corresponding reliable server 
queueing models canbe obtained by putting ai = 0,  
 for i = 1, 2. 
(4) The PGF for the corresponding N-policy queueing 
models can be obtained by putting m = N, so that 0φ R
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(5) The total PGF of the corresponding non-vacation 
models can be derived by putting 0))z(w(V x

*  and for 

the model without setup operation 0))z(w(D x
*   

(6)  By the suitable selection of the parameters, r, ai (i = 
1, 2), m, N, gk, E(V) and E(D), it is verified that the results 
of Lee et al. (1994b, 1997, 2003), Ke (2004a)  can be 
deduced from  the  model discussed here. 
 

VIII. NUMERICAL ANALYSIS 

In this section some numerical results are presented to study 
the effects of various parameters. The effects of  the batch 
arrival rate (),the  setup parameter ‘nu’ and vacation 
parameter ‘ita’ on the expected queue size is pictorically 
represented by means of graphs in figures (1) and (2) for the 
given set of parameters.Figures (1) and (2) show that the 
queue length increases as the arrival rate increases and 
decreases with the setup parameter in figure(1) and vacation 
parameter in figure(2).Figure (3) deals with the effect of  
arrival rate (‘la’) on the system size probabilities. 

    For the computation purpose the following distributions 
are assumed for different random variables.  
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( r1=.2, 1β =.6, 2β =.7,p=.75,m=2,N=5, 11µ =1.5, 12µ =2, 21µ

=6, 22µ =.5,a=.5,b=.8,a1=.3, a2=.5 ) 

Figure (1) η =.5 

 

Figure (2) 05.ν   

 

Figure(3) 05.ν  , η =.5 

 

IX. CONCLUSIONS 

In this paper we have derived analytic steady-state results for 
the (m,N) policy Mx/G/1 queueing system with repeated 
vacations and single SOS fecility.The numerical results of 
various system performance measures such as system size 
probabilities and  mean system size are providedin a closed 
form.The results of various models are deduced as particular 
cases of the existing model  
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