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NOTATIONS  

                   n,mt  : Polygonal number of rank n  with size m  

                    
m
nP  : Pyramidal number of rank n  with size m  

                 
m
nCP  : Centered Pyramidal number of rank n with size m. 

               6,,4 nF  : Four dimension hexagonal figurate number of rank n      

  
I.    INTRODUCTION 

The theory of Diophantine equations offers a rich variety of fascinating problems. In particular, 

quintic equations, homogeneous and non-homogeneous have aroused the interest of numerous 

mathematicians since antiquity[1-3]. For illustration, one may refer [4-8] for quintic equation with three 

unknowns. This paper concerns with the problem of determining non-trivial integral solutions of the non-

homogeneous quintic equation with three unknowns given by 

. A few relations between the solutions and special 

numbers are presented.  

              
II.    METHOD OF ANALYSIS 

The non-homogeneous quintic equation to be solved for its distinct non-zero integral solutions is 

                                                    (1) 

Introduction of the linear transformations 

                                                                                                  (2) 

in (1) leads to  

                                                                    (3) 

Different methods of obtaining the patterns of integer solutions to (1) are illustrated below: 

 

Pattern:1 

 

Let                                                                                              (4) 

Using (4) in (3) and applying the method of factorization, define 

                                        (5) 

Since the complex number raised to any integer power is also a complex number, we write 
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                                                                           (6) 

where                        

                                  

Using (6) in (5) and equating the real and imaginary parts, we have 

                                                                                               (7) 

where,    

              

Using (7) in (2), it is seen that 

                                                                            (8) 

Thus (4) and (8) represent the non-zero distinct integral solutions to (1) 

 

Pattern:2 

 

Consider (3) as  

                                                          (9)             

Write 1 as    

                                                                    (10) 

Substituting (4) and (10) in (9) and employing the factorization method, define 

           (11) 

Equating real and imaginary parts, we get 

                                          (12) 

As our interest is on finding integer solutions, we choose  and  suitably so that u and v are integers.  

Replacing  by   and  by  in (12) and using (2) the corresponding integer solutions to (1) are found 

to be  

 

 

 
      For simplicity and clear understanding, we exhibit below the integer solutions and their corresponding 

properties when  

                                                       a=3,  k=3,   s=1,   n=1                                       (13) 

For this choice, (1) and (3) simplify respectively to 

                                                                                     (14) 

                                                                                                 (15) 

Let                                                                                                   (16) 

Write 20 as    

                                                                                    (17) 

Using (16) and (17) in (15) and applying the methods of factorization, define 

                                                                  (18) 

Equating real and imaginary parts, we get  
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                   (19) 

Using (18) in (2) we have 

                   (20) 

Thus, (16) and (20) represent the integer solutions to the equation (14) 

 

Properties 

 

 
 is a perfect square 

 

Note1: 

It is seen that in addition to (17), 20 may also be written in two different ways as  

                                                                                    (21) 

Following the procedure similar to the above the corresponding integer solutions for the above two cases 

are as follows: 

 

Solutions for (i): 

 
 

Solutions for (ii): 

 
 

Note 2: 

Consider (14) as 

                                                                              (22) 

Write 1 as  

                                 (23) 

Considering (16), (17) (23) and following the analysis presented above, the corresponding integer 

solutions to (14) are found to be  
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Conclusion: 

It is worth to mention here that, instead of (17), one may also consider (21) to represent (20) in (22) and 

thus obtain two more patterns of integer solutions to (14).  Thus, in this paper, we have analysed various 

patterns of non-zero distinct integer solutions to (1) and in-particular to (14).  As the quintic equations are 

rich in variety, one may attempt to obtain integer solutions to quintic equations with three or more 

variables along with the corresponding properties.    
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