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Abstract— We present a derivative free rational one step scheme of order two, capable of solving Ordinary differential equations 
which are stiff and others with singular solution. The scheme allows for the use of the state function alone and does not require 
calculation of higher derivatives of f(yn), and the proposed strategy was compared to the scheme of Van-Niekerk of which almost 
similar results were obtained for stiff problems. 
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I. INTRODUCTION 

 
Our interest is on the numerical solution of the Initial value 
Problem (IVP). 
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which may be stiff or possess singularities in a given 
interval. The conventional one step scheme is given by  
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where ),,( hyt nn is the increment function and the 
conventional Linear Multistep methods(LMM) is described 
by 
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where ii  ,  are real constants. When 00  , the 
method is said to be explicit otherwise it is implicit. In 
literature explicit methods are said to be performing poorly 
when solving stiff problems, hence this require the use of 
Implicit  methods for which Backward Differentiation 
formula (BDF’s) is one of them. Some commonly used 
codes like Matlab Ode15s [9,10,11], which were proposed 
by [11] apply the BDF’s  for solving stiff ordinary 
differential equations. The conventional explicit and 
implicit methods are said to fail when solving ODE with 
singularities because they are based of polynomial 
interpolation which focuses on existence and uniqueness of 
the solution within a specified interval. According to Ikhile 
[6], singularities arises from unbounded Jacobians,  
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also this singularities are said to arise in 
a) Components of ))(,( tytf  

b) Derivatives of ))(,( tytf  

c) Components of the solution vector )(ty  
 

II. RATIONAL METHODS 

 
Most rational schemes found in [1],[2],[4],[5],[6],[7],[8 ] 
use higher derivatives of the state function. Therefore this 
has been picked as a major disadvantage as it can be 
tiresome or difficult for some Initial Value problems to 
reach those higher derivatives; hence a need to 
approximate the higher derivatives is proposed. This paper 
seeks to extend Van Niekerk’s rational scheme [2], to the 
one with free derivative of ),( ytf . The methods proposed 
by these different authors were presented in a fixed step 
size approach and managed to pass through singular points. 
In [6] Ikhile indicates that the normal step size selection 
strategies does not work when implementing the methods 
in variable step mode, as in most cases the next step will be 
very large compared to the last step hence, reducing the 
step sizes to a desirable one will not be easy. The paper 
goes on to indicate that the way to pass through these 
singular points the use of extrapolation methods proves to 
be very useful. 
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III. DEVELOPMENT OF DERIVATIVE FREE SCHEME 

 
The rational one step scheme proposed by Van Niekerk is 
given below 
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Where    ),( ytfy    and 
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the denominator in (4) can be represented as 
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From multivariate Taylor expansion 
),(),(),(),( yxbfyxafyxfbyaxf yx   

Assumption: From the above multivariate Taylor 
expansion b, can be taken as a function instead of a 
constant, as from [3], we see that the general Runge Kutta 
(RK) method is given by  
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and usually )( 00 tyy   Hence from (5) 
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Therefore (5) can be represented by  
)),(,(),(3 nnnnnn ythfyhtfytf   

 (6) 
Substituting these into (4) yields, 
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From this (4) can be implemented without finding the 2nd 
derivatives of the original function, hence the state function 
only would be sufficient and this method (7) could be 
presented in a variable step. 
 

IV. LOCAL TRUNCATION ERROR 

 
In order to test the performance of the proposed strategy, 
one needs to highlight how the local truncation error of the 
rational scheme (4). The idea used follows the definitions 
given on Lambert 1991. 
The rational scheme (4) was derived from the continued 
fraction given by, 
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Hence, the following definition follows, 
Definition 1: The Linear difference operator L 
associated with the rational scheme (8) is defined by  

hbhcayhtyL nnnht   )1()(]);([            (9) 

Where ],[)( 1 baCty  is an arbitrary function. We 
choose the function )(ty  to be differentiable as often as 
we need. Expanding )( hty  in Taylor series and 
collecting the terms in (9) yields the following expression; 
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Definition 2: The difference operator (9) on the associated 
rational scheme (8) are said to be of order ,1 kp  if in 

(10) 
.0,0,0 21210   KKK CCCCCC   

Definition 3: (Lambert 1991) [12],The local truncation 
error or LTE of the method (8) at knt  , denoted by knT   is 
defined by  

],);([ htyLT nkn   
Where L is the associated difference operator defined by (9) 
and y(t) is the exact solution of the initial value problem 
(1), the local truncation of rational method (8) is then 
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From (9), If we expand )( hty  using Taylors method, 
we obtain 
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We see that (9) and (10) implies that 
)(0 tyaC n  , )(1 tyccabC nnnn   
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The coefficients nnn cba ,,  are given from [2] as 
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where )(ty  is taken as the theoretical solution of the 

initial value problem (1) at point nt  i.e )()( ntyty  , 
hence the Local truncation error is given by 
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V. NUMERICAL RESULTS 

 
We compare the current strategy (7) with Van-
Niekerk’s rational scheme (4) for problems 1 and 2. 
Problem 1 (Singular Problem) 

21 yy   
 In the first case problem 1 was solved with initial 
condition 0)0( y and time interval of ]55.1,0[t , 
Van-Nierkerk’s scheme and the proposed approach. 
The problem was integrated with step size h=0.001,for 
both schemes and  the analytic solution of the problem 
is given by )tan(ty   the results obtained are 
displayed in Table 1 and plotted as per figure 1. 

 

TABLE 1. 001.0,0)0(,1 2  hyyy  
t Analytical 

 
Error(Proposed 
Strategy) 

 

Error  
(Van-Rational) 

0.1 0.1003346721 1.79000E-08 3.36670E-06 

0.2 0.2027100355 3.45000E-08 6.94020E-06 

0.3 0.3093362496 6.04000E-08 1.09562E-05 

0.4 0.4227932187 9.13000E-08 1.57157E-05 

0.5 0.5463024898 1.40200E-07 2.16392E-05 

0.6 0.6841368083 2.11700E-07 2.93587E-05 

0.7 0.8422883805 3.19500E-07 3.98840E-05 

0.8 1.0296385571 5.12900E-07 5.49327E-05 

0.9 1.2601582176 8.52400E-07 7.815908E-05 

1.0 1.5574077247 1.52530E-06 1.141712E-04 

1.5 14.1014199472 1.29951E-03 9.984863E-03 

1.55 48.0784824792 5.31986E-02 1.191786E-01 

 
 

 

fig 1, Singular Problem y(0)=0 

 
 
 
 
 
 
 
 
 
For the second part problem 1 was solved with initial 
condition 1)0( y  and time interval of ]75.0,0[t . The 
integration step considered was a fixed step h=0.001 the 
analytic solution of problem 1 within this initial conditions 

is given by )
4

tan( 
 ty , the results obtained are 

displayed as per Table 2 and plotted as in figure 2. 

TABLE 2. 001.0,1)0(,1 2  hyyy  

t Analytical 
 

Error(Proposed 
Strategy) 

 

Error  
(Van-Rational) 

0.1 1.2230488804 1.9490E-07 2.0765E-04 

0.2 1.5084976471 6.1340E-07 5.4497E-04 



International Journal of Mathematics Trends and Technology – Volume 14 Number 1 – Oct 2014 

ISSN: 2231-5373                         http://www.ijmttjournal.org Page 69 
 

0.3 1.8957651229 1.5951E-06 1.1462E-03 

0.4 2.4649627567 4.2307E-06 2.3532E-03 

0.5 3.4082234423 1.3055E-05 5.2414E-03 

0.6 5.3318552235 5.7655E-05 1.4653E-02 

0.65 7.3404365750 1.6138E-04 2.9566E-02 

0.7 11.6813738003 6.9748E-04 7.9521E-02 

0.75 28.2382528501 1.0524E-02 4.8962E-01 

 

Singular points- To check the behavior of the two schemes 
at singular points, problem 1 with condition y(0)=0 is 
extended up to 1.58 ,where its singular point is at π/2 and 
problem 1 with condition y(0)=1 was extended up to 0.8, 
where its singular point is at π/4. The results as displayed 
by table 3 and 4. 

TABLE 3. 001.0,0)0(,1 2  hyyy  
t Analytical 

 
Error(Proposed 
Strategy) 

 

Error  
(Van-Rational) 

0.1 0.1003346721 1.79000E-08 3.36670E-06 

0.2 0.2027100355 3.45000E-08 6.94020E-06 

0.3 0.3093362496 6.04000E-08 1.09562E-05 

0.4 0.4227932187 9.13000E-08 1.57157E-05 

0.5 0.5463024898 1.40200E-07 2.16392E-05 

0.6 0.6841368083 2.11700E-07 2.93587E-05 

0.7 0.8422883805 3.19500E-07 3.98840E-05 

0.8 1.0296385571 5.12900E-07 5.49327E-05 

0.9 1.2601582176 8.52400E-07 7.815908E-05 

1.0 1.5574077247 1.52530E-06 1.141712E-04 

1.5 14.1014199472 1.29951E-03 9.984863E-03 

1.55 48.0784824792 5.31986E-02 1.191786E-01 

1.56 92.6204963162 3.780067E-01 4.461151E-03 

1.57 1255.76559140 2.027084E+03 8.247270E-01 

1.58 -108.649203606 4.156140E+02 6.217993E-03 

 
 

TABLE 4. 001.0,1)0(,1 2  hyyy  
t Analytical 

 
Error(Proposed 
Strategy) 

 

Error  
(Van-Rational) 

0.1 1.2230488804 1.9490E-07 2.0765E-04 

0.2 1.5084976471 6.1340E-07 5.4497E-04 

0.3 1.8957651229 1.5951E-06 1.1462E-03 

0.4 2.4649627567 4.2307E-06 2.3532E-03 

0.5 3.4082234423 1.3055E-05 5.2414E-03 

0.6 5.3318552235 5.7655E-05 1.4653E-02 

0.65 7.3404365750 1.6138E-04 2.9566E-02 

0.7 11.6813738003 6.9748E-04 7.9521E-02 

0.75 28.2382528501 1.0524E-02 4.8962E-01 

0.76 39.3644592671 2.880027E-02 3.928045E-04 

0.77 64.9376772062 1.299212E-01 1.082576E-03 

0.78 185.246390849 2.963046e+00 8.922044E-03 

 
 
 

Problem 2 (Stiff problem) 
The second problem considered is a stiff differential 
equation given by  

)())(( tgtgyy    
2)1.0sin()(,3)0(  ttgg  and 

)1.0cos(1.0)( ttg   with ]1,0[t  
Where the exact solution is given by 

)(2)1.0sin()( tetty   
 

TABLE 5. 01.0,10  h  
t Analytical 

 
Error (Proposed 

Strategy) 
 

Error  
(Van-Rational) 

0.1 2.3778792745 3.2221E-04 3.2221E-04 
0.2 2.1553339499 2.4712E-04 2.4711E-04 
0.3 2.0797825686 1.4958E-04 1.4958E-04 

fig 2, Singular Problem y(0)=1 



International Journal of Mathematics Trends and Technology – Volume 14 Number 1 – Oct 2014 

ISSN: 2231-5373                         http://www.ijmttjournal.org Page 70 
 

0.4 2.0583049731 9.3454E-05 9.3445E-05 
0.5 2.0567171163 5.7570E-05 5.7555E-05 
0.6 2.0624427587 1.0152E-05 1.0134E-05 
0.7 2.0708547293 1.06069E-06 1.5876E-06 
0.8 2.0802501566 5.6800E-08 7.8200E-08 
0.9 2.0900019590 2.3530E-07 2.5910E-07 
1.0 2.0998788166 1.5270E-07 1.7900E-07 

 
 

 

fig 3, Stiff Problem λ= -10 

 

TABLE 6. 001.0,103  h  
t Analytical 

 
Error  

(Proposed 
Strategy) 

 

Error  
(Van- 

Rational) 

0.01 2.00104539976309 3.2359E-05 3.2359E-05 

0.02 2.002000000727820 1.2796E-08 1.2805E-08 

0.03 2.002999995500096 9.0150E-14 1.4760E-11 

0.04 2.003999989333342 1.9320E-11 3.4017E-13 

0.10 2.008999878500492 4.4340E-11 3.2996E-13 

0.30 2.029995500202496 1.4931E-10 3.2996E-13 

0.50 2.049979169270678 2.4922E-10 3.4017E-13 

0.70 2.069942847337533 3.4904E-10 3.2996E-13 

0.90 2.089878549198011 4.4872E-10 3.2996E-13 

1.00 2.099833416646828 4.9848E-10 3.4017E-13 

 

 

 

fig 4 ,Stiff Problem λ= -1000 

 
 
 
 
 
 

VI. CONCLUSIONS 
  

In this article we have proposed an approach to one step 
explicit method  based on rational functions proposed by 
Van-Niekerk. The method is derivative free requiring only  
state function and its Initial conditions. The formulation is 
given by (7) while the local truncation error for the rational 
method (4) is given by Definition 1 and 2. To test 
performance of the proposed strategy, two problems were 
solved with problem (1) being singular and  tested over two 
different initial conditions. Problem (2) is a stiff problem 
given by Frank and Ueberhuber,[2], applied with λ= -
10and λ= -103. Results obtained from table1, 2,5,6 shows 
performance of the two methods as yielding almost the 
same results which is confirmed by figures 1,2,3 and 4.  
For problem (1) the interval of integration was increased to 
allow for singular points and the proposed strategy though 
managed to cross the points, it is outclassed by Van-
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Niekerk’s method beyond the point of singularity. Future 
studies should discuss the extension of this approach for 
orders more than two and application of the method to non-
linear and/or stiff systems of first order ordinary 
differential equations, also  the approach has to be explored 
further especially after point of singularity. 
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