Antiflexible Rings with Weak Novikov Identity

M. Hema Prasad ${ }^{\# 1}$, Dr. D. Bharathi ${ }^{\text {*2 }}$
\# Assistant Professor of Mathematics, Department of Science and Humanities, SITAMS, Chittoor, India.
*Associate Professor, Department of Mathematics, S. V. University, Tirupati, India.

Abstract - If \mathbf{R} is an antiflexible ring of characteristic $\neq 2,3$ with Weak Novikov identity $\quad(\mathbf{w}, \mathbf{x}, \mathrm{y} \mathbf{z})=\mathbf{y}(\mathbf{w}, \mathbf{x}, \mathrm{z})$ then Strong Novikov identity $x(y z)=y(x z)$. Using this results we prove that, if R is a prime not associative antiflexible ring of characteristic $\neq 2,3$ satisying the Weak Novikov identity $(w, x, y z)=y(w, x, z)$ then R is either an alternative ring (or) strongly (-1,1) ring.
Key words - Antiflexible rings, Weak Novikov identity, Strong Novikov identity, alternative ring, strongly (-1, 1) ring.

I. INTRODUCTION

E. Kleinfeld in 1994 [1] proved that a prime non-associative Weakly Novikov ring ($\mathrm{x}, \mathrm{y}, \mathrm{z}$) $=(\mathrm{x}, \mathrm{z}, \mathrm{y})$ must be Strong Novikov. Again Kleinfeld in 1996 [2] proved that a semi prime ring of characteristic $\neq 2$ satisfying the variations of the Novikov identities $(x y) z=(x z) y$ and $(x, y, z)=-(x, z, y)$ is associative. In the another paper of Kleinfeld [3], it is proved that a prime right alternative ring with minimum condition on right ideals which satisfies the identity $(w, x, y z)=y(w, x, z)$ must be associative. Lastly, K. Subhashini in [4] has proved that, if R is a prime ($-1,1$) ring of characteristic $\neq 2,3$ then R must be commutative and associative.In this paper, first we prove that, a Weak Novikov identity is a Strong Novikov identity. Using this condition of Weak Novikov identity, we prove that an antiflexible ring of characteristic $\neq 2,3$ is either an alternative ring (or) strongly ($-1,1$) ring.

II. PRELIMINARIES

A ring is said to be antiflexible ring if it satisfy the identity
$\mathrm{A}(\mathrm{x}, \mathrm{y}, \mathrm{z})=(\mathrm{x}, \mathrm{y}, \mathrm{z})-(\mathrm{z}, \mathrm{y}, \mathrm{x})$
The identity $(w, x, y z)=y(w, x, z)$
is known as Weak Novikov identity.
Where as the identity $\mathrm{x}(\mathrm{yz})=\mathrm{y}(\mathrm{xz})$
is refered as Strong Novikov identity.
A ring is Strong Novikov then it is Weakly Novikov. Moreover, Weakly Novikov rings are a subclass of associative rings where as Strong Novikov rings are not.

The Teichmuller identity which holds in any ring.
$B(w, x, y, z)=(w x, y, z)-(w, x y, z)+(w, x, y z)-w(x, y, z)-(w, x, y) z=0$
An antiflexible ring R is a non-associative ring in which the following identities hold.

$$
\begin{equation*}
(w,(x, y, z))=0 \quad \text { by }[5] \tag{5}
\end{equation*}
$$

The Semi-Jacobi identity is

$$
\begin{equation*}
C(x, y, z)=(x y, z)-x(y, z)-(x, z) y-(x, y, z)-(z, x, y)+(x, z, y)=0 \tag{6}
\end{equation*}
$$

The nucleus N of any ring is defined as
$\mathrm{N}=\{\mathrm{n} \in \mathrm{R} /(\mathrm{n}, \mathrm{R}, \mathrm{R})=(\mathrm{R}, \mathrm{R}, \mathrm{n})=(\mathrm{R}, \mathrm{n}, \mathrm{R})=0\}$.
An alternative ring R is a ring in which
$(x \mathrm{x}) \mathrm{y}=\mathrm{x}(\mathrm{x} y), \mathrm{y}(\mathrm{x} \mathrm{x})=(\mathrm{y} x) \mathrm{x}$, for all x, y in R.
These equations are known as the left and right alternative laws respectively.
A right alternative ring R satisfying the identity $((R, R), R)=0$ is called a strongly $(-1,1)$ ring.
Lemma 2.1 : Let $\mathrm{n} \in \mathrm{N}$ then $(\mathrm{R}, \mathrm{N}) \subseteq \mathrm{N}$.
Proof: Let $w, x, y, z \in R$ and $n \in N$.
We now take a turn letting one of four elements in Teichmuller identity (4) be in the nucleus N. Thus
$(\mathrm{nx}, \mathrm{y}, \mathrm{z})=\mathrm{n}(\mathrm{x}, \mathrm{y}, \mathrm{z})$
$(\mathrm{wn}, \mathrm{y}, \mathrm{z})=(\mathrm{w}, \mathrm{n} \mathrm{y}, \mathrm{z})$
$(\mathrm{w}, \mathrm{x} \mathrm{n}, \mathrm{z})=(\mathrm{w}, \mathrm{x}, \mathrm{nz})$
$(w, x, y n)=(w, x, y) n$
By using equations (5), (1), (10), (1) and (9), we have
$\mathrm{W}=\mathrm{n}$ in (5)

$$
\begin{aligned}
& \mathrm{n}(\mathrm{x}, \mathrm{y}, \mathrm{z})=(\mathrm{x}, \mathrm{y}, \mathrm{z}) \mathrm{n} \quad(\mathrm{by}(5)) \\
& =(\mathrm{z}, \mathrm{y}, \mathrm{x}) \mathrm{n} \quad(\mathrm{by}(1)) \\
& =(\mathrm{z}, \mathrm{y}, \mathrm{x} \mathrm{n})(\mathrm{by}(10)) \\
& =(\mathrm{x} \mathrm{n}, \mathrm{y}, \mathrm{z})(\mathrm{by}(1)) \\
& =(\mathrm{x}, \mathrm{ny} \mathrm{y}, \mathrm{z})(\mathrm{by}(8)) \\
& =(\mathrm{x}, \mathrm{y}, \mathrm{nz})(\mathrm{by}(9)) \\
& =(\mathrm{x}, \mathrm{y}, \mathrm{z}) \mathrm{n}(\mathrm{by}(10)) \\
& =(\mathrm{x}, \mathrm{y}, \mathrm{z} \mathrm{n})(\mathrm{by}(10)) \\
& =(\mathrm{x}, \mathrm{y}, \mathrm{nz})
\end{aligned}
$$

Hence $(x, y, z n)-(x, y, n z)=0$
implies $(x, y,(z, n))=0$
Hence $(\mathrm{R}, \mathrm{N}) \subseteq \mathrm{N}$.
Lemma 2.2 : The nucleus N of R is an ideal such that $\mathrm{NA}=0$. If R is prime and non-associative ring then $\mathrm{N}=0$.
Proof: For arbitrary elements $x, y, z \in R$ and $n \in N$.
From (2), we have
$(\mathrm{x}, \mathrm{y}, \mathrm{z} \mathrm{n})=\mathrm{z}(\mathrm{x}, \mathrm{y}, \mathrm{n})=0$
also from $(10)(x, y, n z)=(x, y, z n)=0$.
Therefore N is both left and right ideal have an ideal of R .
Again using (2) and (5), we have
$(\mathrm{x}, \mathrm{y}, \mathrm{n} \mathrm{z})=0=\mathrm{n}(\mathrm{x}, \mathrm{y}, \mathrm{z})=(\mathrm{x}, \mathrm{y}, \mathrm{z}) \mathrm{n}$
i.e., $\mathrm{N} A=\mathrm{A} \mathrm{N}=0$

Since R is prime and not associative
and hence $\mathrm{N}=0$.
Lemma 2.3 : If R is prime and not associative then R is Strongly Novikov.
Proof : Through the repeated use of (2) and (1),
For any $a, b \in R$, we obtain,

$$
\begin{aligned}
& (\mathrm{a}, \mathrm{~b}, \mathrm{x} . \mathrm{yz})=\mathrm{x}(\mathrm{a}, \mathrm{~b}, \mathrm{y} \mathrm{z}) \quad(\mathrm{by}(2)) \\
& =x(y z, b, a) \quad(b y(1)) \\
& =(\mathrm{y} \mathrm{z}, \mathrm{~b}, \mathrm{x} \text { a) (by (2)) } \\
& =(\mathrm{x} \mathrm{a}, \mathrm{~b}, \mathrm{y} \mathrm{z}) \quad(\mathrm{by}(1)) \\
& =y(x a, b, z)(b y(2)) \\
& =y(z, b, x a)(b y(1)) \\
& =y \cdot x(z, b, a)(b y(2)) \\
& =y \cdot x(a, b, z)(b y(1)) \\
& =y(a, b, x z)(b y(1)) \\
& =(a, b, y \cdot x z)(b y(2))
\end{aligned}
$$

Therefore (a, b, x.yz) $=(a, b, y . x z)$
$\Rightarrow(\mathrm{a}, \mathrm{b}, \mathrm{x} . \mathrm{yz})-(\mathrm{a}, \mathrm{b}, \mathrm{y} . \mathrm{xz})=0$
$\Rightarrow(\mathrm{a}, \mathrm{b}, \mathrm{x} . \mathrm{yz}-\mathrm{y} \cdot \mathrm{xz})=0$
Therefore $x . y z-y . x z \in N$.
From lemma 2.2, $\mathrm{N}=0$,
Hence we have Strong Novikov identity x.yz = y.xz holds in R. *
Lemma 2.4: If R is a prime and not associative ring then U is an ideal.
Proof : Note that

$$
\begin{aligned}
(x y, y) & =x y \cdot y-y \cdot x y \\
& =x y \cdot y-x \cdot y y(b y(3)) \\
& =x y^{2}-x y^{2} \\
& =0 .
\end{aligned}
$$

Linearization results in $(x y, z)=-(x z, y)$
If $u \in U$ and $y=u$ then $(x u, z)=0$
Thus U is a left ideal.
Since $\mathrm{xu}=\mathrm{ux}$, it follows that
U is an ideal of R.
Consider the equation $(y,(x, x, y))=0$
Replacing y by $\mathrm{y}+(\mathrm{a}, \mathrm{b})$ in the equation then we obtain
$((\mathrm{a}, \mathrm{b}),(\mathrm{x}, \mathrm{x}, \mathrm{y}))=-(\mathrm{y},(\mathrm{x}, \mathrm{x},(\mathrm{a}, \mathrm{b})))$
In $D(x, y, z)=(x,(y z))+(y,(z x))+(z,(x, y))=0$
Put $y=(R, R, R)$ an arbitrary associator and apply (5), then we have
$((\mathrm{R}, \mathrm{R}, \mathrm{R}),(\mathrm{z}, \mathrm{x}))=0$
Let I be the linear span of the alternators in R.
Obviously I is an ideal of R.
Lemma 2. 5: Let I be an ideal of an antiflexible ring with characteristic $\neq 2,3$ then
(a) $\operatorname{ann}(I)=\{x \in R / x I=I x=0\}$ is an ideal.
(b) $\operatorname{ANN}(\mathrm{I})=\{\mathrm{x} \in \operatorname{ann}(\mathrm{I}) /(\mathrm{I}, \mathrm{R}, \mathrm{x})=0\}$ is the largest ideal of R containing in ann(I).

Proof :

By virtue of $B(x, y, z)=(x, y, z)+(y, z, x)+(z, x, y)=0$
Then we claim that ann (I) is an ideal.
Let $t \in I, h \in \operatorname{ann}(I), k \in A N N(I)$ and $x, y \in R$.
Since $A N N(I) \subseteq \operatorname{ann}(I)$
We know that all six associators
$(\mathrm{k}, \mathrm{t}, \mathrm{x})=(\mathrm{k}, \mathrm{x}, \mathrm{t})=(\mathrm{x}, \mathrm{k}, \mathrm{t})=(\mathrm{t}, \mathrm{x}, \mathrm{k})=(\mathrm{t}, \mathrm{k}, \mathrm{x})=0$
Thus kx.t $=\mathrm{k} . \mathrm{xt}=0$
And $t \cdot k x=t k \cdot x=0$
i.e., $\mathrm{kx} \in \operatorname{ann}(\mathrm{I})$.

Also from $\mathrm{D}(\mathrm{x}, \mathrm{w}, \mathrm{y}, \mathrm{z}) \equiv(\mathrm{xw}, \mathrm{y}, \mathrm{z})-(\mathrm{x}, \mathrm{w}, \mathrm{yz})+(\mathrm{x}, \mathrm{y}, \mathrm{wz})-(\mathrm{x}, \mathrm{w}, \mathrm{z}) \mathrm{y}-(\mathrm{x}, \mathrm{y}, \mathrm{z}) \mathrm{w}=0$
We have $0 \equiv(\mathrm{t}, \mathrm{y}, \mathrm{kx})+(\mathrm{t}, \mathrm{k}, \mathrm{yx})-(\mathrm{t}, \mathrm{y}, \mathrm{x}) \mathrm{k}-(\mathrm{t}, \mathrm{k}, \mathrm{x}) \mathrm{y}=(\mathrm{t}, \mathrm{y}, \mathrm{kx})$
Since $(t, y, x) \in I$
Therefore ANN(I) is a right ideal.
Now (xk) $\mathrm{t}=\mathrm{x}(\mathrm{kt})=0$ and
$\mathrm{t}(\mathrm{xk})=(\mathrm{tx}) \mathrm{k}=0$
so $x k \in \operatorname{ann}(\mathrm{I})$
$\Rightarrow \operatorname{ann}(\mathrm{I})$ is an ideal.
To show $(t, y, x k)=0$
We consider $B(t, x, k, y)=(t x, k, y)-(t, x k, y)+(t, x, k y)-t(x, k, y)-(t, x, k) y=0$
Since I is an ideal, ANN(I) is a right ideal contained in ann(I) and any associator with elements from R, I and ANN(I) is zero, then these two identities reduce to
$-(\mathrm{t}, \mathrm{xk}, \mathrm{y})-\mathrm{t}(\mathrm{x}, \mathrm{k}, \mathrm{y})=0$ and $(\mathrm{x}, \mathrm{k}, \mathrm{y}) \mathrm{t}=0$
Adding these two identities and applying (5) we have
$\mathrm{ANN}(\mathrm{I}) \subseteq \operatorname{ann}(\mathrm{I})$
Thus $(\mathrm{t}, \mathrm{y}, \mathrm{xk})=0$.

Which establishes ANN(I) is an ideal of R.
Theorem 2.1 : Let R be a prime not associative antiflexible ring of characteristic $\neq 2,3$ satisfying the weak Novikov identity (w , x , $y z)=y(w, x, z)$, then R is either an alternative ring or a strongly ($-1,1$) ring.
Proof: By semi-Jacobi identity, we have
$C(x, y, z)=(x y, z)-x(y, z)-(x, z) y-(x, y, z)-(z, x, y)+(x, z, y)=0$
Interchanging x and y in this equation, we have
$C(y, x, z)=(y x, z)-y(x, z)-(y, z) x-(y, x, z)-(z, y, x)+(y, z, x)=0$
Subtracting these two equations, we have
$(x y, z)-x(y, z)-(x, z) y-(x, y, z)-(z, x, y)+(x, z, y)-(y x, z)+y(x, z)+(y, z) x+(y, x, z)+(z, y, x)-(y, z, x)=0$.
$\Rightarrow(\mathrm{xy}-\mathrm{yx}, \mathrm{z})-(\mathrm{x}(\mathrm{y}, \mathrm{z})-(\mathrm{y}, \mathrm{z}) \mathrm{x})+(\mathrm{y}(\mathrm{x}, \mathrm{z})-(\mathrm{x}, \mathrm{z}) \mathrm{y})=0$
Since I is an ideal and also from (14), $(I, Z)=0$, we obtain
$(x(y, z)-(y, z) x)=0$
$\Rightarrow \mathrm{x}(\mathrm{y}, \mathrm{z})=(\mathrm{y}, \mathrm{z}) \mathrm{x}$
Let $x=(x, x, z)$ be an alternator and $z=(R, R)$, we have
$(x, x, z)(y,(R, R))=0=(y,(R, R))(x, x, z)$
Thus we have established $(\mathrm{y},(\mathrm{R}, \mathrm{R})) \in \operatorname{ann}(\mathrm{I})$
Next using linearized (14) and the fact that I is an ideal, we have
$(\mathrm{I}, \mathrm{R},(\mathrm{y},(\mathrm{R}, \mathrm{R})))=-(\mathrm{R}, \mathrm{I},(\mathrm{y},(\mathrm{R}, \mathrm{R})))=0$
Thus $(\mathrm{y},(\mathrm{R}, \mathrm{R})) \in \operatorname{ANN}(\mathrm{I})$
But ANN(I) is an ideal of R from Lemma 6
Since I. $(A N N(I))=0$ and R is prime.
Then either $Z=0$ or $(R,(R, R))=0$.
If $I=0$ then R is alternative ring.
If $(R,(R, R))=0$ then R is strongly $(-1,1)$ ring.

III. REFERENCES

[1] E. Kleinfeld and H. F. Smith, "A generalization of Novikov rings, Non-Associative Algebra and its applications", kluwer Academic publishers (1994), 219222.
[2] E. Kleinfeld and M. Kleinfeld, "Variations of the Novikov Identities", Communications in Algebra, 24(5),1996,1707-1711.
[3] M. Kleinfeld, "Rings with $x(y z)=y(x z)$ ", Communications in Algebra, 23(13),1995, 5085-5093.
[4] K. Subhashini and P. Vijasekhara Reddy, "Weak Novikov Identity in the join of (-1, 1) Rings", International Journal of Algebra, vol.6, 2012, no.30,14571461.
[5] M. Hema Prasad, Dr. D. Bharathi, Dr. M. Munirathnam, "Simple Antiflexible rings", International Journal of Scientific \& Engineering Research, Volume 5, Issue 3, March-2014, 1286-1288.

