An Inequality with the Sequence of Prime Numbers

Arto Adili ${ }^{\# 1}$, Eljona Milo ${ }^{* 2}$
\#Department of Mathematics, "Fan S. Noli" University, Shëtitorja "Rilindasit", Korçë, Albania

Abstract

In this paper we will present an inequality with the sequence of prime numbers $2,3,5,7, \ldots$. We prove that there exists a positive constant real number κ, such that for every real number $\lambda>\kappa$, there exists a natural number n_{λ}, such that for every natural number $n>n_{\lambda}$, it is true the inequality $\frac{2}{2-1} \cdot \frac{3}{3-1} \cdot \ldots \cdot \frac{p_{n}}{p_{n}-1}<\frac{\lambda p_{n}}{n}$, where p_{n} is the n-th prime number. The constant number κ is equal with $e^{M+\sigma}$, where M is the Merten's constant and σ is the sum of the convergent series $\sum \frac{1}{p(p-1)}$. The constant κ has an approximate value $\kappa \approx 2.812$.

Keywords- prime number, inequality, series of prime number, prime number theorem.

I. INTRODUCTION

Let's note $p_{1}, p_{2}, p_{3}, \ldots$ the sequence of prime numbers. We will show that there exists a positive constant real number κ, such that for every real number $\lambda>\kappa$, there exists a natural number n_{λ}, such that for every natural number $n>n_{\lambda}$, it is true the inequality

$$
\frac{p_{1}}{p_{1}-1} \cdot \ldots \cdot \frac{p_{n}}{p_{n}-1}<\frac{\lambda p_{n}}{n}
$$

We will show that $\sum \frac{1}{p(p-1)}$ is a convergent series and if we note $\sigma=\sum \frac{1}{p(p-1)}$, then $\kappa=e^{M+\sigma}$, where M is Merten's constant.
We will show that $\sigma \approx 0.7723$, and since $M \approx 0.2615$ then the approximate value of the constant real number κ is 2.812 .

II. Prove the inequality

For every positive real number x we have $1+x<e^{x}$. Indeed, considering the function $f(x)=e^{x}-x-1$ with domain [0, + [[, we have $f(0)=0$ and $f^{\prime}(x)=e^{x}-1>0$ for every $x>0$. Consequently, $f(x)>0$ for every $x>0$, namely $e^{x}>1+x$ for every $x>0$.

Since for every prime number p we have

$$
\frac{p}{p-1}=1+\frac{1}{p-1}
$$

and $\frac{1}{p-1}>0$, then for every index n it is true the inequality

$$
\prod_{i=1}^{n} \frac{p_{i}}{p_{i}-1}=\prod_{i=1}^{n}\left(1+\frac{1}{p_{i}-1}\right)<e^{\sum_{i=1}^{n} \frac{1}{p_{i}-1}} .
$$

But $\frac{1}{p-1}=\frac{1}{p}+\frac{1}{p(p-1)}$, then

$$
\sum_{i=1}^{n} \frac{1}{p_{i}-1}=\sum_{i=1}^{n} \frac{1}{p_{i}}+\sum_{i=1}^{n} \frac{1}{p_{i}\left(p_{i}-1\right)},
$$

consequently, for every natural number n it is true the inequality:

$$
\begin{equation*}
\prod_{i=1}^{n} \frac{p_{i}}{p_{i}-1}<e^{\sum_{i=1}^{n} \frac{1}{p_{i}}} \cdot e^{\sum_{i=1}^{n} \frac{1}{p_{i}\left(p_{i}-1\right)}} . \tag{1}
\end{equation*}
$$

Let's prove now that the series $\sum \frac{1}{p(p-1)}$ is convergent. Indeed, since the terms of the series are positive and since for every natural number n we have

$$
\begin{aligned}
\sum_{i=1}^{n} \frac{1}{p_{i}\left(p_{i}-1\right)} & =\frac{1}{p_{1}\left(p_{1}-1\right)}+\frac{1}{p_{2}\left(p_{2}-1\right)}+\cdots+\frac{1}{p_{n}\left(p_{n}-1\right)}= \\
& =\left(\frac{1}{p_{1}-1}-\frac{1}{p_{1}}\right)+\left(\frac{1}{p_{2}-1}-\frac{1}{p_{2}}\right)+\cdots+\left(\frac{1}{p_{n}-1}-\frac{1}{p_{n}}\right)= \\
& =\frac{1}{p_{1}-1}-\left(\frac{1}{p_{1}}-\frac{1}{p_{2}-1}\right)-\cdots-\left(\frac{1}{p_{n-1}}-\frac{1}{p_{n}-1}\right)-\frac{1}{p_{n}}<\frac{1}{p_{1}-1}=1,
\end{aligned}
$$

then its partial sums are upper bounded, consequently this series is convergent. Let's note

$$
\sum \frac{1}{p(p-1)}=\sigma
$$

From Dirichlet theorem [1] we have

$$
\sum_{i=1}^{n} \frac{1}{p_{i}}=\ln \left(\ln p_{n}\right)+M+O\left(\frac{1}{\ln p_{n}}\right),
$$

where M is Merten's constant [2]. Then, based on (1) for every natural number n it is true the inequality

$$
\prod_{i=1}^{n} \frac{p_{i}}{p_{i}-1}<e^{\ln \left(\ln p_{k}\right)+M+o\left(\frac{1}{\ln p_{k}}\right)} \cdot e^{\sigma}=e^{M+\sigma} \cdot e^{o\left(\frac{1}{\ln p_{n}}\right)} \cdot \ln p_{n}
$$

otherwise, for every natural number n it is true the inequality

$$
\begin{equation*}
\prod_{i=1}^{n} \frac{p_{i}}{p_{i}-1}<\kappa \cdot e^{o\left(\frac{1}{\ln p_{n}}\right)} \cdot \ln p_{n}, \tag{2}
\end{equation*}
$$

where $\kappa=e^{M+\sigma}$.
Let's now consider a real number λ, such that $\kappa<\lambda$.
Since $\lim _{n \rightarrow \infty} O\left(\frac{1}{\ln p_{n}}\right)=0$, then

$$
\begin{equation*}
\lim _{n \rightarrow \infty} e^{o\left(\frac{1}{\ln p_{n}}\right)}=1 . \tag{3}
\end{equation*}
$$

From prime number theorem [3] we have

$$
\begin{equation*}
\lim _{n \rightarrow \infty} \frac{n \ln p_{n}}{p_{n}}=1 \tag{4}
\end{equation*}
$$

Consequently, from (3) and (4) we have

$$
\lim _{n \rightarrow \infty} \frac{e^{o\left(\frac{1}{\ln p_{n}}\right)} \cdot n \ln p_{n}}{p_{n}}=1
$$

Moreover, since $\kappa<\lambda$ we can write

$$
\lim _{n \rightarrow \infty} \frac{\kappa \cdot e^{o\left(\frac{1}{\ln p_{n}}\right)} \cdot n \ln p_{n}}{\lambda p_{n}}=\frac{\kappa}{\lambda}=\theta<1 .
$$

Then, for $\varepsilon=1-\theta$ there exists a natural number n_{λ}, such that for every natural number $n>n_{\lambda}$, it is true the inequality

$$
\frac{\kappa \cdot e^{o\left(\frac{1}{\ln p_{n}}\right)} \cdot n \ln p_{n}}{\lambda p_{n}}-\theta<\varepsilon .
$$

Thus, for every natural number $n>n_{\lambda}$ it is true the inequality

$$
\frac{\kappa \cdot e^{o\left(\frac{1}{\ln p_{n}}\right)} \cdot n \ln p_{n}}{\lambda p_{n}}<\theta+\varepsilon=1,
$$

or otherwise

$$
\begin{equation*}
\kappa \cdot e^{o\left(\frac{1}{\ln p_{n}}\right)} \cdot \ln p_{n}<\lambda \frac{p_{n}}{n} . \tag{5}
\end{equation*}
$$

Finally, by (2) and (5) we can say that: there exists a natural number n_{λ}, such that for every natural number $n>n_{\lambda}$, is true the inequality

$$
\prod_{i=1}^{n} \frac{p_{i}}{p_{i}-1}<\kappa \cdot e^{o\left(\frac{1}{\ln p_{n}}\right)} \cdot \ln p_{n}<\lambda \frac{p_{n}}{n},
$$

namely

$$
\begin{equation*}
\frac{p_{1}}{p_{1}-1} \cdot \frac{p_{2}}{p_{2}-1} \cdot \ldots \cdot \frac{p_{n}}{p_{n}-1}<\frac{\lambda p_{n}}{n} . \tag{6}
\end{equation*}
$$

Let's find now the value of constant k with precision to two digits after the decimal point. We have

$$
\sum \frac{1}{p(p-1)}=\frac{1}{1 \cdot 2}+\frac{1}{2 \cdot 3}+\frac{1}{4 \cdot 5}+\cdots+\frac{1}{96 \cdot 97}+\left(\frac{1}{100 \cdot 101}+\frac{1}{102 \cdot 103}+\frac{1}{106 \cdot 107}+\cdots\right)
$$

but, since

$$
\frac{1}{1 \cdot 2}+\frac{1}{2 \cdot 3}+\frac{1}{4 \cdot 5}+\cdots+\frac{1}{96 \cdot 97}=0.7713 \ldots
$$

and

$$
\begin{gathered}
\frac{1}{100 \cdot 101}+\frac{1}{102 \cdot 103}+\frac{1}{106 \cdot 107} \cdots=\left(\frac{1}{100}-\frac{1}{101}\right)+\left(\frac{1}{102}-\frac{1}{103}\right)+\left(\frac{1}{106}-\frac{1}{107}\right)+\cdots \\
<\frac{1}{100}-\left(\frac{1}{101}-\frac{1}{102}\right)-\left(\frac{1}{103}-\frac{1}{106}\right)-\cdots<\frac{1}{100}
\end{gathered}
$$

then

$$
\sigma=\sum \frac{1}{p(p-1)} \approx 0.7713+0.01=0.7723 .
$$

Finally, since $M \approx 0.2615$, then

$$
\kappa \approx e^{M+\sigma}=e^{0.2615+0.7723}=e^{1.0338} \approx 2.812 .
$$

CONCLUSIONS

Depending on the values of the real number λ we can find different natural numbers n_{λ}, that verify the inequality (6).

If the real number λ is very close to the constant number κ, then the natural number n_{λ} increases indefinitely, while if the real number λ is further distant from the real number κ, then the natural number n_{λ} decreases continuously.

References

[1] Tom M. Apostol, "An asymptotic formula for the partial sums $\Sigma_{p \leq x}(1 / \mathrm{p})$ ", Introduction to Analytic Number Theory, pp 88, Springer-Verlag, New York Heidelberg Berlin 1976.
[2] A. Languasco, A. Zaccagnini, A note of Merten's formula for arithmetic progressions, Jurnal of Number Theory, Volume 127, Issue 1, November 2007, pp 37-46.
[3] Tom M. Apostol, "Some elementary theorems on the distribution of prime numbers", Introduction to Analytic Number Theory, pp 74, Springer-Verlag, New York Heidelberg Berlin 1976.

