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Abstract— In this paper we will present an inequality with the sequence of prime numbers 2 , 3, 5, 7 , . We prove that 
there exists a positive constant real number  , such that for every real number   , there exists a natural number 

n , such that for every natural number n n , it is true the inequality 2 3
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 , where np  is the n -th 

prime number. The constant number   is equal with Me  , where M  is the Merten’s constant and   is the sum of the 

convergent series 1
( 1)p p  . The constant   has an approximate value 2.812  . 
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I. INTRODUCTION 
Let’s note 1 2 3, , ,p p p   the sequence of prime numbers. We will show that there exists a positive 

constant real number  , such that for every real number   , there exists a natural number n , such 
that for every natural number n n , it is true the inequality 
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   We will show that 1
( 1)p p   is a convergent series and if we note 1

( 1)p p
 

 , then Me   , 

where M  is Merten’s constant.  
   We will show that 0.7723  , and since 0.2615M   then the approximate value of the constant real 
number   is 2.812 . 

II. PROVE THE INEQUALITY 
For every positive real number x  we have 1 xx e  . Indeed, considering the function ( ) 1xf x e x    

with domain [0, [ , we have (0) 0f   and '( ) 1 0xf x e    for every 0x  . Consequently, ( ) 0f x   
for every 0x  , namely 1xe x   for every 0x  . 

Since for every prime number p  we have  
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, then for every index n  it is true the inequality 
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, then 
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consequently, for every natural number n  it is true the inequality: 
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Let’s prove now that the series 1
( 1)p p   is convergent. Indeed, since the terms of the series are 

positive and since for every natural number n  we have 
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then its partial sums are upper bounded, consequently this series is convergent. Let’s note 
1

( 1)p p


 . 

From Dirichlet theorem [1] we have 
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where M  is Merten’s constant [2]. Then, based on (1) for every natural number n  it is true the inequality 
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otherwise, for every natural number n  it is true the inequality  

        
1

ln

1

ln
1

n
n O

pi
n

i i

p e p
p


 
 
 



  
 ,    (2) 

where Me   . 
   Let’s now consider a real number  , such that   . 
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From prime number theorem [3] we have 
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Consequently, from (3) and (4) we have 
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Moreover, since    we can write 
1

ln lnlim 1
n

O
p

n

n
n

e n p
p

  
 

 
 
 



 
   . 

Then, for 1    there exists a natural number n , such that for every natural number n n , it is true 
the inequality 
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Thus, for every natural number n n  it is true the inequality 
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or otherwise 
1

ln lnn
O

p n
n

pe p
n

 
 
 
    .     (5) 

Finally, by (2) and (5) we can say that: there exists a natural number n , such that for every natural 
number n n , is true the inequality 
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namely 
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   Let’s find now the value of constant k  with precision to two digits after the decimal point. We have 
1 1 1 1 1 1 1 1

( 1) 1 2 2 3 4 5 96 97 100 101 102 103 106 107p p
                  

   , 

but, since 
1 1 1 1 0.7713...

1 2 2 3 4 5 96 97
    

   
 , 

and 
1 1 1 1 1 1 1 1 1

100 101 102 103 106 107 100 101 102 103 106 107
1 1 1 1 1 1 ,

100 101 102 103 106 100

                          
            
   

 



 

then 
1 0.7713 0.01 0.7723

( 1)p p
    

 . 
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Finally, since 0.2615M  , then 
0.2615 0.7723 1.0338 2.812Me e e      . 

 

CONCLUSIONS 
Depending on the values of the real number   we can find different natural numbers n , that verify the 

inequality (6).  
If the real number   is very close to the constant number  , then the natural number n  increases 

indefinitely, while if the real number   is further distant from the real number  , then the natural number 
n  decreases continuously. 
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