Divisor Cordial Labelling of Some Disconnected Graphs

P. Lawrence Rozario Raj^{#1} and R. Lawrence Joseph Manoharan^{*2}

 [#] P.G. and Research Department of Mathematics, St. Joseph's College, Tiruchirappalli – 620 002, Tamil Nadu, India.
 * Department of Mathematics, Hindustan College of Arts and Science, Chennai – 603 103, Tamil Nadu, India.

Abstract - In this paper, the divisor cordial labeling of disconnected graphs $P_n \cup P_m$, $C_n \cup C_m$, $P_n \cup C_m$, $P_n \cup K_{1,m}$, $P_n \cup K_{1,m,m}$, $P_n \cup W_m$, $P_n \cup S_m$, $C_n \cup K_{1,m,m}$, $C_n \cup S_m$, $W_n \cup S_m$, $W_n \cup W_m$ and $S_n \cup S_m$ are presented.

AMS subject classifications : 05C78

Keywords - Disconnected graph, divisor cordial labeling, divisor cordial graph.

I. INTRODUCTION

By a graph, we mean a finite, disconnected, undirected graph without loops and multiple edges, for terms not defined here, we refer to Harary [4]. For standard terminology and notations related to number theory we refer to Burton [2] and graph labeling, we refer to Gallian [3]. In [1], Cahit introduce the concept of cordial labeling of graph. In [12], Varatharajan et al. introduce the concept of divisor cordial labeling of graph. The divisor cordial labeling of various types of graph are presented in [5-11,13]. The brief summaries of definition which are necessary for the present investigation are provided below.

Definition :1.1

A graph labeling is the assignment of unique identifiers to the edges and vertices of a graph.

Definition :1.2

A mapping $f:V(G) \rightarrow \{0,1\}$ is called binary vertex labeling of G and f(v) is called the label of the vertex v of G under f. If for an edge e = uv, the induced edge labeling $f^*: E(G) \rightarrow \{0,1\}$ is given by $f^*(e) = |f(u) - f(v)|$. Then $v_f(i) =$ number of vertices of having label i under f and $e_f(i) =$ number of edges of having label i under f*.

Definition :1.3

A binary vertex labeling f of a graph G is called a cordial labeling if $|v_f(0) - v_f(1)| \le 1$ and $|e_f(0) - e_f(1)| \le 1$. A graph G is cordial if it admits cordial labeling.

Definition :1.4

Let a and b be two integers. If a divides b means that there is a positive integer k such that b = ka. It is denoted by a | b. If a does not divide b, then we denote a \nmid b.

Definition :1.5

Let G = (V(G), E(G)) be a simple graph and $f :\rightarrow \{1, 2, ..., |V(G)|\}$ be a bijection. For each edge uv, assign the label 1 if f(u) | f(v) or f(v) | f(u) and the label 0 otherwise. The function f is called a divisor cordial labeling if $|e_f(0) - e_f(1)| \le 1$. A graph with a divisor cordial labeling is called a divisor cordial graph.

Definition :1.6

The shell S_n is the graph obtained by taking n - 3 concurrent chords in cycle C_n . The vertex at which all the chords are concurrent is called the apex vertex.

Definition :1.7

A wheel W_n is a graph with n+1 vertices, formed by connecting a single vertex to all the vertices of cycle C_n . It is denoted by $W_n = C_n + K_1$.

Definition :1.8

A complete biparitite graph $K_{1,n}$ is called a star and it has n+1 vertices and n edges. $K_{1,n,n}$ is the graph obtained by the subdivision of the edges of the star $K_{1,n}$.

II. MAIN THEOREMS

Theorem: 2.1 The disconnected graph $P_n \cup P_m$ is divisor cordial graph, where $n,m \ge 2$. Proof. Let G be the disconnected graph $P_n \cup P_m$. Let $u_1, u_2, ..., u_n$ and $v_1, v_2, ..., v_m$ be the vertices of P_n and P_m respectively. Then |V(G)| = n+m and |E(G)| = n+m-2. Define vertex labeling $f: V(G) \rightarrow \{1, 2, ..., n+m\}$ as follows Label the vertices $u_1, u_2, ..., u_n, v_1, v_2, ..., v_m$ in the following order. 2^2 , ..., 2^{k_1} , 1, 2, 3, 3×2 3×2^2 ..., 3×2^{k_2} 5, 5×2 5×2^2 ..., 5×2^{k_3} ,, where $(2s-1)2^{k_s} \le n + m$ and $s \ge 1$, $k_s \ge 0$. **Case** (i) : n+m is odd and $f(v_1)$ is even. Then, $e_f(0) = e_f(1) + 1 = \frac{n+m-1}{2}$. **Case (ii) :** n+m is odd and $f(v_1)$ is odd. Then, $e_f(1) = e_f(0) + 1 = \frac{n+m-1}{2}$. **Case (iii) :** n+m is even and $f(v_1)$ is even. Then, $e_f(0) = e_f(1) = \frac{n+m-2}{2}$. **Case (iv) :** n+m is even and $f(v_1)$ is odd. **Subcase** (a) : n+m = 6 and $f(v_1)$ is odd. Interchange the labels of u_1 and v_1 . Then, $e_f(0) = e_f(1) = 2$ **Subcase (b) :** $n+m \neq 6$ and $f(v_1)$ is odd. Interchange the labels of u₂ and v_m. Then, $e_f(0) = e_f(1) = \frac{n+m-2}{2}$. Therefore, $|e_f(0) - e_f(1)| \le 1$. Hence G is divisor cordial graph.

Example : 2.1

(i) The graph $P_6 \cup P_5$ and its divisor cordial labeling is given in Figure 2.1(a).

1	2	4	8	3	6	5	10	7	9	11
•	•	•	•	•	•	•	•	•	•	•
					Figure	e 2.1(a)				

(ii) The graph $P_7 \cup P_5$ and its divisor cordial labeling is given in Figure 2.1(b).

1 11	4	8	3	6	12	5	10	7	9	2
• •	•	•	•	• Fi	• oure 2 1(h)	•	•	•	•	•

Theorem: 2.2

The disconnected graph $C_n \cup C_m$ is divisor cordial graph, where $n,m \ge 3$. **Proof.**

Let G be the disconnected graph $C_n \cup C_m$.

Let $u_1, u_2, ..., u_n$ and $v_1, v_2, ..., v_m$ be the vertices of C_n and C_m respectively. Then |V(G)| = n+m and |E(G)| = n + m. Define vertex labeling $f : V(G) \rightarrow \{1, 2, ..., n+m\}$ as follows $f(u_m) = p$, where p is the largest prime number and $p \le n+m$.

Label the vertices $u_1, u_2, ..., u_n, v_1, v_2, ..., v_{m-1}$ in the following order other than p.

where $(2s-1)2^{k_s} \le n+m$ and $s \ge 1$, $k_s \ge 0$.

Case (i) : n+m is odd and $f(v_1)$ is even.

Then,
$$e_f(0) = e_f(1) + 1 = \frac{n+m+1}{2}$$

Case (ii) : n+m is odd and $f(v_1)$ is odd.

Then,
$$e_f(1) = e_f(0) + 1 = \frac{n+m+1}{2}$$

Case (iii) : n+m is even and $f(v_1)$ is even.

Then,
$$e_f(0) = e_f(1) = \frac{n+m}{2}$$
.

Case (iv) : n+m is even and $f(v_1)$ is odd.

Subcase (a) : n+m = 6 and $f(v_1)$ is odd. Interchange the labels of u_1 and v_1 . Then, $e_f(0) = e_f(1) = 3$

Subcase (b) : $n+m \neq 6$ and $f(v_1)$ is odd. Interchange the labels of u_2 and v_m .

Then,
$$e_f(0) = e_f(1) = \frac{n+m}{2}$$
.

Therefore, $|e_f(0) - e_f(1)| \le 1$. Hence G is divisor cordial graph.

Example : 2.2

The graph $C_8 \cup C_5$ and its divisor cordial labeling is given in Figure 2.2.

Figure 2.2

Theorem: 2.3

The disconnected graph $P_n \cup C_m$ is divisor cordial graph, where $n \geq 2$ and $m \geq 3.$ Proof.

Let G be the disconnected graph $P_n \cup C_m$.

Let $u_1, u_2, ..., u_n$ and $v_1, v_2, ..., v_m$ be the vertices of P_n and C_m respectively.

Then |V(G)| = n+m and |E(G)| = n + m - 1.

Define vertex labeling $f : V(G) \rightarrow \{1, 2, ..., n+m\}$ as follows

 $f(v_m) = p$, where p is the largest prime number and $p \le n+m$.

Label the vertices $u_1, u_2, ..., u_n, v_1, v_2, ..., v_{m-1}$ in the following order other than p.

where $(2s-1)2^{k_s} \le n+m$ and $s \ge 1$, $k_s \ge 0$.

Case (i) : n+m is even and $f(v_1)$ is odd.

Then, $e_f(1) = e_f(0) + 1 = \frac{n+m}{2}$

Case (ii) : n+m is even and $f(v_1)$ is even.

Then,
$$e_f(0) = e_f(1) + 1 = \frac{n+m}{2}$$
.

Case (iii) : n+m is odd and $f(v_1)$ is odd.

Then,
$$e_f(0) = e_f(1) = \frac{n+m-1}{2}$$
.

Case (iv) : n+m is odd and $f(v_1)$ is even. Interchange the labels of u_1 and v_m .

Then,
$$e_f(0) = e_f(1) = \frac{n+m-1}{m-1}$$
.

Therefore, $|e_f(0) - e_f(1)| \le 1$. Hence G is divisor cordial graph.

Example : 2.3

The graph $P_5 \cup C_6$ and its divisor cordial labeling is given in Figure 2.3.

Theorem : 2.4

The disconnected graph $P_n \cup K_{1,m}$ is divisor cordial graph, where $n \geq 2$ and $m \geq 1.$ **Proof.**

Let G be the disconnected graph $P_n \cup K_{1,m}$. Let $u_1, u_2, ..., u_n$ and $v, v_1, v_2, ..., v_m$ be the vertices of P_n and $K_{1,m}$ respectively. Then |V(G)| = n + m + 1 and |E(G)| = n + m - 1. Define vertex labeling $f : V(G) \rightarrow \{1, 2, ..., n + m + 1\}$ as follows f(v) = 2Label the vertices $u_1, u_2, ..., u_n$ in the following order.

where $(2s-1)2^{k_s} \le n+1$ and $s \ge 1$, $k_s \ge 0$ and label the remaining vertices $v_1, v_2, ..., v_m$ from n+2 to n+m+1. Then,
$$\begin{split} e_f(0) &= e_f(1) + 1 = \frac{n+m}{2}, \text{ when either n and m are odd or n and m are even.} \\ e_f(1) &= e_f(0) = \frac{n+m-1}{2}, \text{ when either n is even and m is odd or n is odd and m is even.} \\ \end{split}$$
Therefore, $|e_f(0) - e_f(1)| \leq 1.$

Hence G is divisor cordial graph.

Example : 2.4

The graph $P_6 \cup K_{1,8}$ and its divisor cordial labeling is given in Figure 2.4.

Figure 2.4

Theorem: 2.5

The disconnected graph $P_n \cup K_{1,m,m}$ is divisor cordial graph, where $n \geq 2$ and $m \geq 1.$ **Proof.**

Let G be the disconnected graph $P_n \cup K_{1,m,m}$

Let $u_1, u_2, ..., u_n$ and $v, v_1, v_2, ..., v_m, v_{m+1}, v_{m+2}, ..., v_{2m}$ be the vertices of P_n and $K_{1,m,m}$ respectively. Then |V(G)| = n+2m+1 and |E(G)| = n + 2m - 1. Define vertex labeling $f: V(G) \rightarrow \{1, 2, ..., n+2m+1\}$ as follows:

 $\leq i \leq m$

Define vertex labeling $f:V(G) \rightarrow \{1,\,2,\,...,\,n{+}2m{+}1\,\}$ as follows f(v)=2

Label the vertices $u_1, u_2, ..., u_n$ in the following order.

1,	2²,	2 ³ ,	,	2^{k_1} ,				
3,	3×2	3×2^2	,	3×2^{k_2} ,				
5,	5×2	5×2^2	,	5×2^{k_3} ,				
				,				
where $(2s-1)2^{k_s} \le n+1$ and $s \ge 1$, $k_s \ge 0$.								
Case (i) : n is odd								
$f(u_i) = n+1+2i,$ for $1 \leq i$								
	$f(n_{i}) = n+2i$ for $1 \leq i$							

 $\begin{array}{ll} f(u_{m+i})=n+2i, & \mbox{ for } 1\leq i\leq m\\ \mbox{ Case (ii) : }n \mbox{ is even} & \\ f(u_i)=n+2i, & \mbox{ for } 1\leq i\leq m\\ f(u_{m+i})=n+1+2i, & \mbox{ for } 1\leq i\leq m \end{array}$

Then,

$$e_{f}(1) = e_{f}(0) = \frac{n+2m-1}{2}$$
, when n is odd.
 $e_{f}(0) = e_{f}(1) + 1 = \frac{n+2m}{2}$, when n is even.

Therefore, $|e_f(0) - e_f(1)| \le 1$. Hence G is divisor cordial graph.

Example : 2.5

The graph $P_7 \cup K_{1.5.5}$ and its divisor cordial labeling is given in Figure 2.5.

Theorem: 2.6

The disconnected graph $P_n \cup W_m$ is divisor cordial graph, where $n \geq 2$ and $m \geq 3.$ **Proof.**

Let G be the disconnected graph $P_n \cup W_m$.

Let $u_1, u_2, ..., u_n$ and $v, v_1, v_2, ..., v_m$ be the vertices of P_n and W_m respectively.

Then |V(G)| = n+m+1 and |E(G)| = n + 2m - 1.

Define vertex labeling $f : V(G) \rightarrow \{1, 2, ..., n+m+1\}$ as follows f(v) = 1

Label the vertices $u_1, u_2, ..., u_n$ in the following order.

where $(2s-1)2^{k_s} \le n+1$ and $s \ge 1$, $k_s \ge 0$ and label the remaining vertices $v_1, v_2, ..., v_m$ from n+2 to n+m+1. If (n+2) divides (m-1), then interchange the labels of v_{m-1} and v_m . Then,

$$\begin{split} e_f(1) &= e_f(0) = \frac{n+2m-1}{2}, \ \text{when n is odd}. \\ e_f(0) &= e_f(1)+1 = \frac{n+2m}{2}, \text{when n is even}. \\ \text{Therefore, } |e_f(0)-e_f(1)| \leq 1. \end{split}$$

Hence G is divisor cordial graph.

Example : 2.6

The graph $P_5 \cup W_7$ and its divisor cordial labeling is given in Figure 2.6.

Figure 2.6

The disconnected graph $P_n \cup S_m$ is divisor cordial graph, where $n \geq 2$ and $m \geq 4.$ **Proof.**

Let G be the disconnected graph $P_n \cup S_m$. Let $u_1, u_2, ..., u_n$ and $v_1, v_2, ..., v_m$ be the vertices of P_n and S_m respectively. Then |V(G)| = n + m and |E(G)| = n + 2m - 4. Define vertex labeling $f: V(G) \rightarrow \{1, 2, ..., n + m\}$ as follows $f(v_1) = 1$ Label the vertices $u_1, u_2, ..., u_n$ in the following order.

where $(2s-1)2^{k_s} \le n+1$ and $s \ge 1$, $k_s \ge 0$ and label the remaining vertices v_2 , v_3 , ..., v_m from n+2 to n+m. Then,

$$e_{f}(1) = e_{f}(0) + 1 = \frac{n + 2m - 3}{2}$$
, when n is odd.
 $e_{f}(0) = e_{f}(1) = \frac{n + 2m - 4}{2}$, when n is even.

Therefore, $|e_f(0) - e_f(1)| \le 1$. Hence G is divisor cordial graph.

Example : 2.7

The graph $P_5 \cup S_6$ and its divisor cordial labeling is given in Figure 2.7.

Figure 2.7

Theorem: 2.8

The disconnected graph $C_n \cup K_{1,m}$ is divisor cordial graph, where $n \ge 3$ and $m \ge 1$. **Proof.** Let C be the disconnected graph C + + K

Let G be the disconnected graph $C_n \cup K_{1,m}$. Let $u_1, u_2, ..., u_n$ and $v, v_1, v_2, ..., v_m$ be the vertices of C_n and $K_{1,m}$ respectively. Then |V(G)| = n+m+1 and |E(G)| = n + m. Define vertex labeling $f : V(G) \rightarrow \{1, 2, ..., n+m+1\}$ as follows f(v) = 2Label the vertices $u_1, u_2, ..., u_n$ in the following order. $1, 2^2, 2^3, ..., 2^{k_1},$

3,	3×2	3×2^2	,	3×2^{k_2} ,
5,	5×2	5×2^2	,	5×2^{k_3} ,
				,

where $(2s-1)2^{k_s} \le n+1$ and $s \ge 1$, $k_s \ge 0$ and label the remaining vertices $v_1, v_2, ..., v_m$ from n+2 to n+m+1.

Then,

$$\begin{split} e_f(1) &= e_f(0) = \frac{n+m}{2}, \text{ when either n and m are odd or n and m are even.} \\ e_f(1) &= e_f(0) + 1 = \frac{n+m+1}{2}, \text{ when either n is even and m is odd or n is odd and m is even.} \\ \end{split}$$
Therefore, $|e_f(0) - e_f(1)| \leq 1.$

Hence G is divisor cordial graph.

Example: 2.8

The graph $C_7 \cup K_{1,6}$ and its divisor cordial labeling is given in Figure 2.8.

Figure 2.8

Theorem: 2.9

The disconnected graph $C_n \cup K_{1,m,m}$ is divisor cordial graph, where $n \geq 3$ and $m \geq 1.$ **Proof.**

Let G be the disconnected graph $C_n \cup K_{1,m,m}$

Let $u_1, u_2, ..., u_n$ and $v, v_1, v_2, ..., v_m, v_{m+1}, v_{m+2}, ..., v_{2m}$ be the vertices of C_n and $K_{1,m,m}$ respectively. Then |V(G)| = n+2m+1 and |E(G)| = n + 2m.

Define vertex labeling $f : V(G) \rightarrow \{1, 2, ..., n+2m+1\}$ as follows f(v) = 2

Label the vertices $u_1, u_2, ..., u_n$ in the following order.

•••••	• • • • • • • •	, a 1, a	<i></i> ,,	an and re	moning or activ			
1,	2 ² ,	2 ³ ,	,	2^{k_1} ,				
3,	3×2	3×2^2	,	3×2^{k_2} ,				
5,	5×2	5×2^2	,	5×2^{k_3} ,				
				,				
whe	ere (2s	$(-1)2^{k_s}$	≤ n +	1 and $s \ge 1$	$1, k_s \ge 0$.			
Cas	Case (i) : n is odd							
$f(u_i) = n + 1 + 2i, \qquad \text{for } 1 \le i \le n$								
$f(u_{m+i}) = n+2i,$ for $1 \le i \le n$								
Case (ii) : n is even								
$f(u_i) = n+2i$, for $1 \le i \le m$								
	$f(u_{m+i}) = n+1+2i,$ for $1 \le i \le n$							

From above cases,

$$e_{f}(1) = e_{f}(0) + 1 = \frac{n + 2m + 1}{2}$$
, when n is odd.
 $e_{f}(0) = e_{f}(1) = \frac{n + 2m}{2}$, when n is even.

Therefore, $|e_f(0) - e_f(1)| \le 1$.

Hence G is divisor cordial graph.

Example : 2.9

The graph $C_5 \cup K_{1,6,6}$ and its divisor cordial labeling is given in Figure 2.9.

Figure 2.9

The disconnected graph $C_n \cup W_m$ is divisor cordial graph, where n, $m \ge 3$. Proof.

Let G be the disconnected graph $C_n \cup W_m.$ Let u₁, u₂, ..., u_n and v, v₁, v₂, ..., v_m be the vertices of C_n and W_m respectively. Then |V(G)| = n+m+1 and |E(G)| = n + 2m. Case (i): n is odd Define vertex labeling $f: V(G) \rightarrow \{1, 2, ..., n+m+1\}$ as follows f(v) = 1Label the vertices $u_1, u_2, ..., u_n$ in the following order.

 $2, 2^2, 2^3, ..., 2^{k_1},$

3,	3×2	3×2^2	,	$3 \times 2^{\kappa_2}$,
5,	5×2	5×2^2	,	5×2^{k_3} ,
				,

where $(2s-1)2^{k_s} \le n+1$ and $s \ge 1$, $k_s \ge 0$ and label the remaining vertices $v_1, v_2, ..., v_m$ from n+2 to n+m+1. If n+2 divides m-1, then interchange the labels of v_{m-1} and v_m.

Case (ii) : n is even

Define vertex labeling $f: V(G) \rightarrow \{1, 2, ..., n+m+1\}$ as follows

$$f(u_n) = n+2,$$

f(v) = 1,

Label the vertices $u_1, u_2, ..., u_{n-1}$ in the following order.

 $2, 2^2, 2^3, \dots, 2^{k_1},$ 3, 3×2 3×2^2 ..., 3×2^{k_2} 5, 5×2 5×2^2 ..., 5×2^{k_3} ,,

where $(2s-1)2^{k_s} \le n$ and $s \ge 1$, $k_s \ge 0$ and label the remaining vertices $v_1, v_2, ..., v_m$ from n+1, n+3 to n+m+1. If (n+1) divides m, then interchange the labels of v_{m-1} and v_m . From the above cases,

$$e_{f}(0) = e_{f}(1) + 1 = \frac{n + 2m + 1}{2}$$
, when n is odd.
 $e_{f}(0) = e_{f}(1) = \frac{n + 2m}{2}$, when n is even.
prefore, $|e_{f}(0) - e_{f}(1)| \le 1$.

The Hence G is divisor cordial graph.

Example: 2.10

The graph $C_8 \cup W_6$ and its divisor cordial labeling is given in Figure 2.10.

The disconnected graph $C_n \cup S_m$ is divisor cordial graph, where $n \geq 3$ and $m \geq 4.$ Proof.

Let G be the disconnected graph $C_n \cup S_m$.

Let $u_1, u_2, ..., u_n$ and $v_1, v_2, ..., v_m$ be the vertices of C_n and S_m respectively. Then |V(G)| = n+m and |E(G)| = n + 2m - 3.

Case (i): n is odd

Define vertex labeling $f : V(G) \rightarrow \{1, 2, ..., n+m\}$ as follows $f(v_1) = 1$

Label the vertices $u_1, u_2, ..., u_n$ in the following order.

2,	2²,	2^{3} ,	,	2^{k_1} ,
3,	3×2	3×2^2	,	3×2^{k_2} ,
5,	5×2	5×2^2	,	5×2^{k_3} ,
•••				,

where $(2s-1)2^{k_s} \le n+1$ and $s \ge 1$, $k_s \ge 0$ and label the remaining vertices v_2 , ..., v_m from n+2 to n+m.

Case (ii) : n is even

Define vertex labeling $f: V(G) \rightarrow \{1, 2, ..., n+m\}$ as follows

 $f(u_n) = n+2,$ $f(v_1) = 1,$

Label the vertices $u_1, u_2, ..., u_{n-1}$ in the following order.

where $(2s-1)2^{k_s} \le n$ and $s \ge 1$, $k_s \ge 0$ and label the remaining vertices $v_2, v_3, ..., v_m$ from n+1, n+3 to n+m. From the above cases,

$$e_{f}(1) = e_{f}(0) = \frac{n+2m-3}{2}$$
, when n is odd.
 $e_{f}(1) = e_{f}(0) + 1 = \frac{n+2m-2}{2}$, when n is even

Therefore, $|e_f(0) - e_f(1)| \le 1$.

Hence G is divisor cordial graph.

Example : 2.11

The graph $C_6 \cup S_7$ and its divisor cordial labeling is given in Figure 2.11.

 $\label{eq:started} \begin{array}{l} \text{The disconnected graph } W_n \cup S_m \text{ is divisor cordial graph, where } n \geq 3 \text{ and } m \geq 4. \\ \textbf{Proof.} \\ \text{Let } G \text{ be the disconnected graph } W_n \cup S_m. \\ \text{Let } u, u_1, u_2, ..., u_n \text{ and } v_1, v_2, ..., v_m \text{ be the vertices of } W_n \text{ and } S_m \text{ respectively.} \end{array}$

Then |V(G)| = n+m+1 and |E(G)| = 2n+2m-3. Define vertex labeling $f: V(G) \rightarrow \{1, 2, ..., n+m+1\}$ as follows Case (i) : n < mSubcase (i) : n = 3f(u) = 2, $f(u_1) = 4$, $f(u_2) = 6$ and $f(u_3) = 7$. $f(v_1) = 1$, $f(v_2) = 3$, $f(v_3) = 5$ and $f(v_4) = 8$. Label the remaining vertices $v_5, v_6, ..., v_m$ from 9, 10 to m+4. **Subcase (ii) :** $n \ge 4$ $f(v_i) = 2i - 1,$ for $1 \le i \le n+1$ $f(v_{n+1+i}) = 2n+1+i$, for $1 \le i \le m - n - 1$ f(u) = 2, For n is even $f(u_i) = 2i + 2,$ for $1 \le i \le n$ For n is odd $f(u_i) = 2i + 2,$ for $1 \le i \le n-2$ $f(u_{n-1}) = 2n+2,$ $f(u_n) = 2n$ Case (ii) : n = m**Subcase (i) :** $2n+1 \equiv 0 \pmod{3}$ $f(v_i) = 2i$, for $1 \le i \le n$ f(u) = 1, $f(u_i) = 2i + 1$, for $1 \le i \le n-2$ $f(u_{n-1}) = 2n+1$, $\mathbf{f}(\mathbf{u}_{n})=2n-1.$ **Subcase (ii) :** $2n+1 \equiv 1,2 \pmod{3}$ $f(v_i) = 2i$, for $1 \le i \le n$ f(u) = 1, $f(u_i) = 2i + 1$, for $1 \le i \le n$ Case (iii): n > mSubcase (i) : $n+m+1 \equiv 0 \pmod{3}$ $f(v_i) = 2i$, for $1 \le i \le m$ f(u) = 1, $f(u_i) = 2i + 1$, for $1 \le i \le m$ $f(u_{m+i}) = 2m+1+i$, for $1 \le i \le n - m - 2$ $f(u_{n-1}) = n+m+1$, $f(u_n) = n+m$, **Subcase (ii) :** $n+m+1 \equiv 1,2 \pmod{3}$ $f(v_i) = 2i$, for $1 \le i \le m$ f(u) = 1, $f(u_i) = 2i + 1$, for $1 \le i \le m$

 $\begin{array}{ll} f(u_{m+i})=2m{+}1{+}i, & \mbox{for } 1\leq i\leq n-m\\ \mbox{From the above cases,}\\ e_f(1)=e_f(0)+1=n{+}m{-}2.\\ \mbox{Therefore, } |e_f(0)-e_f(1)|\leq 1.\\ \mbox{Hence G is divisor cordial graph.} \end{array}$

Example : 2.12

The graph $W_8 \cup S_5$ and its divisor cordial labeling is given in Figure 2.12.

Theorem: 2.13

The disconnected graph $W_n \cup W_m$ is divisor cordial graph, where n, $m \ge 3$. Proof. Let G be the disconnected graph $W_n \cup W_m$. Let $u, u_1, u_2, ..., u_n$ and $v, v_1, v_2, ..., v_m$ be the vertices of W_n and W_m respectively. Then |V(G)| = n+m+2 and |E(G)| = 2n+2m. Define vertex labeling $f: V(G) \rightarrow \{1, 2, ..., n+m+2\}$ as follows **Case** (1): n = 3 and m = 4. f(u) = 2, $f(u_1) = 4$, $f(u_2) = 6$ and $f(u_3) = 7$. f(v) = 1, $f(v_1) = 3$, $f(v_2) = 5$, $f(v_3) = 9$ and $f(v_3) = 8$. **Case (2) :** n = 3 and m > 4. f(u) = 2, $f(u_1) = 4$, $f(u_2) = 6$ and $f(u_3) = 7$. f(v) = 1, $f(v_1) = 3$, $f(v_2) = 5$ and $f(v_3) = 8$. **Subcase (i) :** $m+5 \equiv 1,2 \pmod{3}$ $f(v_{n+i}) = 8+i$, for $1 \le i \le m - 3$ **Subcase (ii) :** $m+5 \equiv 0 \pmod{3}$ $f(v_{n+i}) = 8+i$, for $1 \le i \le m - 5$ $f(v_{m-1}) = n+m+2,$ $f(v_m) = n+m+1$. **Case (3) :** n > 3 and m > 5 and n < m. f(u) = 2, f(v) = 1, Subcase (i) : n is even and $n+m+2 \equiv 1,2 \pmod{3}$ $f(u_i) = 2i + 2,$ for $1 \le i \le n$ for $1 \le i \le n$ $f(v_i) = 2i+1$, $f(v_{n+i}) = 2n+2+i,$ for $1 \le i \le m - n$ **Subcase (ii) :** n is odd and $n+m+2 \equiv 1,2 \pmod{3}$ $f(u_i) = 2i + 2$, for $1 \le i \le n-2$ $f(u_{n-1}) = 2n+2,$ $f(u_n) = 2n,$ $f(v_i) = 2i+1$, for $1 \le i \le n$ for $1 \le i \le m - n$ $f(v_{n+i}) = 2n+2+i$, **Subcase (iii) :** n is even and $n+m+2 \equiv 0 \pmod{3}$ $f(u_i) = 2i + 2,$ for $1 \le i \le n$ $f(v_i) = 2i+1$, for $1 \le i \le n$ $f(v_{n+i}) = 2n+2+i,$ for $1 \le i \le m - n - 2$

```
f(v_{m-1}) = n+m+2,
     f(v_m) = n+m+1.
Subcase (iv) : n is odd and n+m+2 \equiv 0 \pmod{3}
     f(u_i) = 2i + 2.
                                    for 1 \le i \le n - 2
     f(u_{n-1}) = 2n+2,
     f(u_n) = 2n,
                                    for 1 \le i \le n-2
     f(v_i) = 2i+1,
     f(v_{m-1}) = 2n+1,
     f(v_m) = 2n - 1.
Case (4) : n = m = 3
     f(u) = 1, f(u_1) = 5, f(u_2) = 6 and f(u_3) = 7.
     f(u) = 3, f(v_1) = 2, f(v_2) = 4 and f(v_3) = 8.
 Case (5) : n > 3 and n = m.
     f(u) = 2,
     f(v) = 1,
Subcase (i) : n is even and n \equiv 0,2 \pmod{3}
     f(u_i) = 2i + 2,
                                    for 1 \le i \le n
     f(v_i) = 2i+1,
                                    for 1 \le i \le n
Subcase (ii) : n is odd and n \equiv 0,2 \pmod{3}
     f(u_i) = 2i + 2,
                                    for 1 \le i \le n - 2
     f(u_{n-1}) = 2n+2,
     f(u_n)=2n,
     f(v_i) = 2i+1,
                                     for 1 \le i \le n
Subcase (iii) : n is even and n \equiv 1 \pmod{3}
     f(u_i) = 2i + 2,
                                    for 1 \le i \le n
     f(v_i) = 2i+1,
                                    for 1 \le i \le n-2
     f(v_{m-1}) = 2n+1,
     f(v_m) = 2n - 1.
Subcase (iv) : n is odd and n \equiv 1 \pmod{3}
     f(u_i) = 2i + 2,
                                    for 1 \le i \le n-2
     f(u_{n-1}) = 2n+2,
     f(u_n) = 2n,
     f(v_i) = 2i+1,
                                    for 1 \le i \le n
     f(v_{n+i}) = 2n+2+i,
                                    for 1 \le i \le m - n - 2
     f(v_{m-1}) = n+m+2,
     f(v_m) = n+m+1.
Case (6) : n = 4 and m = 3.
     f(u) = 1, f(u_1) = 3, f(u_2) = 5, f(u_3) = 9 and f(u_3) = 8.
     f(v) = 2, f(v_1) = 4, f(v_2) = 6 and f(v_3) = 7.
Case (7): n > 4 and m = 3.
     f(u) = 1, f(u_1) = 3, f(u_2) = 5 and f(u_3) = 8.
     f(v) = 2, f(v_1) = 4, f(v_2) = 6 and f(v_3) = 7.
Subcase (i) : n+5 \equiv 1,2 \pmod{3}
                                     for 1 \le i \le n - 3
     f(u_{3+i}) = 8+i,
Subcase (ii) : n+5 \equiv 0 \pmod{3}
     f(u_{3+i}) = 8+i,
                                    for 1 \le i \le n-5
     f(u_{n-1}) = n+5,
     f(u_n) = n+4.
Case (8) : n > 5 and m > 3 and m < n.
     f(v) = 2,
     f(u) = 1,
Subcase (i) : m is even and n+m+2 \equiv 1,2 \pmod{3}
     f(v_i) = 2i + 2,
                                    for 1 \le i \le m
     f(u_i) = 2i+1,
                                    for 1 \le i \le m
     f(u_{m+i}) = 2m+2+i,
                                    for 1 \le i \le n - m
Subcase (ii) : m is odd and n+m+2 \equiv 1,2 \pmod{3}
```

```
f(v_i) = 2i + 2,
                                    for 1 \le i \le m - 2
     f(v_{m-1}) = 2m+2,
     f(v_m) = 2m,
     f(u_i) = 2i+1,
                                    for 1 \le i \le m
     f(u_{m+i}) = 2m+2+i,
                                    for 1 \le i \le m-n
Subcase (iii) : m is even and n+m+2 \equiv 0 \pmod{3}
     f(v_i) = 2i + 2,
                                    for 1 \le i \le m
     f(u_i) = 2i+1,
                                    for 1 \le i \le m
     f(u_{m+i}) = 2m+2+i,
                                    for 1 \le i \le n - m - 2
     f(u_{n-1}) = n+m+2,
     f(u_n) = n+m+1.
Subcase (iv) : m is odd and n+m+2 \equiv 0 \pmod{3}
     f(v_i) = 2i + 2,
                                    for 1 \le i \le m - 2
     f(v_{m-1}) = 2m+2,
     f(v_m) = 2m,
     f(u_i) = 2i+1,
                                     for 1 \le i \le m
     f(u_{m+i}) = 2m+2+i,
                                    for 1 \le i \le n - m - 2
     f(u_{n-1}) = n+m+2,
     f(u_n) = n + m + 1.
From the above cases,
     e_f(1) = e_f(0) = n + m.
Therefore, |e_f(0) - e_f(1)| \le 1.
Hence G is divisor cordial graph.
```

Example : 2.13

The graph $W_5 \cup W_8$ and its divisor cordial labeling is given in Figure 2.13.

Theorem: 2.14

The disconnected graph $S_n \cup S_m$ is divisor cordial graph, where n, $m \geq 4.$ **Proof.**

Let G be the disconnected graph $S_n \cup S_m$.

Let $u_1, u_2, ..., u_n$ and $v_1, v_2, ..., v_m$ be the vertices of S_n and S_m respectively. Then |V(G)| = n+m and |E(G)| = 2n+2m-6. Define vertex labeling $f : V(G) \rightarrow \{1, 2, ..., n+m\}$ as follows **Case (i) :** n < m

$f(u_i) = 2i$,	for $1 \le i \le n-1$
$f(u_n) = 2n - 1.$	
$f(v_i) = 2i - 1$,	for $1 \le i \le n-1$
$f(v_n) = 2n$.	
$f(v_{n+i}) = 2n+i,$	for $1 \le i \le m-n$
Case (ii) : n = m	
$f(u_i) = 2i$,	for $1 \le i \le n-1$
$f(u_n) = 2n - 1.$	
$f(v_i) = 2i - 1$,	for $1 \le i \le n-1$
$f(v_n) = 2n.$	

```
\begin{array}{ll} \mbox{Case (iii) : } n > m & \\ f(u_i) = 2i{-}1, & \mbox{for } 1 \le i \le m{-}1 & \\ f(u_m) = 2n. & \\ f(v_i) = 2i, & \mbox{for } 1 \le i \le m{-}1 & \\ f(v_m) = 2n{-}1. & \\ f(u_{m+i}) = 2n{+}i, & \mbox{for } 1 \le i \le n{-}m & \\ \mbox{From the above cases,} & \\ e_f(1) = e_f(0) = n + m - 3. & \\ \mbox{Therefore, } |e_f(0) - e_f(1)| \le 1. & \\ \mbox{Hence G is divisor cordial graph.} \end{array}
```

Example : 2.14

The graph $S_8 \cup S_6$ and its divisor cordial labeling is given in Figure 2.14.

Figure 2.14

III. CONCLUSIONS

In this paper, we prove the divisor cordial labeling of disconnected graphs $P_n \cup P_m$, $C_n \cup C_m$, $P_n \cup C_m$, $P_n \cup K_{1,m}$, $P_n \cup K_{1,m,m}$, $P_n \cup W_m$, $P_n \cup S_m$, $C_n \cup K_{1,m}$, $C_n \cup K_{1,m,m}$, $C_n \cup K_{1,m,m}$, $C_n \cup W_m$, $C_n \cup S_m$, $W_n \cup S_m$, $W_n \cup W_m$ and $S_n \cup S_m$.

REFERENCES

- [1] I. Cahit, "Cordial graphs: A weaker version of graceful and harmonious graphs", Ars Combinatoria, Vol 23, pp. 201-207, 1987.
- [2] David M. Burton, Elementary Number Theory, Second Edition, Wm. C. Brown Company Publishers, 1980.
- [3] J. A. Gallian, A dynamic survey of graph labeling, The Electronic Journal of Combinatorics, 16, # DS6, 2013.
- [4] F. Harary, Graph Theory, Addison-Wesley, Reading, Mass, 1972.
- [5] P. Lawrence Rozario Raj and R. Valli, Some new families of divisor cordial graphs, International Journal of Mathematics Trends and Technology, Vol 7, No. 2, 2014.
- [6] P.Maya and T.Nicholas, Some New Families of Divisor Cordial Graph, Annals of Pure and Applied Mathematics Vol. 5, No.2, pp. 125-134, 2014.
- [7] A. Muthaiyan and P. Pugalenthi, "Some new divisor cordial graphs", International Journal of Mathematics Trends and Technology, Vol 12, No. 2, 2014.
 [8] A. Nellai Murugan and M. Taj Nisha, "A study on divisor cordial labelling of star attached paths and cycles", Indian Journal of Research, Vol.3, Issue 3, pp. 12-17, 2014.
- [9] A. Nellai Murugan and V.Brinda Devi, "A study on path related divisor cordial graphs", International Journal of Scientific Research, Vol.3, Issue 4, pp. 286 – 291, 2014.
- [10] S. K. Vaidya and N. H. Shah, "Some Star and Bistar Related Divisor Cordial Graphs", Annals of Pure and Applied Mathematics, Vol 3, No.1, pp. 67-77, 2013.
- [11] S. K. Vaidya and N. H. Shah, "Further Results on Divisor Cordial Labeling", Annals of Pure and Applied Mathematics, Vol 4, No.2, pp. 150-159, 2013.
- [12] R. Varatharajan, S. Navanaeethakrishnan and K. Nagarajan, "Divisor cordial graphs", International J. Math. Combin., Vol 4, pp. 15-25, 2011.
- [13] R. Varatharajan, S. Navanaeethakrishnan and K. Nagarajan, "Special classes of divisor cordial graphs", International Mathematical Forum, Vol 7, No. 35, pp. 1737-1749, 2012.