Divisor Cordial Labelling of Some Disconnected Graphs

P. Lawrence Rozario Raj ${ }^{\# 1}$ and R. Lawrence Joseph Manoharan ${ }^{* 2}$
${ }^{\text {\# }}$ P.G. and Research Department of Mathematics, St. Joseph's College, Tiruchirappalli - 620 002, Tamil Nadu, India.
* Department of Mathematics, Hindustan College of Arts and Science, Chennai - 603 103, Tamil Nadu, India.

```
Abstract - In this paper, the divisor cordial labeling of disconnected graphs \(P_{n} \cup P_{m}, C_{n} \cup C_{m}, P_{n} \cup C_{m}, P_{n} \cup K_{1, m}, P_{n} \cup K_{1, m, m}, P_{n} \cup W_{m}, P_{n} \cup S_{m}\),
\(\mathrm{C}_{\mathrm{n}} \cup \mathrm{K}_{1, \mathrm{~m}}, \mathrm{C}_{\mathrm{n}} \cup \mathrm{K}_{1, \mathrm{~m}, \mathrm{~m}}, \mathrm{C}_{\mathrm{n}} \cup \mathrm{W}_{\mathrm{m}}, \mathrm{C}_{\mathrm{n}} \cup \mathrm{S}_{\mathrm{m}}, \mathrm{W}_{\mathrm{n}} \cup \mathrm{S}_{\mathrm{m}}, \mathrm{W}_{\mathrm{n}} \cup \mathrm{W}_{\mathrm{m}}\) and \(\mathrm{S}_{\mathrm{n}} \cup \mathrm{S}_{\mathrm{m}}\) are presented.
AMS subject classifications : 05C78
Keywords - Disconnected graph, divisor cordial labeling, divisor cordial graph.
```


I. Introduction

By a graph, we mean a finite, disconnected, undirected graph without loops and multiple edges, for terms not defined here, we refer to Harary [4]. For standard terminology and notations related to number theory we refer to Burton [2] and graph labeling, we refer to Gallian [3]. In [1], Cahit introduce the concept of cordial labeling of graph. In [12], Varatharajan et al. introduce the concept of divisor cordial labeling of graph. The divisor cordial labeling of various types of graph are presented in [5-11,13]. The brief summaries of definition which are necessary for the present investigation are provided below.

Definition :1.1

A graph labeling is the assignment of unique identifiers to the edges and vertices of a graph.

Definition :1.2

A mapping $f: V(G) \rightarrow\{0,1\}$ is called binary vertex labeling of G and $f(v)$ is called the label of the vertex v of G under f. If for an edge $e=u v$, the induced edge labeling $f^{*}: E(G) \rightarrow\{0,1\}$ is given by $f^{*}(e)=|f(u)-f(v)|$. Then $v_{f}(i)=$ number of vertices of having label i under f and $e_{f}(i)=$ number of edges of having label i under f^{*}.

Definition :1.3

A binary vertex labeling f of a graph G is called a cordial labeling if $\left|v_{f}(0)-v_{f}(1)\right| \leq 1$ and $\left|e_{f}(0)-e_{f}(1)\right| \leq 1$. A graph G is cordial if it admits cordial labeling.

Definition :1.4

Let a and b be two integers. If a divides b means that there is a positive integer k such that $b=k a$. It is denoted $b y a \mid b$. If a does not divide b , then we denote $\mathrm{a} \nmid \mathrm{b}$.

Definition :1.5

Let $\mathrm{G}=(\mathrm{V}(\mathrm{G}), \mathrm{E}(\mathrm{G}))$ be a simple graph and $\mathrm{f}: \rightarrow\{1,2, \ldots,|\mathrm{~V}(\mathrm{G})|\}$ be a bijection. For each edge uv, assign the label 1 if $f(u) \mid f(v)$ or $f(v) \mid f(u)$ and the label 0 otherwise. The function f is called a divisor cordial labeling if $\left|e_{f}(0)-e_{f}(1)\right| \leq 1$. A graph with a divisor cordial labeling is called a divisor cordial graph.

Definition :1.6

The shell S_{n} is the graph obtained by taking $\mathrm{n}-3$ concurrent chords in cycle C_{n}. The vertex at which all the chords are concurrent is called the apex vertex.

Definition :1.7

A wheel W_{n} is a graph with $\mathrm{n}+1$ vertices, formed by connecting a single vertex to all the vertices of cycle C_{n}. It is denoted by $\mathrm{W}_{\mathrm{n}}=\mathrm{C}_{\mathrm{n}}+\mathrm{K}_{1}$.

Definition :1.8

A complete biparitite graph $\mathrm{K}_{1, \mathrm{n}}$ is called a star and it has $\mathrm{n}+1$ vertices and n edges. $\mathrm{K}_{1, \mathrm{n}, \mathrm{n}}$ is the graph obtained by the subdivision of the edges of the star $\mathrm{K}_{1, \mathrm{n}}$.

II. Main Theorems

Theorem : 2.1

The disconnected graph $P_{n} \cup P_{m}$ is divisor cordial graph, where $n, m \geq 2$.

Proof.

Let G be the disconnected graph $P_{n} \cup P_{m}$.
Let $u_{1}, u_{2}, \ldots, u_{n}$ and $v_{1}, v_{2}, \ldots, v_{m}$ be the vertices of P_{n} and P_{m} respectively.
Then $|\mathrm{V}(\mathrm{G})|=\mathrm{n}+\mathrm{m}$ and $|\mathrm{E}(\mathrm{G})|=\mathrm{n}+\mathrm{m}-2$.
Define vertex labeling $\mathrm{f}: \mathrm{V}(\mathrm{G}) \rightarrow\{1,2, \ldots, \mathrm{n}+\mathrm{m}\}$ as follows
Label the vertices $u_{1}, u_{2}, \ldots, u_{n}, v_{1}, v_{2}, \ldots, v_{m}$ in the following order.

$$
\begin{array}{ccccc}
1, & 2, & 2^{2}, & \ldots, & 2^{k_{1}}, \\
3, & 3 \times 2 & 3 \times 2^{2} & \ldots, & 3 \times 2^{k_{2}}, \\
5, & 5 \times 2 & 5 \times 2^{2} & \ldots, & 5 \times 2^{k_{3}}, \\
\ldots & \ldots & \ldots & \ldots & \ldots, \\
\ldots & \ldots & \ldots & \ldots & \ldots
\end{array}
$$

where $(2 s-1) 2^{k_{s}} \leq n+m$ and $s \geq 1, k_{s} \geq 0$.
Case (i) : $\mathrm{n}+\mathrm{m}$ is odd and $\mathrm{f}\left(\mathrm{v}_{1}\right)$ is even.
Then, $\mathrm{e}_{\mathrm{f}}(0)=\mathrm{e}_{\mathrm{f}}(1)+1=\frac{\mathrm{n}+\mathrm{m}-1}{2}$.
Case (ii) : $\mathrm{n}+\mathrm{m}$ is odd and $\mathrm{f}\left(\mathrm{v}_{1}\right)$ is odd.
Then, $\mathrm{e}_{\mathrm{f}}(1)=\mathrm{e}_{\mathrm{f}}(0)+1=\frac{\mathrm{n}+\mathrm{m}-1}{2}$.
Case (iii) : $n+m$ is even and $f\left(v_{1}\right)$ is even.
Then, $\mathrm{e}_{\mathrm{f}}(0)=\mathrm{e}_{\mathrm{f}}(1)=\frac{\mathrm{n}+\mathrm{m}-2}{2}$.
Case (iv): $n+m$ is even and $f\left(v_{1}\right)$ is odd.
Subcase (a): $n+m=6$ and $f\left(v_{1}\right)$ is odd.
Interchange the labels of u_{1} and v_{1}.
Then, $\mathrm{e}_{\mathrm{f}}(0)=\mathrm{e}_{\mathrm{f}}(1)=2$
Subcase (b) : $\mathrm{n}+\mathrm{m} \neq 6$ and $\mathrm{f}\left(\mathrm{v}_{1}\right)$ is odd.
Interchange the labels of u_{2} and v_{m}.
Then, $\mathrm{e}_{\mathrm{f}}(0)=\mathrm{e}_{\mathrm{f}}(1)=\frac{\mathrm{n}+\mathrm{m}-2}{2}$.
Therefore, $\left|e_{f}(0)-e_{f}(1)\right| \leq 1$.
Hence G is divisor cordial graph.

Example : 2.1

(i) The graph $\mathrm{P}_{6} \cup \mathrm{P}_{5}$ and its divisor cordial labeling is given in Figure 2.1(a).

Figure 2.1(a)
(ii) The graph $P_{7} \cup P_{5}$ and its divisor cordial labeling is given in Figure 2.1(b).

Figure 2.1(b)

Theorem : 2.2

The disconnected graph $C_{n} \cup C_{m}$ is divisor cordial graph, where $n, m \geq 3$.
Proof.
Let G be the disconnected graph $C_{n} \cup C_{m}$.

Let $u_{1}, u_{2}, \ldots, u_{n}$ and $v_{1}, v_{2}, \ldots, v_{m}$ be the vertices of C_{n} and C_{m} respectively.
Then $|\mathrm{V}(\mathrm{G})|=\mathrm{n}+\mathrm{m}$ and $|\mathrm{E}(\mathrm{G})|=\mathrm{n}+\mathrm{m}$.
Define vertex labeling $\mathrm{f}: \mathrm{V}(\mathrm{G}) \rightarrow\{1,2, \ldots, \mathrm{n}+\mathrm{m}\}$ as follows
$f\left(u_{m}\right)=p$, where p is the largest prime number and $p \leq n+m$.
Label the vertices $u_{1}, u_{2}, \ldots, u_{n}, v_{1}, v_{2}, \ldots, v_{m-1}$ in the following order other than p.

1,	2,	2^{2},	\ldots,	$2^{k_{1}}$,
3,	3×2	3×2^{2}	\ldots,	$3 \times 2^{k_{2}}$,
5,	5×2	5×2^{2}	\ldots,	$5 \times 2^{k_{3}}$,
\ldots	\ldots	\ldots	\ldots	\ldots,
\ldots	\ldots	\ldots	\ldots	\ldots

where $(2 \mathrm{~s}-1) 2^{\mathrm{k}_{\mathrm{s}}} \leq \mathrm{n}+\mathrm{m}$ and $\mathrm{s} \geq 1, \mathrm{k}_{\mathrm{s}} \geq 0$.
Case (i): $n+m$ is odd and $f\left(v_{1}\right)$ is even.
Then, $\mathrm{e}_{\mathrm{f}}(0)=\mathrm{e}_{\mathrm{f}}(1)+1=\frac{\mathrm{n}+\mathrm{m}+1}{2}$.
Case (ii) : $n+m$ is odd and $f\left(v_{1}\right)$ is odd.
Then, $\mathrm{e}_{\mathrm{f}}(1)=\mathrm{e}_{\mathrm{f}}(0)+1=\frac{\mathrm{n}+\mathrm{m}+1}{2}$.
Case (iii) : $n+m$ is even and $f\left(v_{1}\right)$ is even.
Then, $\mathrm{e}_{\mathrm{f}}(0)=\mathrm{e}_{\mathrm{f}}(1)=\frac{\mathrm{n}+\mathrm{m}}{2}$.
Case (iv) : $n+m$ is even and $f\left(v_{1}\right)$ is odd.
Subcase (a) : $\mathrm{n}+\mathrm{m}=6$ and $\mathrm{f}\left(\mathrm{v}_{1}\right)$ is odd.
Interchange the labels of u_{1} and v_{1}.
Then, $\mathrm{e}_{\mathrm{f}}(0)=\mathrm{e}_{\mathrm{f}}(1)=3$
Subcase (b) : $n+m \neq 6$ and $f\left(v_{1}\right)$ is odd.
Interchange the labels of u_{2} and v_{m}.
Then, $\mathrm{e}_{\mathrm{f}}(0)=\mathrm{e}_{\mathrm{f}}(1)=\frac{\mathrm{n}+\mathrm{m}}{2}$.
Therefore, $\left|e_{f}(0)-e_{f}(1)\right| \leq 1$.
Hence G is divisor cordial graph.

Example : 2.2

The graph $\mathrm{C}_{8} \cup \mathrm{C}_{5}$ and its divisor cordial labeling is given in Figure 2.2.

Figure 2.2

Theorem : 2.3

The disconnected graph $\mathrm{P}_{\mathrm{n}} \cup \mathrm{C}_{\mathrm{m}}$ is divisor cordial graph, where $\mathrm{n} \geq 2$ and $\mathrm{m} \geq 3$.

Proof.

Let G be the disconnected graph $P_{n} \cup C_{m}$.
Let $u_{1}, u_{2}, \ldots, u_{n}$ and $v_{1}, v_{2}, \ldots, v_{m}$ be the vertices of P_{n} and C_{m} respectively.
Then $|\mathrm{V}(\mathrm{G})|=\mathrm{n}+\mathrm{m}$ and $|\mathrm{E}(\mathrm{G})|=\mathrm{n}+\mathrm{m}-1$.
Define vertex labeling $\mathrm{f}: \mathrm{V}(\mathrm{G}) \rightarrow\{1,2, \ldots, \mathrm{n}+\mathrm{m}\}$ as follows
$f\left(v_{m}\right)=p$, where p is the largest prime number and $p \leq n+m$.
Label the vertices $u_{1}, u_{2}, \ldots, u_{n}, v_{1}, v_{2}, \ldots, v_{m-1}$ in the following order other than p.

1 , $\quad 2, \quad 2^{2}, \quad \ldots, \quad 2^{k_{1}}$,
3 , $3 \times 2 \quad 3 \times 2^{2} \quad \ldots, 3 \times 2^{k_{2}}$,
$5,5 \times 2 \quad 5 \times 2^{2} \quad \ldots, \quad 5 \times 2^{k_{3}}$,
...,
...
where $(2 \mathrm{~s}-1) 2^{\mathrm{k}_{\mathrm{s}}} \leq \mathrm{n}+\mathrm{m}$ and $\mathrm{s} \geq 1, \mathrm{k}_{\mathrm{s}} \geq 0$.
Case (i) : $n+m$ is even and $f\left(v_{1}\right)$ is odd.
Then, $\mathrm{e}_{\mathrm{f}}(1)=\mathrm{e}_{\mathrm{f}}(0)+1=\frac{\mathrm{n}+\mathrm{m}}{2}$.
Case (ii) : $n+m$ is even and $f\left(v_{1}\right)$ is even.
Then, $\mathrm{e}_{\mathrm{f}}(0)=\mathrm{e}_{\mathrm{f}}(1)+1=\frac{\mathrm{n}+\mathrm{m}}{2}$.
Case (iii) : $n+m$ is odd and $f\left(v_{1}\right)$ is odd.
Then, $\mathrm{e}_{\mathrm{f}}(0)=\mathrm{e}_{\mathrm{f}}(1)=\frac{\mathrm{n}+\mathrm{m}-1}{2}$.
Case (iv) : $n+m$ is odd and $f\left(v_{1}\right)$ is even.
Interchange the labels of u_{1} and v_{m}.
Then, $\mathrm{e}_{\mathrm{f}}(0)=\mathrm{e}_{\mathrm{f}}(1)=\frac{\mathrm{n}+\mathrm{m}-1}{2}$.
Therefore, $\left|\mathrm{e}_{\mathrm{f}}(0)-\mathrm{e}_{\mathrm{f}}(1)\right| \leq 1$.
Hence G is divisor cordial graph.

Example : 2.3

The graph $\mathrm{P}_{5} \cup \mathrm{C}_{6}$ and its divisor cordial labeling is given in Figure 2.3.

Figure 2.3

Theorem : 2.4

The disconnected graph $\mathrm{P}_{\mathrm{n}} \cup \mathrm{K}_{1, \mathrm{~m}}$ is divisor cordial graph, where $\mathrm{n} \geq 2$ and $\mathrm{m} \geq 1$.
Proof.
Let G be the disconnected graph $P_{n} \cup K_{1, \mathrm{~m}}$.
Let $u_{1}, u_{2}, \ldots, u_{n}$ and $v, v_{1}, v_{2}, \ldots, v_{m}$ be the vertices of P_{n} and $K_{1, \mathrm{~m}}$ respectively.
Then $|\mathrm{V}(\mathrm{G})|=\mathrm{n}+\mathrm{m}+1$ and $|\mathrm{E}(\mathrm{G})|=\mathrm{n}+\mathrm{m}-1$.
Define vertex labeling $\mathrm{f}: \mathrm{V}(\mathrm{G}) \rightarrow\{1,2, \ldots, \mathrm{n}+\mathrm{m}+1\}$ as follows

$$
f(v)=2
$$

Label the vertices $\mathrm{u}_{1}, \mathrm{u}_{2}, \ldots, \mathrm{u}_{\mathrm{n}}$ in the following order.
$1, \quad 2^{2}, \quad 2^{3}, \quad \ldots, \quad 2^{k_{1}}$,
3 , $3 \times 2 \quad 3 \times 2^{2} \quad \ldots, \quad 3 \times 2^{k_{2}}$,
$5,5 \times 2 \quad 5 \times 2^{2} \quad \ldots, \quad 5 \times 2^{k_{3}}$,
...,
...
where $(2 \mathrm{~s}-1) 2^{\mathrm{k}_{\mathrm{s}}} \leq \mathrm{n}+1$ and $\mathrm{s} \geq 1, \mathrm{k}_{\mathrm{s}} \geq 0$ and label the remaining vertices $\mathrm{v}_{1}, \mathrm{v}_{2}, \ldots, \mathrm{v}_{\mathrm{m}}$ from $\mathrm{n}+2$ to $\mathrm{n}+\mathrm{m}+1$.
Then,
$e_{f}(0)=e_{f}(1)+1=\frac{n+m}{2}$, when either n and m are odd or n and m are even.
$\mathrm{e}_{\mathrm{f}}(1)=\mathrm{e}_{\mathrm{f}}(0)=\frac{\mathrm{n}+\mathrm{m}-1}{2}$, when either n is even and m is odd or n is odd and m is even.
Therefore, $\left|e_{f}(0)-e_{f}(1)\right| \leq 1$.
Hence G is divisor cordial graph.

Example : 2.4

The graph $P_{6} \cup K_{1,8}$ and its divisor cordial labeling is given in Figure 2.4.

Figure 2.4

Theorem : 2.5

The disconnected graph $P_{n} \cup K_{1, \mathrm{~m}, \mathrm{~m}}$ is divisor cordial graph, where $\mathrm{n} \geq 2$ and $\mathrm{m} \geq 1$.

Proof.

Let G be the disconnected graph $P_{n} \cup K_{1, \mathrm{~m}, \mathrm{~m}}$
Let $u_{1}, u_{2}, \ldots, u_{n}$ and $v, v_{1}, v_{2}, \ldots, v_{m}, v_{m+1}, v_{m+2}, \ldots, v_{2 m}$ be the vertices of P_{n} and $K_{1, m, m}$ respectively.
Then $|\mathrm{V}(\mathrm{G})|=\mathrm{n}+2 \mathrm{~m}+1$ and $|\mathrm{E}(\mathrm{G})|=\mathrm{n}+2 \mathrm{~m}-1$.
Define vertex labeling $\mathrm{f}: \mathrm{V}(\mathrm{G}) \rightarrow\{1,2, \ldots, \mathrm{n}+2 \mathrm{~m}+1\}$ as follows

$$
f(v)=2
$$

Label the vertices $u_{1}, u_{2}, \ldots, u_{n}$ in the following order.
$1, \quad 2^{2}, \quad 2^{3}, \quad \ldots, \quad 2^{k_{1}}$,
3 , $3 \times 2 \quad 3 \times 2^{2} \quad \ldots, 3 \times 2^{k_{2}}$,
$5,5 \times 2 \quad 5 \times 2^{2} \quad \ldots, 5 \times 2^{k_{3}}$,
...,
...
where $(2 \mathrm{~s}-1) 2^{\mathrm{k}_{\mathrm{s}}} \leq \mathrm{n}+1$ and $\mathrm{s} \geq 1, \mathrm{k}_{\mathrm{s}} \geq 0$.
Case (i): n is odd

$$
\begin{array}{ll}
\mathrm{f}\left(\mathrm{u}_{\mathrm{i}}\right)=\mathrm{n}+1+2 \mathrm{i}, & \text { for } 1 \leq \mathrm{i} \leq \mathrm{m} \\
\mathrm{f}\left(\mathrm{u}_{\mathrm{m}+\mathrm{i}}\right)=\mathrm{n}+2 \mathrm{i}, & \text { for } 1 \leq \mathrm{i} \leq \mathrm{m}
\end{array}
$$

Case (ii) : n is even

$$
\begin{array}{ll}
\mathrm{f}\left(\mathrm{u}_{\mathrm{i}}\right)=\mathrm{n}+2 \mathrm{i}, & \text { for } 1 \leq \mathrm{i} \leq \mathrm{m} \\
\mathrm{f}\left(\mathrm{u}_{\mathrm{m}+\mathrm{i}}\right)=\mathrm{n}+1+2 \mathrm{i}, & \text { for } 1 \leq \mathrm{i} \leq \mathrm{m}
\end{array}
$$

Then,
$\mathrm{e}_{\mathrm{f}}(1)=\mathrm{e}_{\mathrm{f}}(0)=\frac{\mathrm{n}+2 \mathrm{~m}-1}{2}$, when n is odd.
$e_{f}(0)=e_{f}(1)+1=\frac{n+2 m}{2}$, when n is even.
Therefore, $\left|e_{f}(0)-e_{f}(1)\right| \leq 1$.
Hence G is divisor cordial graph.

Example : 2.5

The graph $P_{7} \cup K_{1,5,5}$ and its divisor cordial labeling is given in Figure 2.5.

Figure 2.5

Theorem : 2.6

The disconnected graph $\mathrm{P}_{\mathrm{n}} \cup \mathrm{W}_{\mathrm{m}}$ is divisor cordial graph, where $\mathrm{n} \geq 2$ and $\mathrm{m} \geq 3$.

Proof.

Let G be the disconnected graph $P_{n} \cup W_{m}$.
Let $u_{1}, u_{2}, \ldots, u_{n}$ and $v, v_{1}, v_{2}, \ldots, v_{m}$ be the vertices of P_{n} and W_{m} respectively.
Then $|\mathrm{V}(\mathrm{G})|=\mathrm{n}+\mathrm{m}+1$ and $|\mathrm{E}(\mathrm{G})|=\mathrm{n}+2 \mathrm{~m}-1$.
Define vertex labeling $\mathrm{f}: \mathrm{V}(\mathrm{G}) \rightarrow\{1,2, \ldots, \mathrm{n}+\mathrm{m}+1\}$ as follows

$$
f(v)=1
$$

Label the vertices $u_{1}, u_{2}, \ldots, u_{n}$ in the following order.
$2, \quad 2^{2}, \quad 2^{3}, \quad \ldots, \quad 2^{k_{1}}$,
$3, \quad 3 \times 2 \quad 3 \times 2^{2} \quad \ldots, 3 \times 2^{k_{2}}$,
$5,5 \times 2 \quad 5 \times 2^{2} \quad \ldots, 5 \times 2^{k_{3}}$,
...,
...
where $(2 \mathrm{~s}-1) 2^{\mathrm{k}_{\mathrm{s}}} \leq \mathrm{n}+1$ and $\mathrm{s} \geq 1, \mathrm{k}_{\mathrm{s}} \geq 0$ and label the remaining vertices $\mathrm{v}_{1}, \mathrm{v}_{2}, \ldots, \mathrm{v}_{\mathrm{m}}$ from $\mathrm{n}+2$ to $\mathrm{n}+\mathrm{m}+1$.
If ($n+2$) divides ($m-1$), then interchange the labels of $\mathrm{v}_{\mathrm{m}-1}$ and v_{m}.
Then,

$$
\begin{aligned}
& \mathrm{e}_{\mathrm{f}}(1)=\mathrm{e}_{\mathrm{f}}(0)=\frac{\mathrm{n}+2 \mathrm{~m}-1}{2}, \text { when } \mathrm{n} \text { is odd. } \\
& \mathrm{e}_{\mathrm{f}}(0)=\mathrm{e}_{\mathrm{f}}(1)+1=\frac{\mathrm{n}+2 \mathrm{~m}}{2} \text {, when } \mathrm{n} \text { is even. }
\end{aligned}
$$

Therefore, $\left|e_{f}(0)-e_{f}(1)\right| \leq 1$.
Hence G is divisor cordial graph.

Example : 2.6

The graph $\mathrm{P}_{5} \cup \mathrm{~W}_{7}$ and its divisor cordial labeling is given in Figure 2.6.

Figure 2.6

Theorem : 2.7

The disconnected graph $\mathrm{P}_{\mathrm{n}} \cup \mathrm{S}_{\mathrm{m}}$ is divisor cordial graph, where $\mathrm{n} \geq 2$ and $\mathrm{m} \geq 4$.

Proof.

Let G be the disconnected graph $P_{n} \cup S_{m}$.
Let $u_{1}, u_{2}, \ldots, u_{n}$ and $v_{1}, v_{2}, \ldots, v_{m}$ be the vertices of P_{n} and S_{m} respectively.
Then $|\mathrm{V}(\mathrm{G})|=\mathrm{n}+\mathrm{m}$ and $|\mathrm{E}(\mathrm{G})|=\mathrm{n}+2 \mathrm{~m}-4$.
Define vertex labeling $\mathrm{f}: \mathrm{V}(\mathrm{G}) \rightarrow\{1,2, \ldots, \mathrm{n}+\mathrm{m}\}$ as follows

$$
\mathrm{f}\left(\mathrm{v}_{1}\right)=1
$$

Label the vertices $u_{1}, u_{2}, \ldots, u_{n}$ in the following order.

$$
\begin{array}{ccccc}
2, & 2^{2}, & 2^{3}, & \ldots, & 2^{k_{1}}, \\
3, & 3 \times 2 & 3 \times 2^{2} & \ldots, & 3 \times 2^{k_{2}}, \\
5, & 5 \times 2 & 5 \times 2^{2} & \ldots, & 5 \times 2^{k_{3}}, \\
\ldots & \ldots & \ldots & \ldots & \ldots, \\
\ldots & \ldots & \ldots & \ldots & \ldots
\end{array}
$$

where $(2 s-1) 2^{k_{s}} \leq n+1$ and $s \geq 1, k_{s} \geq 0$ and label the remaining vertices $v_{2}, v_{3}, \ldots, v_{m}$ from $n+2$ to $n+m$. Then,

$$
\begin{aligned}
& \mathrm{e}_{\mathrm{f}}(1)=\mathrm{e}_{\mathrm{f}}(0)+1=\frac{\mathrm{n}+2 \mathrm{~m}-3}{2} \text {, when } \mathrm{n} \text { is odd. } \\
& \mathrm{e}_{\mathrm{f}}(0)=\mathrm{e}_{\mathrm{f}}(1)=\frac{\mathrm{n}+2 \mathrm{~m}-4}{2} \text {, when } \mathrm{n} \text { is even. }
\end{aligned}
$$

Therefore, $\left|e_{f}(0)-e_{f}(1)\right| \leq 1$.
Hence G is divisor cordial graph.

Example : 2.7

The graph $\mathrm{P}_{5} \cup \mathrm{~S}_{6}$ and its divisor cordial labeling is given in Figure 2.7.

Figure 2.7

Theorem : 2.8

The disconnected graph $C_{n} \cup K_{1, \mathrm{~m}}$ is divisor cordial graph, where $\mathrm{n} \geq 3$ and $\mathrm{m} \geq 1$.
Proof.
Let G be the disconnected graph $\mathrm{C}_{\mathrm{n}} \cup \mathrm{K}_{1, \mathrm{~m}}$.
Let $u_{1}, u_{2}, \ldots, u_{n}$ and $v, v_{1}, v_{2}, \ldots, v_{m}$ be the vertices of C_{n} and $K_{1, m}$ respectively.
Then $|\mathrm{V}(\mathrm{G})|=\mathrm{n}+\mathrm{m}+1$ and $|\mathrm{E}(\mathrm{G})|=\mathrm{n}+\mathrm{m}$.
Define vertex labeling $\mathrm{f}: \mathrm{V}(\mathrm{G}) \rightarrow\{1,2, \ldots, \mathrm{n}+\mathrm{m}+1\}$ as follows

$$
f(v)=2
$$

Label the vertices $u_{1}, u_{2}, \ldots, u_{n}$ in the following order.
$1, \quad 2^{2}, \quad 2^{3}, \quad \ldots, \quad 2^{k_{1}}$,
3 , $3 \times 2 \quad 3 \times 2^{2} \quad \ldots, 3 \times 2^{k_{2}}$,
$5, \quad 5 \times 2 \quad 5 \times 2^{2} \quad \ldots, \quad 5 \times 2^{k_{3}}$,
...,
...
where $(2 \mathrm{~s}-1) 2^{\mathrm{k}_{\mathrm{s}}} \leq \mathrm{n}+1$ and $\mathrm{s} \geq 1, \mathrm{k}_{\mathrm{s}} \geq 0$ and label the remaining vertices $\mathrm{v}_{1}, \mathrm{v}_{2}, \ldots, \mathrm{v}_{\mathrm{m}}$ from $\mathrm{n}+2$ to $\mathrm{n}+\mathrm{m}+1$.

Then,

$$
\begin{aligned}
& e_{f}(1)=e_{f}(0)=\frac{n+m}{2} \text {, when either } n \text { and } m \text { are odd or } n \text { and } m \text { are even. } \\
& e_{f}(1)=e_{f}(0)+1=\frac{n+m+1}{2} \text {, when either } n \text { is even and } m \text { is odd or } n \text { is odd and } m \text { is even. }
\end{aligned}
$$

Therefore, $\left|e_{f}(0)-e_{f}(1)\right| \leq 1$.
Hence G is divisor cordial graph.

Example : 2.8

The graph $C_{7} \cup K_{1,6}$ and its divisor cordial labeling is given in Figure 2.8.

Figure 2.8

Theorem : 2.9

The disconnected graph $\mathrm{C}_{\mathrm{n}} \cup \mathrm{K}_{1, \mathrm{~m}, \mathrm{~m}}$ is divisor cordial graph, where $\mathrm{n} \geq 3$ and $\mathrm{m} \geq 1$.

Proof.

Let G be the disconnected graph $\mathrm{C}_{\mathrm{n}} \cup \mathrm{K}_{1, \mathrm{~m}, \mathrm{~m}}$
Let $u_{1}, u_{2}, \ldots, u_{n}$ and $v, v_{1}, v_{2}, \ldots, v_{m}, v_{m+1}, v_{m+2}, \ldots, v_{2 m}$ be the vertices of C_{n} and $K_{1, m, m}$ respectively.
Then $|\mathrm{V}(\mathrm{G})|=\mathrm{n}+2 \mathrm{~m}+1$ and $|\mathrm{E}(\mathrm{G})|=\mathrm{n}+2 \mathrm{~m}$.
Define vertex labeling $\mathrm{f}: \mathrm{V}(\mathrm{G}) \rightarrow\{1,2, \ldots, \mathrm{n}+2 \mathrm{~m}+1\}$ as follows

$$
f(v)=2
$$

Label the vertices $u_{1}, u_{2}, \ldots, u_{n}$ in the following order.

$$
\begin{array}{ccccc}
1, & 2^{2}, & 2^{3}, & \ldots, & 2^{k_{1}}, \\
3, & 3 \times 2 & 3 \times 2^{2} & \ldots, & 3 \times 2^{k_{2}}, \\
5, & 5 \times 2 & 5 \times 2^{2} & \ldots, & 5 \times 2^{k_{3}}, \\
\ldots & \ldots & \ldots & \ldots & \ldots \\
\ldots & \ldots & \ldots & \ldots & \ldots
\end{array}
$$

where $(2 \mathrm{~s}-1) 2^{\mathrm{k}_{\mathrm{s}}} \leq \mathrm{n}+1$ and $\mathrm{s} \geq 1, \mathrm{k}_{\mathrm{s}} \geq 0$.
Case (i): n is odd

$$
\begin{array}{ll}
\mathrm{f}\left(\mathrm{u}_{\mathrm{i}}\right)=\mathrm{n}+1+2 \mathrm{i}, & \text { for } 1 \leq \mathrm{i} \leq \mathrm{m} \\
\mathrm{f}\left(\mathrm{u}_{\mathrm{m}+\mathrm{i}}\right)=\mathrm{n}+2 \mathrm{i}, & \text { for } 1 \leq \mathrm{i} \leq \mathrm{m}
\end{array}
$$

Case (ii) : n is even

$$
\begin{array}{ll}
\mathrm{f}\left(\mathrm{u}_{\mathrm{i}}\right)=\mathrm{n}+2 \mathrm{i}, & \text { for } 1 \leq \mathrm{i} \leq \mathrm{m} \\
\mathrm{f}\left(\mathrm{u}_{\mathrm{m}+\mathrm{i}}\right)=\mathrm{n}+1+2 \mathrm{i}, & \text { for } 1 \leq \mathrm{i} \leq \mathrm{m}
\end{array}
$$

From above cases,

$$
\begin{aligned}
& e_{f}(1)=e_{f}(0)+1=\frac{n+2 m+1}{2}, \text { when } n \text { is odd. } \\
& e_{f}(0)=e_{f}(1)=\frac{n+2 m}{2}, \text { when } n \text { is even. }
\end{aligned}
$$

Therefore, $\left|e_{f}(0)-e_{f}(1)\right| \leq 1$.
Hence G is divisor cordial graph.

Example : 2.9

The graph $\mathrm{C}_{5} \cup \mathrm{~K}_{1,6,6}$ and its divisor cordial labeling is given in Figure 2.9.

Figure 2.9

Theorem : 2.10

The disconnected graph $\mathrm{C}_{\mathrm{n}} \cup \mathrm{W}_{\mathrm{m}}$ is divisor cordial graph, where $\mathrm{n}, \mathrm{m} \geq 3$.

Proof.

Let G be the disconnected graph $C_{n} \cup W_{m}$.
Let $u_{1}, u_{2}, \ldots, u_{n}$ and $v, v_{1}, v_{2}, \ldots, v_{m}$ be the vertices of C_{n} and W_{m} respectively.
Then $|\mathrm{V}(\mathrm{G})|=\mathrm{n}+\mathrm{m}+1$ and $|\mathrm{E}(\mathrm{G})|=\mathrm{n}+2 \mathrm{~m}$.

Case (i): n is odd

Define vertex labeling $\mathrm{f}: \mathrm{V}(\mathrm{G}) \rightarrow\{1,2, \ldots, \mathrm{n}+\mathrm{m}+1\}$ as follows

$$
\mathrm{f}(\mathrm{v})=1
$$

Label the vertices $u_{1}, u_{2}, \ldots, u_{n}$ in the following order.

$$
\begin{array}{ccccc}
2, & 2^{2}, & 2^{3}, & \ldots, & 2^{k_{1}}, \\
3, & 3 \times 2 & 3 \times 2^{2} & \ldots, & 3 \times 2^{k_{2}}, \\
5, & 5 \times 2 & 5 \times 2^{2} & \ldots, & 5 \times 2^{k_{3}}, \\
\ldots & \ldots & \ldots & \ldots & \ldots \\
\ldots & \ldots & \ldots & \ldots & \ldots
\end{array}
$$

where $(2 s-1) 2^{k_{s}} \leq n+1$ and $s \geq 1, k_{s} \geq 0$ and label the remaining vertices $v_{1}, v_{2}, \ldots, v_{m}$ from $n+2$ to $n+m+1$.
If $\mathrm{n}+2$ divides $\mathrm{m}-1$, then interchange the labels of $\mathrm{v}_{\mathrm{m}-1}$ and v_{m}.
Case (ii) : n is even
Define vertex labeling $\mathrm{f}: \mathrm{V}(\mathrm{G}) \rightarrow\{1,2, \ldots, \mathrm{n}+\mathrm{m}+1\}$ as follows
$\mathrm{f}\left(\mathrm{u}_{\mathrm{n}}\right)=\mathrm{n}+2$,
$\mathrm{f}(\mathrm{v})=1$,
Label the vertices $u_{1}, u_{2}, \ldots, u_{n-1}$ in the following order.
$2, \quad 2^{2}, \quad 2^{3}, \quad \ldots, \quad 2^{k_{1}}$,
3 , $3 \times 2 \quad 3 \times 2^{2} \quad \ldots, 3 \times 2^{k_{2}}$,
$5, \quad 5 \times 2 \quad 5 \times 2^{2} \quad \ldots, \quad 5 \times 2^{k_{3}}$,
...,
...
where $(2 s-1) 2^{k_{s}} \leq n$ and $s \geq 1, k_{s} \geq 0$ and label the remaining vertices $v_{1}, v_{2}, \ldots, v_{m}$ from $n+1, n+3$ to $n+m+1$.
If $\left(\mathrm{n}+1\right.$) divides m , then interchange the labels of $\mathrm{v}_{\mathrm{m}-1}$ and v_{m}.
From the above cases,

$$
\begin{aligned}
& e_{f}(0)=e_{f}(1)+1=\frac{n+2 m+1}{2} \text {, when } \mathrm{n} \text { is odd. } \\
& e_{f}(0)=e_{f}(1)=\frac{n+2 m}{2} \text {, when } \mathrm{n} \text { is even. }
\end{aligned}
$$

Therefore, $\left|e_{f}(0)-e_{f}(1)\right| \leq 1$.
Hence G is divisor cordial graph.

Example : 2.10

The graph $\mathrm{C}_{8} \cup \mathrm{~W}_{6}$ and its divisor cordial labeling is given in Figure 2.10.

Figure 2.10

Theorem : 2.11

The disconnected graph $C_{n} \cup S_{m}$ is divisor cordial graph, where $n \geq 3$ and $m \geq 4$.

Proof.

Let G be the disconnected graph $\mathrm{C}_{\mathrm{n}} \cup \mathrm{S}_{\mathrm{m}}$.
Let $u_{1}, u_{2}, \ldots, u_{n}$ and $v_{1}, v_{2}, \ldots, v_{m}$ be the vertices of C_{n} and S_{m} respectively.
Then $|\mathrm{V}(\mathrm{G})|=\mathrm{n}+\mathrm{m}$ and $|\mathrm{E}(\mathrm{G})|=\mathrm{n}+2 \mathrm{~m}-3$.
Case (i) : n is odd
Define vertex labeling $\mathrm{f}: \mathrm{V}(\mathrm{G}) \rightarrow\{1,2, \ldots, \mathrm{n}+\mathrm{m}\}$ as follows

$$
\mathrm{f}\left(\mathrm{v}_{1}\right)=1
$$

Label the vertices $\mathrm{u}_{1}, \mathrm{u}_{2}, \ldots, \mathrm{u}_{\mathrm{n}}$ in the following order.

$$
\begin{array}{ccccc}
2, & 2^{2}, & 2^{3}, & \ldots, & 2^{k_{1}}, \\
3, & 3 \times 2 & 3 \times 2^{2} & \ldots, & 3 \times 2^{k_{2}}, \\
5, & 5 \times 2 & 5 \times 2^{2} & \ldots, & 5 \times 2^{k_{3}}, \\
\ldots & \ldots & \ldots & \ldots & \ldots, \\
\ldots & \ldots & \ldots & \ldots & \ldots
\end{array}
$$

where $(2 s-1) 2^{k_{s}} \leq n+1$ and $s \geq 1, k_{s} \geq 0$ and label the remaining vertices v_{2}, \ldots, v_{m} from $n+2$ to $n+m$.
Case (ii) : n is even
Define vertex labeling $\mathrm{f}: \mathrm{V}(\mathrm{G}) \rightarrow\{1,2, \ldots, \mathrm{n}+\mathrm{m}\}$ as follows

$$
\mathrm{f}\left(\mathrm{u}_{\mathrm{n}}\right)=\mathrm{n}+2,
$$

$$
\mathrm{f}\left(\mathrm{v}_{1}\right)=1
$$

Label the vertices $u_{1}, u_{2}, \ldots, u_{n-1}$ in the following order.

$$
\begin{array}{ccccc}
2, & 2^{2}, & 2^{3}, & \ldots, & 2^{k_{1}}, \\
3, & 3 \times 2 & 3 \times 2^{2} & \ldots, & 3 \times 2^{k_{2}}, \\
5, & 5 \times 2 & 5 \times 2^{2} & \ldots, & 5 \times 2^{k_{3}}, \\
\ldots & \ldots & \ldots & \ldots & \ldots \\
\ldots & \ldots & \ldots & \ldots & \ldots
\end{array}
$$

where $(2 \mathrm{~s}-1) 2^{\mathrm{k}_{\mathrm{s}}} \leq \mathrm{n}$ and $\mathrm{s} \geq 1, \mathrm{k}_{\mathrm{s}} \geq 0$ and label the remaining vertices $\mathrm{v}_{2}, \mathrm{v}_{3}, \ldots, \mathrm{v}_{\mathrm{m}}$ from $\mathrm{n}+1, \mathrm{n}+3$ to $\mathrm{n}+\mathrm{m}$.
From the above cases,
$e_{f}(1)=e_{f}(0)=\frac{n+2 m-3}{2}$, when n is odd.
$e_{f}(1)=e_{f}(0)+1=\frac{n+2 m-2}{2}$, when n is even.
Therefore, $\left|e_{f}(0)-e_{f}(1)\right| \leq 1$.
Hence G is divisor cordial graph.

Example : 2.11

The graph $\mathrm{C}_{6} \cup \mathrm{~S}_{7}$ and its divisor cordial labeling is given in Figure 2.11.

Figure 2.11

Theorem : 2.12

The disconnected graph $\mathrm{W}_{\mathrm{n}} \cup \mathrm{S}_{\mathrm{m}}$ is divisor cordial graph, where $\mathrm{n} \geq 3$ and $\mathrm{m} \geq 4$.

Proof.

Let G be the disconnected graph $W_{n} \cup S_{m}$.
Let $u, u_{1}, u_{2}, \ldots, u_{n}$ and $v_{1}, v_{2}, \ldots, v_{m}$ be the vertices of W_{n} and S_{m} respectively.
Then $|\mathrm{V}(\mathrm{G})|=\mathrm{n}+\mathrm{m}+1$ and $|\mathrm{E}(\mathrm{G})|=2 \mathrm{n}+2 \mathrm{~m}-3$.
Define vertex labeling $\mathrm{f}: \mathrm{V}(\mathrm{G}) \rightarrow\{1,2, \ldots, \mathrm{n}+\mathrm{m}+1\}$ as follows
Case (i) : $\mathrm{n}<\mathrm{m}$
Subcase (i) : $\mathrm{n}=3$
$\mathrm{f}(\mathrm{u})=2, \mathrm{f}\left(\mathrm{u}_{1}\right)=4, \mathrm{f}\left(\mathrm{u}_{2}\right)=6$ and $\mathrm{f}\left(\mathrm{u}_{3}\right)=7$.
$\mathrm{f}\left(\mathrm{v}_{1}\right)=1, \mathrm{f}\left(\mathrm{v}_{2}\right)=3, \mathrm{f}\left(\mathrm{v}_{3}\right)=5$ and $\mathrm{f}\left(\mathrm{v}_{4}\right)=8$.
Label the remaining vertices $\mathrm{v}_{5}, \mathrm{v}_{6}, \ldots, \mathrm{v}_{\mathrm{m}}$ from 9,10 to $\mathrm{m}+4$.
Subcase (ii) : $\mathrm{n} \geq 4$
$\mathrm{f}\left(\mathrm{v}_{\mathrm{i}}\right)=2 \mathrm{i}-1, \quad$ for $1 \leq \mathrm{i} \leq \mathrm{n}+1$
$\mathrm{f}\left(\mathrm{v}_{\mathrm{n}+1+\mathrm{i}}\right)=2 \mathrm{n}+1+\mathrm{i}, \quad$ for $1 \leq \mathrm{i} \leq \mathrm{m}-\mathrm{n}-1$
$f(u)=2$,
For n is even
$f\left(u_{i}\right)=2 i+2, \quad$ for $1 \leq i \leq n$
For n is odd
$\mathrm{f}\left(\mathrm{u}_{\mathrm{i}}\right)=2 \mathrm{i}+2, \quad$ for $1 \leq \mathrm{i} \leq \mathrm{n}-2$
$\mathrm{f}\left(\mathrm{u}_{\mathrm{n}-1}\right)=2 \mathrm{n}+2$,
$\mathrm{f}\left(\mathrm{u}_{\mathrm{n}}\right)=2 \mathrm{n}$
Case (ii) : $\mathrm{n}=\mathrm{m}$
Subcase (i) : $2 \mathrm{n}+1 \equiv 0(\bmod 3)$

$\mathrm{f}\left(\mathrm{v}_{\mathrm{i}}\right)=2 \mathrm{i}$,	for $1 \leq \mathrm{i} \leq \mathrm{n}$
$\mathrm{f}(\mathrm{u})=1$,	
$\mathrm{f}\left(\mathrm{u}_{\mathrm{i}}\right)=2 \mathrm{i}+1$,	for $1 \leq \mathrm{i} \leq \mathrm{n}-2$
$\mathrm{f}\left(\mathrm{u}_{\mathrm{n}-1}\right)=2 \mathrm{n}+1$,	
$\mathrm{f}\left(\mathrm{u}_{\mathrm{n}}\right)=2 \mathrm{n}-1$.	

Subcase $(\mathbf{i i}): 2 \mathrm{n}+1 \equiv 1,2(\bmod 3)$

$\mathrm{f}\left(\mathrm{v}_{\mathrm{i}}\right)=2 \mathrm{i}$,	for $1 \leq \mathrm{i} \leq \mathrm{n}$
$\mathrm{f}(\mathrm{u})=1$,	
$\mathrm{f}\left(\mathrm{u}_{\mathrm{i}}\right)=2 \mathrm{i}+1$,	for $1 \leq \mathrm{i} \leq \mathrm{n}$

Case (iii) : $n>m$
Subcase $(\mathbf{i}): \mathrm{n}+\mathrm{m}+1 \equiv 0(\bmod 3)$

$$
\begin{array}{ll}
\mathrm{f}\left(\mathrm{v}_{\mathrm{i}}\right)=2 \mathrm{i}, & \text { for } 1 \leq \mathrm{i} \leq \mathrm{m} \\
\mathrm{f}(\mathrm{u})=1, & \\
\mathrm{f}\left(\mathrm{u}_{\mathrm{i}}\right)=2 \mathrm{i}+1, & \text { for } 1 \leq \mathrm{i} \leq \mathrm{m} \\
\mathrm{f}\left(\mathrm{u}_{\mathrm{m}+\mathrm{i}}\right)=2 \mathrm{~m}+1+\mathrm{i}, & \text { for } 1 \leq \mathrm{i} \leq \mathrm{n}-\mathrm{m}-2 \\
\mathrm{f}\left(\mathrm{u}_{\mathrm{n}-1}\right)=\mathrm{n}+\mathrm{m}+1, & \\
\mathrm{f}\left(\mathrm{u}_{\mathrm{n}}\right)=\mathrm{n}+\mathrm{m}, &
\end{array}
$$

Subcase (ii) : $\mathrm{n}+\mathrm{m}+1 \equiv 1,2(\bmod 3)$

$\mathrm{f}\left(\mathrm{v}_{\mathrm{i}}\right)=2 \mathrm{i}$,	for $1 \leq \mathrm{i} \leq \mathrm{m}$
$\mathrm{f}(\mathrm{u})=1$,	for $1 \leq \mathrm{i} \leq \mathrm{m}$
$\mathrm{f}\left(\mathrm{u}_{\mathrm{i}}\right)=2 \mathrm{i}+1$,	

$\mathrm{f}\left(\mathrm{u}_{\mathrm{m}+\mathrm{i}}\right)=2 \mathrm{~m}+1+\mathrm{i}, \quad$ for $1 \leq \mathrm{i} \leq \mathrm{n}-\mathrm{m}$
From the above cases,
$e_{f}(1)=e_{f}(0)+1=n+m-2$.
Therefore, $\left|e_{f}(0)-e_{f}(1)\right| \leq 1$.
Hence G is divisor cordial graph.

Example : 2.12

The graph $W_{8} \cup S_{5}$ and its divisor cordial labeling is given in Figure 2.12.

Figure 2.12

Theorem : 2.13

The disconnected graph $W_{n} \cup W_{m}$ is divisor cordial graph, where $\mathrm{n}, \mathrm{m} \geq 3$.

Proof.

Let G be the disconnected graph $W_{n} \cup W_{m}$.
Let $u, u_{1}, u_{2}, \ldots, u_{n}$ and $v, v_{1}, v_{2}, \ldots, v_{m}$ be the vertices of W_{n} and W_{m} respectively.
Then $|V(G)|=n+m+2$ and $|E(G)|=2 n+2 m$.
Define vertex labeling $\mathrm{f}: \mathrm{V}(\mathrm{G}) \rightarrow\{1,2, \ldots, n+m+2\}$ as follows
Case (1) : $\mathrm{n}=3$ and $\mathrm{m}=4$.
$\mathrm{f}(\mathrm{u})=2, \mathrm{f}\left(\mathrm{u}_{1}\right)=4, \mathrm{f}\left(\mathrm{u}_{2}\right)=6$ and $\mathrm{f}\left(\mathrm{u}_{3}\right)=7$.
$\mathrm{f}(\mathrm{v})=1, \mathrm{f}\left(\mathrm{v}_{1}\right)=3, \mathrm{f}\left(\mathrm{v}_{2}\right)=5, \mathrm{f}\left(\mathrm{v}_{3}\right)=9$ and $\mathrm{f}\left(\mathrm{v}_{3}\right)=8$.
Case (2): $n=3$ and $m>4$.
$f(u)=2, f\left(u_{1}\right)=4, f\left(u_{2}\right)=6$ and $f\left(u_{3}\right)=7$.
$\mathrm{f}(\mathrm{v})=1, \mathrm{f}\left(\mathrm{v}_{1}\right)=3, \mathrm{f}\left(\mathrm{v}_{2}\right)=5$ and $\mathrm{f}\left(\mathrm{v}_{3}\right)=8$.
Subcase (i) : $\mathrm{m}+5 \equiv 1,2(\bmod 3)$
$\mathrm{f}\left(\mathrm{v}_{\mathrm{n}+\mathrm{i}}\right)=8+\mathrm{i}$,
for $1 \leq i \leq m-3$
Subcase (ii) : $\mathrm{m}+5 \equiv 0(\bmod 3)$

$$
\begin{array}{ll}
\mathrm{f}\left(\mathrm{v}_{\mathrm{n}+\mathrm{i}}\right)=8+\mathrm{i}, & \text { for } 1 \leq \mathrm{i} \leq \mathrm{m}-5 \\
\mathrm{f}\left(\mathrm{v}_{\mathrm{m}-1}\right)=\mathrm{n}+\mathrm{m}+2, & \\
\mathrm{f}\left(\mathrm{v}_{\mathrm{m}}\right)=\mathrm{n}+\mathrm{m}+1 . &
\end{array}
$$

Case (3): $n>3$ and $m>5$ and $n<m$.
$\mathrm{f}(\mathrm{u})=2$,
$\mathrm{f}(\mathrm{v})=1$,
Subcase (i): n is even and $\mathrm{n}+\mathrm{m}+2 \equiv 1,2(\bmod 3)$

$$
\begin{array}{ll}
\mathrm{f}\left(\mathrm{u}_{\mathrm{i}}\right)=2 \mathrm{i}+2, & \text { for } 1 \leq \mathrm{i} \leq \mathrm{n} \\
\mathrm{f}\left(\mathrm{v}_{\mathrm{i}}\right)=2 \mathrm{i}+1, & \text { for } 1 \leq \mathrm{i} \leq \mathrm{n} \\
\mathrm{f}\left(\mathrm{v}_{\mathrm{n}+\mathrm{i}}\right)=2 \mathrm{n}+2+\mathrm{i}, & \text { for } 1 \leq \mathrm{i} \leq \mathrm{m}-\mathrm{n}
\end{array}
$$

Subcase (ii) : n is odd and $\mathrm{n}+\mathrm{m}+2 \equiv 1,2(\bmod 3)$
$\mathrm{f}\left(\mathrm{u}_{\mathrm{i}}\right)=2 \mathrm{i}+2, \quad$ for $1 \leq \mathrm{i} \leq \mathrm{n}-2$
$f\left(u_{n-1}\right)=2 n+2$,
$\mathrm{f}\left(\mathrm{u}_{\mathrm{n}}\right)=2 \mathrm{n}$,
$\mathrm{f}\left(\mathrm{v}_{\mathrm{i}}\right)=2 \mathrm{i}+1$,
for $1 \leq \mathrm{i} \leq \mathrm{n}$
$\mathrm{f}\left(\mathrm{v}_{\mathrm{n}+\mathrm{i}}\right)=2 \mathrm{n}+2+\mathrm{i}$,
for $1 \leq \mathrm{i} \leq \mathrm{m}-\mathrm{n}$
Subcase (iii) : n is even and $\mathrm{n}+\mathrm{m}+2 \equiv 0(\bmod 3)$

$\mathrm{f}\left(\mathrm{u}_{\mathrm{i}}\right)=2 \mathrm{i}+2$,	for $1 \leq \mathrm{i} \leq \mathrm{n}$
$\mathrm{f}\left(\mathrm{v}_{\mathrm{i}}\right)=2 \mathrm{i}+1$,	for $1 \leq \mathrm{i} \leq \mathrm{n}$
$\mathrm{f}\left(\mathrm{v}_{\mathrm{n}+\mathrm{i}}\right)=2 \mathrm{n}+2+\mathrm{i}$,	for $1 \leq \mathrm{i} \leq \mathrm{m}-\mathrm{n}-2$

$\mathrm{f}\left(\mathrm{v}_{\mathrm{m}-1}\right)=\mathrm{n}+\mathrm{m}+2$,
$\mathrm{f}\left(\mathrm{v}_{\mathrm{m}}\right)=\mathrm{n}+\mathrm{m}+1$.
Subcase (iv) : n is odd and $\mathrm{n}+\mathrm{m}+2 \equiv 0(\bmod 3)$

$\mathrm{f}\left(\mathrm{u}_{\mathrm{i}}\right)=2 \mathrm{i}+2$,	for $1 \leq \mathrm{i} \leq \mathrm{n}-2$
$\mathrm{f}\left(\mathrm{u}_{\mathrm{n}-1}\right)=2 \mathrm{n}+2$,	
$\mathrm{f}\left(\mathrm{u}_{\mathrm{n}}\right)=2 \mathrm{n}$,	
$\mathrm{f}\left(\mathrm{v}_{\mathrm{i}}\right)=2 \mathrm{i}+1$,	for $1 \leq \mathrm{i} \leq \mathrm{n}-2$
$\mathrm{f}\left(\mathrm{v}_{\mathrm{m}-1}\right)=2 \mathrm{n}+1$,	
$\mathrm{f}\left(\mathrm{v}_{\mathrm{m}}\right)=2 \mathrm{n}-1$.	

Case (4) : $\mathrm{n}=\mathrm{m}=3$
$\mathrm{f}(\mathrm{u})=1, \mathrm{f}\left(\mathrm{u}_{1}\right)=5, \mathrm{f}\left(\mathrm{u}_{2}\right)=6$ and $\mathrm{f}\left(\mathrm{u}_{3}\right)=7$.
$\mathrm{f}(\mathrm{u})=3, \mathrm{f}\left(\mathrm{v}_{1}\right)=2, \mathrm{f}\left(\mathrm{v}_{2}\right)=4$ and $\mathrm{f}\left(\mathrm{v}_{3}\right)=8$.
Case (5) : $n>3$ and $n=m$.
$\mathrm{f}(\mathrm{u})=2$,
$\mathrm{f}(\mathrm{v})=1$,
Subcase (i) : n is even and $\mathrm{n} \equiv 0,2(\bmod 3)$
$f\left(u_{i}\right)=2 i+2, \quad$ for $1 \leq i \leq n$
$\mathrm{f}\left(\mathrm{v}_{\mathrm{i}}\right)=2 \mathrm{i}+1, \quad$ for $1 \leq \mathrm{i} \leq \mathrm{n}$
Subcase (ii) : n is odd and $\mathrm{n} \equiv 0,2(\bmod 3)$
$\mathrm{f}\left(\mathrm{u}_{\mathrm{i}}\right)=2 \mathrm{i}+2, \quad$ for $1 \leq \mathrm{i} \leq \mathrm{n}-2$
$\mathrm{f}\left(\mathrm{u}_{\mathrm{n}-1}\right)=2 \mathrm{n}+2$,
$\mathrm{f}\left(\mathrm{u}_{\mathrm{n}}\right)=2 \mathrm{n}$,
$\mathrm{f}\left(\mathrm{v}_{\mathrm{i}}\right)=2 \mathrm{i}+1, \quad$ for $1 \leq \mathrm{i} \leq \mathrm{n}$
Subcase (iii) : n is even and $\mathrm{n} \equiv 1(\bmod 3)$
$\mathrm{f}\left(\mathrm{u}_{\mathrm{i}}\right)=2 \mathrm{i}+2, \quad$ for $1 \leq \mathrm{i} \leq \mathrm{n}$
$\mathrm{f}\left(\mathrm{v}_{\mathrm{i}}\right)=2 \mathrm{i}+1, \quad$ for $1 \leq \mathrm{i} \leq \mathrm{n}-2$
$\mathrm{f}\left(\mathrm{v}_{\mathrm{m}-1}\right)=2 \mathrm{n}+1$,
$\mathrm{f}\left(\mathrm{v}_{\mathrm{m}}\right)=2 \mathrm{n}-1$.
Subcase (iv) : n is odd and $\mathrm{n} \equiv 1(\bmod 3)$
$\mathrm{f}\left(\mathrm{u}_{\mathrm{i}}\right)=2 \mathrm{i}+2, \quad$ for $1 \leq \mathrm{i} \leq \mathrm{n}-2$
$\mathrm{f}\left(\mathrm{u}_{\mathrm{n}-1}\right)=2 \mathrm{n}+2$,
$\mathrm{f}\left(\mathrm{u}_{\mathrm{n}}\right)=2 \mathrm{n}$,
$\mathrm{f}\left(\mathrm{v}_{\mathrm{i}}\right)=2 \mathrm{i}+1$,
for $1 \leq \mathrm{i} \leq \mathrm{n}$
$\mathrm{f}\left(\mathrm{v}_{\mathrm{n}+\mathrm{i}}\right)=2 \mathrm{n}+2+\mathrm{i}, \quad$ for $1 \leq \mathrm{i} \leq \mathrm{m}-\mathrm{n}-2$
$\mathrm{f}\left(\mathrm{v}_{\mathrm{m}-1}\right)=\mathrm{n}+\mathrm{m}+2$,
$\mathrm{f}\left(\mathrm{v}_{\mathrm{m}}\right)=\mathrm{n}+\mathrm{m}+1$.
Case (6) : $n=4$ and $m=3$.
$\mathrm{f}(\mathrm{u})=1, \mathrm{f}\left(\mathrm{u}_{1}\right)=3, \mathrm{f}\left(\mathrm{u}_{2}\right)=5, \mathrm{f}\left(\mathrm{u}_{3}\right)=9$ and $\mathrm{f}\left(\mathrm{u}_{3}\right)=8$.
$f(v)=2, f\left(v_{1}\right)=4, f\left(v_{2}\right)=6$ and $f\left(v_{3}\right)=7$.
Case (7): $n>4$ and $m=3$.
$\mathrm{f}(\mathrm{u})=1, \mathrm{f}\left(\mathrm{u}_{1}\right)=3, \mathrm{f}\left(\mathrm{u}_{2}\right)=5$ and $\mathrm{f}\left(\mathrm{u}_{3}\right)=8$.
$\mathrm{f}(\mathrm{v})=2, \mathrm{f}\left(\mathrm{v}_{1}\right)=4, \mathrm{f}\left(\mathrm{v}_{2}\right)=6$ and $\mathrm{f}\left(\mathrm{v}_{3}\right)=7$.
Subcase (i) : $\mathrm{n}+5 \equiv 1,2(\bmod 3)$
$\mathrm{f}\left(\mathrm{u}_{3+\mathrm{i}}\right)=8+\mathrm{i}, \quad$ for $1 \leq \mathrm{i} \leq \mathrm{n}-3$
Subcase (ii) : $\mathrm{n}+5 \equiv 0(\bmod 3)$
$\mathrm{f}\left(\mathrm{u}_{3+\mathrm{i}}\right)=8+\mathrm{i}, \quad$ for $1 \leq \mathrm{i} \leq \mathrm{n}-5$
$\mathrm{f}\left(\mathrm{u}_{\mathrm{n}-1}\right)=\mathrm{n}+5$,
$\mathrm{f}\left(\mathrm{u}_{\mathrm{n}}\right)=\mathrm{n}+4$.
Case (8): $n>5$ and $m>3$ and $m<n$.
$\mathrm{f}(\mathrm{v})=2$,
$\mathrm{f}(\mathrm{u})=1$,
Subcase (i): m is even and $\mathrm{n}+\mathrm{m}+2 \equiv 1,2(\bmod 3)$
$f\left(v_{i}\right)=2 i+2$,
for $1 \leq \mathrm{i} \leq \mathrm{m}$
$\mathrm{f}\left(\mathrm{u}_{\mathrm{i}}\right)=2 \mathrm{i}+1$,
for $1 \leq \mathrm{i} \leq \mathrm{m}$
$\mathrm{f}\left(\mathrm{u}_{\mathrm{m}+\mathrm{i}}\right)=2 \mathrm{~m}+2+\mathrm{i}, \quad$ for $1 \leq \mathrm{i} \leq \mathrm{n}-\mathrm{m}$

Subcase (ii) : m is odd and $\mathrm{n}+\mathrm{m}+2 \equiv 1,2(\bmod 3)$

$$
\begin{array}{ll}
\mathrm{f}\left(\mathrm{v}_{\mathrm{i}}\right)=2 \mathrm{i}+2, & \text { for } 1 \leq \mathrm{i} \leq \mathrm{m}-2 \\
\mathrm{f}\left(\mathrm{v}_{\mathrm{m}-1}\right)=2 \mathrm{~m}+2, & \\
\mathrm{f}\left(\mathrm{v}_{\mathrm{m}}\right)=2 \mathrm{~m}, & \\
\mathrm{f}\left(\mathrm{u}_{\mathrm{i}}\right)=2 \mathrm{i}+1, & \text { for } 1 \leq \mathrm{i} \leq \mathrm{m} \\
\mathrm{f}\left(\mathrm{u}_{\mathrm{m}+\mathrm{i}}\right)=2 \mathrm{~m}+2+\mathrm{i}, & \text { for } 1 \leq \mathrm{i} \leq \mathrm{m}-\mathrm{n}
\end{array}
$$

Subcase (iii) : m is even and $\mathrm{n}+\mathrm{m}+2 \equiv 0(\bmod 3)$

$$
\begin{array}{ll}
\mathrm{f}\left(\mathrm{v}_{\mathrm{i}}\right)=2 \mathrm{i}+2, & \text { for } 1 \leq \mathrm{i} \leq \mathrm{m} \\
\mathrm{f}\left(\mathrm{u}_{\mathrm{i}}\right)=2 \mathrm{i}+1, & \text { for } 1 \leq \mathrm{i} \leq \mathrm{m} \\
\mathrm{f}\left(\mathrm{u}_{\mathrm{m}+\mathrm{i}}\right)=2 \mathrm{~m}+2+\mathrm{i}, & \text { for } 1 \leq \mathrm{i} \leq \mathrm{n}-\mathrm{m}-2 \\
\mathrm{f}\left(\mathrm{u}_{\mathrm{n}}\right)=\mathrm{n}+\mathrm{m}+2, & \\
\mathrm{f}\left(\mathrm{u}_{\mathrm{n}}\right)=\mathrm{n}+\mathrm{m}+1 . &
\end{array}
$$

Subcase (iv): m is odd and $\mathrm{n}+\mathrm{m}+2 \equiv 0(\bmod 3)$

$$
\mathrm{f}\left(\mathrm{v}_{\mathrm{i}}\right)=2 \mathrm{i}+2, \quad \text { for } 1 \leq \mathrm{i} \leq \mathrm{m}-2
$$

$\mathrm{f}\left(\mathrm{v}_{\mathrm{m}-1}\right)=2 \mathrm{~m}+2$,
$\mathrm{f}\left(\mathrm{v}_{\mathrm{m}}\right)=2 \mathrm{~m}$,
$\mathrm{f}\left(\mathrm{u}_{\mathrm{i}}\right)=2 \mathrm{i}+1, \quad$ for $1 \leq \mathrm{i} \leq \mathrm{m}$
$\mathrm{f}\left(\mathrm{u}_{\mathrm{m}+\mathrm{i}}\right)=2 \mathrm{~m}+2+\mathrm{i}, \quad$ for $1 \leq \mathrm{i} \leq \mathrm{n}-\mathrm{m}-2$
$\mathrm{f}\left(\mathrm{u}_{\mathrm{n}-1}\right)=\mathrm{n}+\mathrm{m}+2$,
$\mathrm{f}\left(\mathrm{u}_{\mathrm{n}}\right)=\mathrm{n}+\mathrm{m}+1$.
From the above cases,
$e_{f}(1)=e_{f}(0)=n+m$.
Therefore, $\left|\mathrm{e}_{\mathrm{f}}(0)-\mathrm{e}_{\mathrm{f}}(1)\right| \leq 1$.
Hence G is divisor cordial graph.

Example : 2.13

The graph $\mathrm{W}_{5} \cup \mathrm{~W}_{8}$ and its divisor cordial labeling is given in Figure 2.13.

Figure 2.13

Theorem : 2.14

The disconnected graph $S_{n} \cup S_{m}$ is divisor cordial graph, where $n, m \geq 4$.

Proof.

Let G be the disconnected graph $S_{n} \cup S_{m}$.
Let $u_{1}, u_{2}, \ldots, u_{n}$ and $v_{1}, v_{2}, \ldots, v_{m}$ be the vertices of S_{n} and S_{m} respectively.
Then $|\mathrm{V}(\mathrm{G})|=\mathrm{n}+\mathrm{m}$ and $|\mathrm{E}(\mathrm{G})|=2 \mathrm{n}+2 \mathrm{~m}-6$.
Define vertex labeling $\mathrm{f}: \mathrm{V}(\mathrm{G}) \rightarrow\{1,2, \ldots, \mathrm{n}+\mathrm{m}\}$ as follows
Case (i): $\mathrm{n}<\mathrm{m}$

$f\left(u_{i}\right)=2 \mathrm{i}$,	for $1 \leq \mathrm{i} \leq \mathrm{n}-1$
$\mathrm{f}\left(\mathrm{u}_{\mathrm{n}}\right)=2 \mathrm{n}-1$.	
$\mathrm{f}\left(\mathrm{v}_{\mathrm{i}}\right)=2 \mathrm{i}-1$,	for $1 \leq \mathrm{i} \leq \mathrm{n}-1$
$\mathrm{f}\left(\mathrm{v}_{\mathrm{n}}\right)=2 \mathrm{n}$.	
$\mathrm{f}\left(\mathrm{v}_{\mathrm{n}+\mathrm{i}}\right)=2 \mathrm{n}+\mathrm{i}$,	for $1 \leq \mathrm{i} \leq \mathrm{m}-\mathrm{n}$

Case (ii): $n=m$
$\mathrm{f}\left(\mathrm{u}_{\mathrm{i}}\right)=2 \mathrm{i}, \quad$ for $1 \leq \mathrm{i} \leq \mathrm{n}-1$
$\mathrm{f}\left(\mathrm{u}_{\mathrm{n}}\right)=2 \mathrm{n}-1$.
$\mathrm{f}\left(\mathrm{v}_{\mathrm{i}}\right)=2 \mathrm{i}-1, \quad$ for $1 \leq \mathrm{i} \leq \mathrm{n}-1$
$\mathrm{f}\left(\mathrm{v}_{\mathrm{n}}\right)=2 \mathrm{n}$.

Case (iii) : $n>m$

$\mathrm{f}\left(\mathrm{u}_{\mathrm{i}}\right)=2 \mathrm{i}-1$,	for $1 \leq \mathrm{i} \leq \mathrm{m}-1$
$\mathrm{f}\left(\mathrm{u}_{\mathrm{m}}\right)=2 \mathrm{n}$.	
$\mathrm{f}\left(\mathrm{v}_{\mathrm{i}}\right)=2 \mathrm{i}$,	for $1 \leq \mathrm{i} \leq \mathrm{m}-1$
$\mathrm{f}\left(\mathrm{v}_{\mathrm{m}}\right)=2 \mathrm{n}-1$.	
$\mathrm{f}\left(\mathrm{u}_{\mathrm{m}+\mathrm{i}}\right)=2 \mathrm{n}+\mathrm{i}$,	for $1 \leq \mathrm{i} \leq \mathrm{n}-\mathrm{m}$

From the above cases,

$$
\mathrm{e}_{\mathrm{f}}(1)=\mathrm{e}_{\mathrm{f}}(0)=\mathrm{n}+\mathrm{m}-3 .
$$

Therefore, $\left|e_{f}(0)-e_{f}(1)\right| \leq 1$.
Hence G is divisor cordial graph.

Example : 2.14

The graph $\mathrm{S}_{8} \cup \mathrm{~S}_{6}$ and its divisor cordial labeling is given in Figure 2.14.

Figure 2.14

III. Conclusions

In this paper, we prove the divisor cordial labeling of disconnected graphs $P_{n} \cup P_{m}, C_{n} \cup C_{m}, P_{n} \cup C_{m}, P_{n} \cup K_{1, m}, P_{n} \cup K_{1, m, m}$, $P_{n} \cup W_{m}, P_{n} \cup S_{m}, C_{n} \cup K_{1, m}, C_{n} \cup K_{1, m, m}, C_{n} \cup W_{m}, C_{n} \cup S_{m}, W_{n} \cup S_{m}, W_{n} \cup W_{m}$ and $S_{n} \cup S_{m}$.

References

[1] I. Cahit, "Cordial graphs: A weaker version of graceful and harmonious graphs", Ars Combinatoria, Vol 23, pp. 201-207, 1987.
[2] David M. Burton, Elementary Number Theory, Second Edition, Wm. C. Brown Company Publishers, 1980.
[3] J. A. Gallian, A dynamic survey of graph labeling, The Electronic Journal of Combinatorics, 16, \# DS6, 2013.
[4] F. Harary, Graph Theory, Addison-Wesley, Reading, Mass, 1972.
[5] P. Lawrence Rozario Raj and R. Valli, Some new families of divisor cordial graphs, International Journal of Mathematics Trends and Technology, Vol 7, No. 2, 2014.
[6] P.Maya and T.Nicholas, Some New Families of Divisor Cordial Graph, Annals of Pure and Applied Mathematics Vol. 5, No.2, pp. 125-134, 2014.
[7] A. Muthaiyan and P. Pugalenthi, "Some new divisor cordial graphs", International Journal of Mathematics Trends and Technology, Vol 12, No. 2, 2014.
[8] A. Nellai Murugan and M. Taj Nisha, "A study on divisor cordial labelling of star attached paths and cycles", Indian Journal of Research, Vol.3, Issue 3, pp. 12-17, 2014.
[9] A. Nellai Murugan and V.Brinda Devi, "A study on path related divisor cordial graphs", International Journal of Scientific Research, Vol.3, Issue 4, pp. 286-291, 2014.
[10] S. K. Vaidya and N. H. Shah, "Some Star and Bistar Related Divisor Cordial Graphs", Annals of Pure and Applied Mathematics, Vol 3, No.1, pp. 67-77, 2013.
[11] S. K. Vaidya and N. H. Shah, "Further Results on Divisor Cordial Labeling", Annals of Pure and Applied Mathematics, Vol 4, No.2, pp. 150-159, 2013.
[12] R. Varatharajan, S. Navanaeethakrishnan and K. Nagarajan, "Divisor cordial graphs", International J. Math. Combin., Vol 4, pp. 15-25, 2011.
[13] R. Varatharajan, S. Navanaeethakrishnan and K. Nagarajan, "Special classes of divisor cordial graphs", International Mathematical Forum, Vol 7, No. 35, pp. 1737-1749, 2012.

