Ideal Theory in Triple Systems

K. Chandrasekhara Rao ${ }^{1}$ and K. S. Narayanan ${ }^{2}$
${ }^{1}$ Department of Mathematics, Sastra University, Srinivasa Ramanujan Centre,
Kumbakonam - 612001, Tamil Nadu, INDIA
${ }^{2}$ Retd. Principal, MDT Hindu College, Tirunelveli - 627 001, Tamil Nadu, INDIA

Abstract

The aim of this research article is to introduce the different notions of Ideal Theory in Triple Systems and investigate some results.

Subject Classification: 17A40, 17A6
Keywords - Ideal, Ideal Theory, Triple systems.

Introduction :

Through this section T will denote an associative triple system. Let z denote the ring of all integers. The main results in this section are theorem 2 and theorem 3.

Theorem 1 Let $a \in T$. Then
(1) The right ideal of T generated by a is

$$
(\mathrm{a})_{\mathrm{r}}=\mathrm{Z}_{\mathrm{a}}+\langle\mathrm{a}, \mathrm{~T}, \mathrm{~T}\rangle
$$

(2) The middle ideal of T generated by a is

$$
(\mathrm{a})_{\mathrm{m}}=\mathrm{z}_{\mathrm{a}}+\langle\mathrm{T}, \mathrm{a}, \mathrm{~T}\rangle+\langle\mathrm{T}, \mathrm{~T},\langle\mathrm{a}, \mathrm{~T}, \mathrm{~T}\rangle\rangle
$$

(3) The left ideal of T generated by a is

$$
(\mathrm{a})_{1}=\mathrm{z}_{\mathrm{a}}+\langle\mathrm{T}, \mathrm{~T}, \mathrm{a}\rangle
$$

(4) The ideal generated by a is
(a) $=\mathrm{Z}_{\mathrm{a}}+\langle\mathrm{T}, \mathrm{T}, \mathrm{a}\rangle+\langle\mathrm{T}, \mathrm{a}, \mathrm{T}\rangle+\langle\mathrm{a}, \mathrm{T}, \mathrm{T}\rangle+\langle\mathrm{T}, \mathrm{T},\langle\mathrm{a}, \mathrm{T}, \mathrm{T}\rangle\rangle$

Where $\mathrm{z}_{\mathrm{a}}=\{\mathrm{na}: n \in Z\}$
Proof We prove only (4). The proof for (1), (2) and (3) are similar.
We first observe that $\mathrm{T}^{3} \subseteq \mathrm{~T}$,

$$
\begin{aligned}
& \quad\langle\mathrm{T}, \mathrm{na}, \mathrm{~T}\rangle \subseteq\langle\mathrm{T}, \mathrm{a}, \mathrm{~T}\rangle \\
& \langle\mathrm{na}, \mathrm{~T}, \mathrm{~T}\rangle \subseteq<\mathrm{a}, \mathrm{~T}, \mathrm{~T}\rangle \\
& \quad\langle\mathrm{T}, \mathrm{~T}, \mathrm{na}\rangle \subseteq\langle\mathrm{T}, \mathrm{~T}, \mathrm{a}\rangle, \mathrm{n} \text { being integer. }
\end{aligned}
$$

Let J be the ideal of T generated by a . Set
$\mathrm{K}=\mathrm{z}_{\mathrm{a}}+\langle\mathrm{T}, \mathrm{T}, \mathrm{a}\rangle+\langle\mathrm{T}, \mathrm{a}, \mathrm{T}\rangle+\langle\mathrm{a}, \mathrm{T}, \mathrm{T}\rangle+\langle\mathrm{T}, \mathrm{T},\langle\mathrm{a}, \mathrm{T}, \mathrm{T}\rangle\rangle$

Then

$$
\begin{aligned}
\langle\mathrm{K}, \mathrm{~T}, \mathrm{~T}\rangle= & \left\langle\mathrm{z}_{\mathrm{a}}, \mathrm{~T}, \mathrm{~T}\right\rangle+\langle\langle\mathrm{T}, \mathrm{~T}, \mathrm{a}\rangle, \mathrm{T}, \mathrm{~T}\rangle+\langle\langle\mathrm{T}, \mathrm{a}, \mathrm{~T}\rangle, \mathrm{T}, \mathrm{~T}\rangle+\langle\langle\mathrm{a}, \mathrm{~T}, \mathrm{~T}\rangle, \mathrm{T}, \mathrm{~T}\rangle \\
& +\langle\langle\mathrm{T}, \mathrm{~T},\langle\mathrm{a}, \mathrm{~T}, \mathrm{~T}\rangle\rangle, \mathrm{T}, \mathrm{~T}\rangle \\
\subseteq & \langle\mathrm{a}, \mathrm{~T}, \mathrm{~T}\rangle+\langle\mathrm{T}, \mathrm{~T},\langle\mathrm{a}, \mathrm{~T}, \mathrm{~T}\rangle\rangle+\left\langle\mathrm{T}, \mathrm{~A}, \mathrm{~T}^{3}\right\rangle+\left\langle\mathrm{A}, \mathrm{~T}^{3}, \mathrm{~T}\right\rangle+\left\langle\langle\mathrm{T}, \mathrm{~T}, \mathrm{a}\rangle \mathrm{T}^{3}, \mathrm{~T}\right\rangle \\
\subseteq & \langle\mathrm{a}, \mathrm{~T}, \mathrm{~T}\rangle+\langle\mathrm{T}, \mathrm{~T},\langle\mathrm{a}, \mathrm{~T}, \mathrm{~T}\rangle\rangle+\langle\mathrm{T}, \mathrm{a}, \mathrm{~T}\rangle+\langle\mathrm{a}, \mathrm{~T}, \mathrm{~T}\rangle+\langle\langle\mathrm{T}, \mathrm{~T}, \mathrm{a}\rangle, \mathrm{T}, \mathrm{~T}\rangle\rangle, \\
& \text { Since } \mathrm{T}^{3} \subseteq \mathrm{~T} . \\
\subseteq & \langle\mathrm{a}, \mathrm{~T}, \mathrm{~T}\rangle+\langle\mathrm{T}, \mathrm{~T},\langle\mathrm{a}, \mathrm{~T}, \mathrm{~T}\rangle\rangle+\langle\mathrm{T}, \mathrm{a}, \mathrm{~T}\rangle+\langle\mathrm{T}, \mathrm{~T},\langle\mathrm{a}, \mathrm{~T}, \mathrm{~T}\rangle\rangle \\
\subseteq & \langle\mathrm{a}, \mathrm{~T}, \mathrm{~T}\rangle+\langle\mathrm{T}, \mathrm{~T},\langle\mathrm{a}, \mathrm{~T}, \mathrm{~T}\rangle\rangle+\langle\mathrm{T}, \mathrm{a}, \mathrm{~T}\rangle \\
\subseteq & \mathrm{Z}_{\mathrm{a}}+\langle\mathrm{T}, \mathrm{~T}, \mathrm{a}\rangle+\langle\mathrm{T}, \mathrm{a}, \mathrm{~T}\rangle+\langle\mathrm{a}, \mathrm{~T}, \mathrm{~T}\rangle+\langle\mathrm{T}, \mathrm{~T},\langle\mathrm{a}, \mathrm{~T}, \mathrm{~T}\rangle\rangle \\
= & \mathrm{K}
\end{aligned}
$$

Thus $\langle\mathrm{K}, \mathrm{T}, \mathrm{T}\rangle \subseteq \mathrm{K}$ and so K is a right ideal of T . In a similar manner it can be shown that k is middle as well as a left ideal of T . Thus K is an ideal of T containing a. But J is the ideal of T generate by a.

Therefore $\mathrm{J} \subseteq \mathrm{K}$. \qquad
Again $a \in \mathrm{~J}$ implies that $\mathrm{Z}_{\mathrm{a}} \subseteq \mathrm{J}$. Since J is an ideal of T , we have

$$
\langle\mathrm{T}, \mathrm{~T}, \mathrm{a}\rangle \subseteq\langle\mathrm{T}, \mathrm{~T}, \mathrm{~J}\rangle \subseteq \mathrm{J}
$$

$\langle\mathrm{T}, \mathrm{a}, \mathrm{T}\rangle \subseteq\langle\mathrm{T}, \mathrm{J}, \mathrm{T}\rangle \subseteq \mathrm{J}$
$\langle\mathrm{a}, \mathrm{T}, \mathrm{T}\rangle \subseteq\langle\mathrm{J}, \mathrm{T}, \mathrm{T}\rangle \subseteq \mathrm{J}$
and

$$
\begin{equation*}
\langle\mathrm{T}, \mathrm{~T},\langle\mathrm{a}, \mathrm{~T}, \mathrm{~T}\rangle\rangle \subseteq\langle\mathrm{T}, \mathrm{~T}, \mathrm{~J}\rangle \subseteq \mathrm{J} . \tag{2}
\end{equation*}
$$

Thus $\mathrm{K} \subseteq \mathrm{J}$
Therefore from (1) and (2) it follows that $\mathrm{J}=\mathrm{K}$. This completes the proof of (4).
Remark. 1 Let ideal of T generated by a subspace S is given by,
$\mathrm{S}+\langle\mathrm{T}, \mathrm{T}, \mathrm{S}\rangle+\langle\mathrm{T}, \mathrm{S}, \mathrm{T}\rangle+\langle\mathrm{S}, \mathrm{T}, \mathrm{T}\rangle+\langle\mathrm{T}, \mathrm{T},\langle\mathrm{S}, \mathrm{T}, \mathrm{T}\rangle\rangle$.
Theorem 2 Let B be a non-zero ideal of T. Then
$B_{1}=\{x \in T:\langle x, T, B\rangle=\langle B, T, x\rangle=\langle B, x, t\rangle=\langle 0\rangle\}$ is an ideal of T.
Proof Clearly B_{1} is a subspace of T. Let $x \in B_{1}$ and $t_{1}, t_{2} \in T$. Then
$\langle\mathrm{x}, \mathrm{T}, \mathrm{B}\rangle=\langle\mathrm{T}, \mathrm{x}, \mathrm{B}\rangle=\langle\mathrm{B}, \mathrm{T}, \mathrm{x}\rangle=\langle\mathrm{B}, \mathrm{x}, \mathrm{T}\rangle=\langle 0\rangle$
We first show that B_{1} is a right ideal of T.
Now $\left\langle\left\langle x, t_{1}, t_{2}\right\rangle, T, B\right\rangle=\left\langle x,\left\langle t_{1}, t_{2}, T\right\rangle, B\right\rangle$

$$
\begin{aligned}
& \subseteq\langle x, T, B\rangle \\
& =(0)
\end{aligned}
$$

$\left\langle T,\left\langle x, t_{1}, t_{2}\right\rangle, B\right\rangle=\left\langle T, x,\left\langle t_{1}, t_{2}, B\right\rangle\right\rangle$

$$
\begin{aligned}
& \subseteq<\mathrm{T}, \mathrm{x}, \mathrm{~B}\rangle \\
= & (0)
\end{aligned}
$$

$\left\langle\mathrm{B}, \mathrm{T},\left\langle\mathrm{x}, \mathrm{t}_{1}, \mathrm{t}_{2}\right\rangle\right\rangle=\left\langle\langle\mathrm{B}, \mathrm{T}, \mathrm{x}\rangle, \mathrm{t}_{1}, \mathrm{t}_{2}\right\rangle$

$$
\begin{aligned}
& =\left\langle\langle 0\rangle, t_{1}, t_{2}\right\rangle \\
& =(0)
\end{aligned}
$$

And
$\left\langle\mathrm{B},\left\langle\mathrm{x}, \mathrm{t}_{1}, \mathrm{t}_{2}\right\rangle . \mathrm{T}\right\rangle=\left\langle\mathrm{B}, \mathrm{x},\left\langle\mathrm{t}_{1}, \mathrm{t}_{2}, \mathrm{~T}\right\rangle\right\rangle$

$$
\begin{aligned}
& \subseteq\langle\mathrm{B}, \mathrm{x}, \mathrm{~T}\rangle \\
&=(0)
\end{aligned}
$$

Thus $\left\langle\mathrm{x}, \mathrm{t}_{1}, \mathrm{t}_{2}\right\rangle \in \mathrm{B}_{1}$ and so $\left\langle\mathrm{B}_{1}, \mathrm{~T}, \mathrm{~T}\right\rangle \subseteq \mathrm{B}_{1}$.
Hence B_{1} is a right ideal of T.
We now show that B_{1} is a left ideal of T.

$$
\begin{aligned}
\left\langle\left\langle t_{1}, t_{2}, x\right\rangle, T, B\right\rangle=\langle & t_{1}, t_{2},\langle x, T, B\rangle> \\
& =\left\langle t_{1}, t_{2},\langle 0\rangle>\right. \\
& =(0)
\end{aligned}
$$

$\left\langle T,\left\langle t_{1}, t_{2}, x\right\rangle, B\right\rangle=\left\langle\left\langle T, t_{1}, t_{2},\right\rangle, x, B\right\rangle$

$$
\subseteq<\mathrm{T}, \mathrm{x}, \mathrm{~B}\rangle
$$

$$
=(0)
$$

$\left\langle\mathrm{B}, \mathrm{T},\left\langle\mathrm{t}_{1}, \mathrm{t}_{2}, \mathrm{x}\right\rangle\right\rangle=\left\langle\left\langle\mathrm{B}, \mathrm{T}, \mathrm{t}_{1}\right\rangle, \mathrm{t}_{2}, \mathrm{x}\right\rangle$
$\left.\subseteq<\mathrm{B}, \mathrm{t}_{2}, \mathrm{x}\right\rangle$ since B is an ideal.

$$
\subseteq\langle\mathrm{B}, \mathrm{~T}, \mathrm{x}\rangle
$$

$$
=(0)
$$

And
$\left\langle\mathrm{B},\left\langle\mathrm{t}_{1}, \mathrm{t}_{2}, \mathrm{x}\right\rangle, \mathrm{T}\right\rangle=\left\langle\left\langle\mathrm{B}, \mathrm{t}_{1}, \mathrm{t}_{2}\right\rangle, \mathrm{x}, \mathrm{T}\right\rangle$

$$
\begin{aligned}
& \subseteq\langle\mathrm{B}, \mathrm{x}, \mathrm{~T}\rangle \text { since } \mathrm{B} \text { is an ideal. } \\
& =(0)
\end{aligned}
$$

Hence $\left\langle\mathrm{t}_{1}, \mathrm{t}_{2}, \mathrm{x}\right\rangle \in \mathrm{B}_{1}$ and so $\left\langle\mathrm{T}, \mathrm{T}, \mathrm{B}_{1}\right\rangle \subseteq \mathrm{B}_{1}$.
Thus B_{1} is a left ideal of T.
Finally we show that B_{1} is a middle ideal of T.
$\left\langle\left\langle t_{1}, x, t_{2}\right\rangle, T, B\right\rangle=\left\langle t_{1}, x,\left\langle t_{2}, T, B\right\rangle>\right.$

$$
\subseteq\left\langle\mathrm{t}_{1}, \mathrm{x}, \mathrm{~B}\right\rangle \text { since } \mathrm{B} \text { is an ideal. }
$$

$$
\subseteq<\mathrm{T}, \mathrm{x}, \mathrm{~B}\rangle
$$

$$
=(0)
$$

$\left\langle\mathrm{T},\left\langle\mathrm{t}_{1}, \mathrm{x}, \mathrm{t}_{2}\right\rangle, \mathrm{B}\right\rangle=\left\langle\mathrm{T}, \mathrm{t}_{1},\left\langle\mathrm{x}, \mathrm{t}_{2}, \mathrm{~B}\right\rangle\right\rangle$

$$
=\left\langle\mathrm{T}, \mathrm{t}_{1},\langle\mathrm{x}, \mathrm{~T}, \mathrm{~B}\rangle>\right.
$$

$$
=\left\langle\mathrm{T}, \mathrm{t}_{1},\langle 0\rangle\right\rangle
$$

$$
=(0)
$$

$\left\langle\mathrm{B}, \mathrm{T},\left\langle\mathrm{t}_{1}, \mathrm{x}, \mathrm{t}_{2}\right\rangle\right\rangle=\left\langle\left\langle\mathrm{B}, \mathrm{T}, \mathrm{t}_{1}\right\rangle, \mathrm{x}, \mathrm{t}_{2}\right\rangle$

$$
=\left\langle B, x, t_{2}\right\rangle \text { since } B \text { is an ideal. }
$$

$$
\subseteq<\mathrm{B}, \mathrm{x}, \mathrm{~T}\rangle
$$

$$
=(0)
$$

And
$\left\langle\mathrm{B},\left\langle\mathrm{t}_{1}, \mathrm{x}, \mathrm{t}_{2}\right\rangle, \mathrm{T}\right\rangle=\left\langle\left\langle\mathrm{B}, \mathrm{t}_{1}, \mathrm{x}\right\rangle, \mathrm{t}_{2}, \mathrm{~T}\right\rangle$

$$
\begin{aligned}
& \subseteq \quad\left\langle\langle\mathrm{B}, \mathrm{~T}, \mathrm{x}\rangle, \mathrm{t}_{2}, \mathrm{~T}\right\rangle \\
& \left.=\langle<0\rangle, \mathrm{t}_{2}, \mathrm{~T}\right\rangle \\
& =(0)
\end{aligned}
$$

Thus $\left\langle t_{1}, x, t_{2}\right\rangle \in B_{1}$ and so $<T, B_{1}, T>\subseteq B_{1}$ implying that B_{1} is a middle ideal of T. Hence B_{1} is an ideal of T .

Theorem 3 Let A be an ideal of T and B, an ideal of A. If B^{*} is the ideal of T generated by B then $\mathrm{B}^{* 3} \subseteq$ B.

Proof We know, by remark.1,
$\mathrm{B}^{* 3}=\mathrm{B}+\langle\mathrm{T}, \mathrm{T}, \mathrm{B}\rangle+\langle\mathrm{T}, \mathrm{B}, \mathrm{T}\rangle+\langle\mathrm{B}, \mathrm{T}, \mathrm{T}\rangle+\langle\mathrm{T}, \mathrm{T},\langle\mathrm{B}, \mathrm{T}, \mathrm{T}\rangle\rangle$.
Since A is an ideal of T and $\mathrm{B} \subseteq \mathrm{A}$ it follows that $\mathrm{B}^{*} \subseteq \mathrm{~A}$.
Therefore,

$$
\begin{aligned}
\mathrm{B}^{* 3}= & \left.\left.\ll \mathrm{B}^{*}, \mathrm{~B}^{*}, \mathrm{~B}^{*}\right\rangle, \mathrm{~B}^{*}, \mathrm{~B}^{*}\right\rangle \\
\subseteq & \ll \mathrm{A}, \mathrm{~A}, \mathrm{~B}+<\mathrm{T}, \mathrm{~T}, \mathrm{~B}>+<\mathrm{T}, \mathrm{~B}, \mathrm{~T}>+<\mathrm{B}, \mathrm{~T}, \mathrm{~T}\rangle \\
& +<\mathrm{T}, \mathrm{~T},<\mathrm{B}, \mathrm{~T}, \mathrm{~T} \ggg, \mathrm{~A}, \mathrm{~A}\rangle \\
= & \ll \mathrm{A}, \mathrm{~A}, \mathrm{~B}\rangle+\langle\mathrm{A}, \mathrm{~A},<\mathrm{T}, \mathrm{~T}, \mathrm{~B} \gg+<\mathrm{A}, \mathrm{~A},<\mathrm{T}, \mathrm{~B}, \mathrm{~T} \gg \\
& +<\mathrm{A}, \mathrm{~A},<\mathrm{B}, \mathrm{~T}, \mathrm{~T} \gg+<\mathrm{A}, \mathrm{~A},<\mathrm{T}, \mathrm{~T},<\mathrm{B}, \mathrm{~T}, \mathrm{~T} \ggg, \mathrm{~A}, \mathrm{~A}\rangle \\
= & \ll \mathrm{A}, \mathrm{~A}, \mathrm{~B}\rangle, \mathrm{A}, \mathrm{~A}>+\ll \mathrm{A}, \mathrm{~A},<\mathrm{T}, \mathrm{~T}, \mathrm{~B} \gg, \mathrm{~A}, \mathrm{~A}\rangle \\
& +\ll \mathrm{A}, \mathrm{~A},<\mathrm{T}, \mathrm{~B}, \mathrm{~T} \gg, \mathrm{~A}, \mathrm{~A}\rangle+\ll \mathrm{A}, \mathrm{~A},<\mathrm{B}, \mathrm{~T}, \mathrm{~T} \gg, \mathrm{~A}, \mathrm{~A}\rangle
\end{aligned}
$$

$$
\begin{aligned}
& +\langle<\mathrm{A}, \mathrm{~A},\langle\mathrm{~T}, \mathrm{~T},\langle\mathrm{~B}, \mathrm{~T}, \mathrm{~T}\rangle \gg, \mathrm{A}, \mathrm{~A}\rangle \\
= & \ll \mathrm{A}, \mathrm{~A}, \mathrm{~B}\rangle, \mathrm{A}, \mathrm{~A}\rangle+\langle\mathrm{A},\langle\mathrm{~A}, \mathrm{~T}, \mathrm{~T}\rangle,\langle\mathrm{B}, \mathrm{~A}, \mathrm{~A}\rangle> \\
& +\langle<\mathrm{A}, \mathrm{~A}, \mathrm{~T}\rangle, \mathrm{B},\langle\mathrm{~T}, \mathrm{~A}, \mathrm{~A}\rangle>+\langle\langle\mathrm{A}, \mathrm{~A}, \mathrm{~B}\rangle,\langle\mathrm{T}, \mathrm{~T}, \mathrm{~A}\rangle, \mathrm{A}\rangle \\
\subseteq & \langle\mathrm{BA}, \mathrm{~A}\rangle+\langle\mathrm{B}, \mathrm{~A}, \mathrm{~B}\rangle+\langle\mathrm{A}, \mathrm{~B}, \mathrm{~A}\rangle+\langle\mathrm{B}, \mathrm{~A}, \mathrm{~A}\rangle \\
& +\ll \mathrm{A}, \mathrm{~A}, \mathrm{~B}\rangle \mathrm{A}, \mathrm{~A}\rangle(\text { since } \mathrm{B} \text { is an ideal } \mathrm{A} \text { and } \mathrm{A} \text { is an ideal of } \mathrm{T}) \\
\subseteq & \mathrm{B}+\mathrm{B}+\mathrm{B}+\mathrm{B}+\mathrm{B} \\
\subseteq & \mathrm{~B}
\end{aligned}
$$

Thus $\mathrm{B}^{* 3} \subseteq \mathrm{~B}$.

References

[1] Lister. W. G , Ternary Rings, T. A. M. S. 154 (1971), $37-55$.
[2] Meyberg. K, Lectures on Algebras and triple systems, Lecture Notes, The University of Virginia, Charlottesville, (1972).

