Pre-rough Connected Topologized Approximation Spaces

M. J. Iqelan

Department of Mathematics, Faculty of Science Al-Azhar University - Gaza, P. O. Box 1277, Gaza, Palestine

Abstract

Rough thinking is one of the topological connections to uncertainty. The purpose of this paper is to introduce connectedness in approximation spaces using pre-open sets and rough set notions. The definition of pre-rough connected topologized approximation space is introduced.

Mathematics Subject Classification: 54C05, 54D05

Keywords: Topological space, Topologized approximation space, Pre-rough connected topologized approximation space.

1. Preliminaries

This section presents a review of some fundamental notions of topological spaces and rough set theory.

A topological space [4] is a pair (X, τ) consisting of a set X and family τ of subsets of X satisfying the following conditions:

(T1) $\phi \in \tau$ and $X \in \tau$.

(T2) τ is closed under arbitrary union.

(T3) τ is closed under finite intersection.

Throughout this paper (X, τ) denotes a topological space, the elements of X are called points of the space, the subsets of X belonging to τ are called open sets in the space, the complement of the subsets of X belonging to τ are called closed sets in the space, and the family of all τ -closed subsets of X is denoted by τ^* . The family τ of open subsets of X is also called a topology for X. A subset A of X in a topological space (X, τ) is said to be clopen if it is both open and closed in (X, τ) .

A family $B \subseteq \tau$ is called a base for (X, τ) iff every nonempty open subset of X can be represented as a union of subfamily of B. Clearly, a topological space can have many bases. A family $S \subseteq \tau$ is called a subbase iff the family of all finite intersections of S is a base for (X, τ) .

The τ -closure of a subset A of X is denoted by A^- and it is given by $A^- = \bigcap \{F \subseteq X : A \subseteq F \text{ and } F \in \tau^*\}$. Evidently, A^- is the smallest closed subset of X which contains A. Note that A is closed iff $A = A^-$. The τ -interior of a subset A of X is denoted by A° and it is given by $A^\circ = \bigcup \{G \subseteq X : G \subseteq A \text{ and } G \in \tau\}$. Evidently, A° is the largest open subset of X which contained in A. Note that A is open iff $A = A^\circ$.

A subset A of X in a topological space (X,τ) is called pre-open [7] (briefly p-open) if $A \subseteq A^{-\circ}$. The complement of a p-open set is called p-closed. The family of all p-open (resp. p-closed) sets is denoted by PO(X) (resp. PC(X)). The p-closure of a subset A of X is denoted by A^{p-} and it is defined by $A^{p-} = \bigcap \{F \subseteq X : A \subseteq F \text{ and } F \in PC(X)\}$.

Evidently, A^{p^-} is the smallest p-closed subset of X which contains A. Note that A is p-closed iff $A = A^{p^-}$. The p-interior of a subset A of X is denoted by A^{p° and it is defined by $A^{p^\circ} = \bigcup \{G \subseteq X : G \subseteq A \text{ and } G \in PO(X)\}$. Evidently, A^{p° is the largest p-open subset of X which contained in A. Note that A is p-open iff $A = A^{p^\circ}$.

Motivation for rough set theory has come from the need to represent subsets of a universe in terms of equivalence classes of a partition of that universe. The partition characterizes a topological space, called approximation space K = (X, R), where X is a set called the universe and R is an equivalence relation [6, 8]. The equivalence classes of R are also known as the granules, elementary sets or blocks. We shall use R_x to denote the equivalence class containing $x \in X$, and X / R to denote the set of all elementary sets of R. In the approximation space K = (X, R), the upper (resp. lower) approximation of a subset A of X is given by

 $\overline{R}A = \{x \in X : R_x \cap A \neq \phi\} \text{ (resp. } \underline{R}A = \{x \in X : R_x \subseteq A\}\text{)}.$

Pawlak noted [8] that the approximation space K = (X, R) with equivalence relation R defines a uniquely topological space (X, τ) where τ is the family of all clopen sets in (X, τ) and X/R is a base of τ . Moreover, the upper (resp. lower) approximation of any subset A of X is exactly the closure (resp. interior) of A.

If *R* is a general binary relation, then the approximation space K = (X, R) defines a uniquely topological space (X, τ_K) where τ_K is the topology associated to *K* (i.e. τ_K is the family of all open sets in (X, τ_K) and $S = \{xR : x \in X\}$ is a subbase of τ_K , where $xR = \{y \in X : xR y\}$) [2, 5].

Definition 1.1 [2]. Let K = (X, R) be an approximation space with general relation R and τ_K is the topology associated to K. Then the triple $\kappa = (X, R, \tau_K)$ is called a topologized approximation space.

Definition 1.2 [2]. Let $\kappa = (X, R, \tau_{\kappa})$ be a topologized approximation space and $A \subseteq X$. The upper (resp. lower) approximation of A is denoted by $\overline{R}A$ (resp. $\underline{R}A$) and it is defined by $\overline{R}A = A^-$ (resp. $RA = A^\circ$).

Proposition 1.1 [2]. Let $\kappa = (X, R, \tau_K)$ be a topologized approximation space. If A and B are two subsets of X, then

- i) $\underline{R} A \subseteq A \subseteq \overline{R} A$.
- ii) $R\phi = \overline{R}\phi = \phi$ and $RX = \overline{R}X = X$.
- iii) If $A \subseteq B$, then $\underline{R} A \subseteq \underline{R} B$.
- iv) If $A \subseteq B$, then $\overline{R}A \subseteq \overline{R}B$.
- v) $\underline{R}(X-A) = X \overline{R}A$.
- vi) $\overline{R}(X-A) = X \underline{R}A$.

Definition 1.3 [2]. Let $\kappa = (X, R, \tau_K)$ be a topologized approximation space and $A \subseteq X$. The p-upper (resp. p-lower) approximation of A is denoted by $\overline{R}_p A$ (resp. $\underline{R}_p A$) and it is defined by

$$\overline{R}_p A = A^{p^-}$$
 (resp. $\underline{R}_p A = A^{p^\circ}$).

Proposition 1.2 [2]. Let $\kappa = (X, R, \tau_K)$ be a topologized approximation space. If A and B are two subsets of X, then

- i) $\underline{R}_p A \subseteq A \subseteq \overline{R}_p A$
- ii) $\underline{R}_p \phi = \overline{R}_p \phi = \phi$ and $\underline{R}_p X = \overline{R}_p X = X$.
- iii) If $A \subseteq B$, then $\underline{R}_p A \subseteq \underline{R}_p B$.
- iv) If $A \subseteq B$, then $\overline{R}_p A \subseteq \overline{R}_p B$.

v)
$$\underline{R}_{p}(X-A) = X - \overline{R}_{p}A$$

vi) $\overline{R}_p (X - A) = X - \underline{R}_p A$.

2. Pre-rough connected topologized approximation spaces

The present section is devoted to introduce the concept of pre-rough connectedness in approximation spaces with general binary relations. The following two definitions introduce concepts of definability for a subset A of X in a topologized approximation space $\kappa = (X, R, \tau_{\kappa})$.

Definition 2.1 [2]. Let $\kappa = (X, R, \tau_K)$ be a topologized approximation space and $A \subseteq X$. Then

- i) A is called totally R definable (exact) set if $\underline{R}A = A = RA$,
- ii) A is called internally R definable set if $A = \underline{R}A$,
- iii) A is called externally R definable set if $A = \overline{R}A$,
- iv) A is called R indefinable (rough) set if $A \neq \underline{R}A$ and $A \neq RA$.

Definition 2.2 [1]. Let $\kappa = (X, R, \tau_{\kappa})$ be a topologized approximation space and $A \subseteq X$. Then

- i) A is called totally p -definable (p -exact) set if $\underline{R}_p A = A = \overline{R}_p A$,
- ii) A is called internally p -definable set if $A = \underline{R}_p A$,
- iii) A is called externally p-definable set if $A = R_p A$,
- iv) A is called p-indefinable (p-rough) set if $A \neq \underline{R}_p A$ and $A \neq \overline{R}_p A$.

Remark 2.1. Let $\kappa = (X, R, \tau_{\kappa})$ be a topologized approximation space and $A \subseteq X$.

- If A is exact set, then it is both internally R definable and externally R definable set.
 - If A is p-exact set, then it is both internally p-definable and externally p-definable set.
- $\underline{R}A$ is the largest internally R definable set contained in A.
- $\underline{R}_p A$ is the largest internally p -definable set contained in A.
- RA is the smallest externally R definable set contains A.
- $R_p A$ is the smallest externally p -definable set contains A.

Lemma 2.1. Let $\kappa = (X, R, \tau_{\kappa})$ be a topologized approximation space and $A \subseteq X$. Then

- i) A is exact set if and only if X A is exact.
- ii) A is p -exact set if and only if X A is p -exact.
- iii) A is internally R definable (resp. externally R definable) set if and only if X A is externally R definable (resp. internally R definable) set.
- iv) A is internally p-definable (resp. externally p-definable) set if and only if X A is externally p-definable (resp. internally p-definable) set.

Proof. By using Proposition 1.1 and Proposition 1.2, the proof is obvious.

The following definition introduces the concept of pre-rough disconnected topologized approximation space.

Definition 2.3. Let $\kappa = (X, R, \tau_{\kappa})$ be a topologized approximation space. Then κ is said to be pre-rough (briefly *p*-rough) disconnected if there are two nonempty subsets *A* and *B* of *X* such that

$$A \cup B = X$$
 and $A \cap \overline{R}_p B = \overline{R}_p A \cap B = \phi$.

The space $\kappa = (X, R, \tau_{\kappa})$ is said to be *p*-rough connected if it is not *p*-rough disconnected.

Proposition 2.1. Let $\kappa = (X, R, \tau_K)$ be a topologized approximation space. If X has a nonempty p-exact proper subset A, then $\kappa = (X, R, \tau_K)$ is p-rough disconnected.

Proof.

Suppose that A is a nonempty p -exact proper subset of X. Then by Lemma 2.1, we get B = X - A is also a nonempty p -exact proper subset of X. Hence $A \cup B = X$ and $A \cap \overline{R}_p B = A \cap B = \overline{R}_p A \cap B = \phi$. Thus $\kappa = (X, R, \tau_\kappa)$ is p-rough disconnected. \Box

Example 2.1. Let $\kappa = (X, R, \tau_K)$ be a topologized approximation space such that $X = \{a, b, c, d\}$ and $R = \{(a, a), (b, b), (d, d)(a, b), (b, a)\}$. Then $aR = \{a, b\} = bR$, $cR = \phi$ and $dR = \{d\}$. Hence

$$S = \{\phi, \{d\}, \{a,b\}\}, B = \{X, \phi, \{d\}, \{a,b\}\}, \tau_{K} = \{X, \phi, \{d\}, \{a,b\}, \{a,b,d\}\}, PO(X) = \{X, \phi, \{a\}, \{b\}, \{d\}, \{a,b\}, \{a,d\}, \{a,b,d\}, \{a,c,d\}, \{b,c,d\}\}, and$$

 $PC(X) = \{ \phi, X, \{b, c, d\}, \{a, c, d\}, \{a, b, c\}, \{c, d\}, \{b, c\}, \{a, c\}, \{c\}, \{b\}, \{a\} \} \}.$

Since $A = \{a\}$ is a nonempty p-exact proper subset of X, then the space $\kappa = (X, R, \tau_K)$ is p-rough disconnected.

Proposition 2.2. Let $\kappa = (X, R, \tau_K)$ be a *p*-rough disconnected topologized approximation space, then there is a nonempty *p*-exact proper subset of *X*.

Proof.

Let $\kappa = (X, R, \tau_{\kappa})$ be a *p*-rough disconnected topologized approximation space. Then there exist two nonempty subsets *A* and *B* of *X* such that

$$A \cup B = X$$
 and $A \cap \overline{R}_p B = \overline{R}_p A \cap B = \phi$. But $A \subseteq \overline{R}_p A$, hence $A \cap B = \phi$. Thus $A = X - B$. Also $A = X - \overline{R}_p B$, since $A \cap \overline{R}_p B = \phi$ and $A \cup \overline{R}_p B \supseteq A \cup B = X$.

Hence $A = \underline{R}_p A$ and $B = \overline{R}_p B$. Similarly $B = \underline{R}_p B$ and $A = \overline{R}_p A$. Therefore there exists a nonempty p-exact proper subset A of X. \Box

Theorem 2.1. A topologized approximation space $\kappa = (X, R, \tau_{\kappa})$ is *p*-rough disconnected if and only if there exists a nonempty *p*-exact proper subset of *X*.

Proof.

By using Proposition 2.1 and Proposition 2.2, the proof is obvious.

Definition 2.4 [3]. Let $\kappa = (X, R_1, \tau_K)$, $Q = (Y, R_2, \tau_Q)$ be two topologized approximation spaces. Then a mapping $f : \kappa \to Q$ is called *p*-rough continuous if $f^{-1}(\underline{R_2}V) \subseteq \underline{R_1}_p f^{-1}(V)$ for every subset *V* of *Y* in Q.

In Definition 2.4, f^{-1} does not mean the inverse function, but it means the inverse image.

Theorem 2.2. Let $f: \kappa \to Q$ be a mapping from a topologized approximation space $\kappa = (X, R_1, \tau_K)$ to a topologized approximation space $Q = (Y, R_2, \tau_Q)$. Then the following statements are equivalent.

- i) f is p-rough continuous.
- ii) The inverse image of each internally R_2 definable set in Q is internally p -definable set in κ .
- iii) The inverse image of each externally R_2 definable set in Q is externally p -definable set in K.

iv)
$$f(\overline{R_1}_p A) \subseteq \overline{R_2} f(A)$$
 for every subset A of X in κ .
v) $\overline{R_1}_p f^{-1}(B) \subseteq f^{-1}(\overline{R_2} B)$ for every subset B of Y in Q

Proof.

(i) \Rightarrow (ii) Let f be p-rough continuous and let V be an internally R_2 – definable set in \mathbb{Q} . Then $\underline{R_2}V = V$ and $f^{-1}(V)$ is a subset of X in κ . By (i), we get $f^{-1}(V) = f^{-1}(\underline{R_2}V) \subseteq \underline{R_1}_p f^{-1}(V)$. Then $f^{-1}(V) \subseteq \underline{R_1}_p f^{-1}(V)$. But $\underline{R_1}_p f^{-1}(V) \subseteq f^{-1}(V)$. Hence $f^{-1}(V) = \underline{R_1}_p f^{-1}(V)$. Therefore $f^{-1}(V)$ is internally p-definable set in κ . (ii) \Rightarrow (i) Let A be a subset of Y in \mathbb{Q} . Since $\underline{R_2}A \subseteq A$, then $f^{-1}(\underline{R_2}A) \subseteq f^{-1}(A)$. But $\underline{R_2}A$ is internally R_2 – definable set in \mathbb{Q} , then by (ii), we get $f^{-1}(\underline{R_2}A)$ is internally p-definable set in κ contained in $f^{-1}(A)$. Hence $f^{-1}(\underline{R_2}A) \subseteq \underline{R_1}_p f^{-1}(A) \subseteq f^{-1}(A)$, since $\underline{R_1}_p f^{-1}(A)$ is the largest internally p-definable set contained in $f^{-1}(A)$. Thus $f^{-1}(\underline{R_2}A) \subseteq \underline{R_1}_p f^{-1}(A)$ for every subset A of Y in \mathbb{Q} . Therefore f is p-rough continuous.

(ii) \Rightarrow (iii) Let F be an externally R_2 - definable set in Q, then by Lemma 2.1, we get Y - F is internally R_2 - definable. Thus by (ii), we have $f^{-1}(Y - F)$ is internally p-definable set in κ . Since $f^{-1}(Y - F) = X - f^{-1}(F)$, then $X - f^{-1}(F)$ is internally p-definable set in κ . Hence $f^{-1}(F)$ is externally p-definable set in κ .

Similarly we can prove (iii) \Rightarrow (ii).

(ii) \Rightarrow (iv) Let A be a subset of X in κ , then $\overline{R_2} f(A)$ is an externally R_2 - definable set in Q. Hence $Y - \overline{R_2} f(A)$ is internally R_2 - definable set in Q. Thus by (ii), we get $f^{-1}(Y - \overline{R_2} f(A)) = X - f^{-1}(\overline{R_2} f(A))$ is internally p-definable set in κ , and so $f^{-1}(\overline{R_2} f(A))$ is externally p-definable set containing A in κ . Thus $A \subseteq \overline{R_1}_p A \subseteq f^{-1}(\overline{R_2} f(A))$, since $\overline{R_1}_p A$ is the smallest externally p-definable set containing A in κ . Hence

$$f\left(\overline{R_{1}}_{p}A\right) \subseteq f\left[f^{-1}\left(\overline{R_{2}}f(A)\right)\right] \subseteq \overline{R_{2}}f(A).$$

Therefore $f(\overline{R_1}_p A) \subseteq \overline{R_2} f(A)$ for every subset A in κ .

(iv) \Rightarrow (v) Let *B* be a subset of *Y* in Q. Let $A = f^{-1}(B)$, then *A* is a subset of *X* in κ . By (iv), we get

 $f\left(\overline{R_1}_p A\right) \subseteq \overline{R_2} f(A) = \overline{R_2} f\left(f^{-1}(B)\right) \subseteq \overline{R_2} B.$ Hence $\overline{R_1}_p A \subseteq f^{-1}\left(\overline{R_2}B\right)$. Thus $\overline{R_1}_p A = \overline{R_1}_p f^{-1}(B) \subseteq f^{-1}\left(\overline{R_2}B\right)$. Therefore $\overline{R_1}_p f^{-1}(B) \subseteq f^{-1}\left(\overline{R_2}B\right)$ for every subset B of Y in Q.

(v) \Rightarrow (ii) Let G be an internally R_2 – definable set in Q, then B = Y - G is externally R_2 – definable set in Q. Thus by (v), we get

$$\overline{R_1}_p f^{-1}(B) \subseteq f^{-1}(\overline{R_2} B).$$

Since *B* is externally R_2 - definable set, then $f^{-1}(\overline{R_2}B) = f^{-1}(B)$. Thus $\overline{R_1}_p f^{-1}(B) \subseteq f^{-1}(B)$. But $f^{-1}(B) \subseteq \overline{R_1}_p f^{-1}(B)$, then $\overline{R_1}_p f^{-1}(B) = f^{-1}(B)$. Hence $f^{-1}(B)$ is externally *p*-definable set in κ . Since $f^{-1}(B) = f^{-1}(Y-G) = X - f^{-1}(G)$, then $X - f^{-1}(G)$ is externally *p*-definable set in κ . \Box

Example 2.2. Let $\kappa = (X, R_1, \tau_K)$, $Q = (Y, R_2, \tau_Q)$ be two topologized approximation spaces such that $X = \{a, b, c, d\}$, $Y = \{y_1, y_2, y_3, y_4\}$,

Define a mapping $f: K \to Q$ such that

 $f(a) = y_4, f(b) = y_3, f(c) = y_1$ and $f(d) = y_2$.

Then f is not a p-rough continuous mapping, since $V = \{y_1, y_2\}$ is an internally R_2 -definable set in Q, but $f^{-1}(V) = \{c, d\}$ is not an internally p-definable set in κ .

Proposition 2.3. Let $\kappa = (X, R_1, \tau_\kappa)$ and $Q = (Y, R_2, \tau_Q)$ be two topologized approximation spaces. If $f : \kappa \to Q$ is a *p*-rough continuous mapping, then the inverse image of each exact set in Q is *p*-exact set in κ .

Proof.

Let A be an exact set in Q, then A is both internally and externally R_2 – definable set in Q. Hence by Theorem 2.2, we get $f^{-1}(A)$ is both internally and externally p-definable set in κ . Therefore $f^{-1}(A)$ is a p-exact set in κ . \Box

3. Conclusions

In this paper, we used p-open sets to introduce the definition of p-rough connected to pologized approximation space.

References

- M. E. Abd El-Monsef, A. M. Kozae, M. J. Iqelan, Near rough and near exact sets in topological spaces, Indian Journal of Mathematics and Mathematical Sciences, 5 (1) (2009) 49-58.
- [2] M. E. Abd El-Monsef, A. M. Kozae, M. J. Iqelan, Near approximations in topological spaces, Int. Journal of Math. Analysis, 4 (6) (2010) 279-290.
- [3] M. J. Iqelan, On topological structures and uncertainty, Ph.D. Thesis, Tanta Univ., Egypt, 2010.
- [4] J. Kelley, General topology, Van Nostrand Company, 1955.
- [5] E. Lashin, A. Kozae, A. Abo Khadra and T. Medhat, Rough set theory for topological spaces, International Journal of Approximate Reasoning, 40 (2005) 35-43.
- [6] T.Y. Lin, Topological and fuzzy rough sets, in: R. Slowinski (Ed.), Decision Support by Experience— Application of the Rough Sets Theory, Kluwer Academic Publishers, 1992, pp. 287–304.
- [7] A. S. Mashhour, M. E. Abd El-Monsef, S. N. El-Deeb, On pre-continuous and weak pre-continuous mappings, Proc. Math. Phys. Soc. Egypt, 53 (1982) 47-53.
- [8] Z. Pawlak, Rough Sets, Theoretical Aspects of Reasoning about Data, Kluwer Academic, Boston, 1991.