International Journal of Mathematics Trends and Technology – Volume 17 Number 1 – Jan 2015 Super Geometric Mean Labeling On Double Triangular Snakes

¹S.S.Sandhya, ²E. Ebin Raja Merly and ³B. Shiny

¹Assistant Professor in Mathematics,Sree Ayyappa College for Women,Chunkankadai – 629 003,Kanyakumari District ²Assistant Professor in Mathematics,Nesamony Memorial Christian College, Marthandam – 629 165,Kanyakumari District.

³Assistant Professor in Mathematics, DMI Engineering College, Aralvaimozhi – 629 301, Kanyakumari District.

ABSTRACT

Let $f: V(G) \rightarrow \{1, 2, ..., p+q\}$ be an injective function. For a vertex labeling "f" the induced edge labeling f^* (e=uv) is defined by,

f* (e) = $\left[\sqrt{f(u)f(v)}\right]$ or $\left[\sqrt{f(u)f(v)}\right]$. Then f is called a **Super Geometric mean labeling** if $\{f(V(G))\} \cup \{f(e): e \in E(G)\} = \{1, 2, ..., p + q\}$, A graph which admits Super Geometric mean labeling is called **Super Geometric mean graph**.

In this paper, we prove that Double Triangular Snakes and Alternate Double Triangular Snake graphs and Super Geometric mean graphs.

Key words: Graph, Geometric mean graph, Super Geometric mean graph, Double Triangular snake, Alternate Double Triangular snake.

1. Introduction

All graphs in this paper are finite, simple and undirected graph G = (V,E) with p vertices and q edges. For all detailed survey of graph labeling we refer to Gallian [1]. For all other standard terminology and notations we follow Harary [2]. The concept of Geometric mean labeling has been introduced by S. Somasundaram, R. Ponraj and P. Vidhyarani in [5]. We will provide a brief summary of definitions and other informations which are necessary for our present investigation.

Definition 1.1

A graph G = (V,E) with p vertices and q edges is called a **Geometric mean graph** if it is possible to label vertices $x \in V$ with distinct label f(x) from 1,2,...,q+1 in such a way that when each edge e=uv is labeled with, f(e=uv)= $\left[\sqrt{f(u)f(v)}\right]$ or $\left[\sqrt{f(u)f(v)}\right]$ then the edge labels are distinct. In this case "f" is called **Geometric mean labeling** of G.

International Journal of Mathematics Trends and Technology – Volume 17 Number 1 – Jan 2015 Definition 1.2:

Let f: V(G) \rightarrow {1,2,...,p+q} be an injective function. For a vertex labeling "f", the induced edge labeling f* (e=uv) is defined by,

 $f^*(e) = \left[\sqrt{f(u)f(v)}\right]$ or $\left[\sqrt{f(u)f(v)}\right]$ then "f" is called a **Super Geometric mean labeling** if $\{f(V(G)\} \cup \{f(e): e \in E(G)\} = \{1, 2, ..., p + q\}$. A graph which admits Super Geometric mean labeling is called **Super Geometric mean graph**.

Definition 1.3:

A **Triangular Snake** T_n is obtained from a Path $u_1u_2,...,u_n$ by joining u_i and u_{i+1} to a new vertex v_i , $1 \le i \le n-1$. That is every edge of a Path is replaced by a triangle C_3 .

Definition 1.4:

An Alternate Triangular snake $A(T_n)$ is obtained from a Path $u_1u_2...u_n$ by joining u_i and u_{i+1} alternatively to a new vertex v_i . That is every alternate edge of a Path is replaced by C_3 .

Definition 1.5:

A **Double Triangular snake** $D(T_n)$ consists of two Triangular snakes that have a common Path.

Definition 1.6:

An Alternate Double Triangular snake $A(D(T_n))$ consists of two Alternate Triangular snakes that have a common Path.

Now we shall use frequent reference to the following theorems.

Theorem 1.7 [5]: Triangular snakes and Alternate Triangular snakes are Geometric mean graphs.

Theorem 1.8: Double Triangular and Alternate Double Triangular snakes are Geometric mean graphs.

2. Main Results

Theorem 2.1:

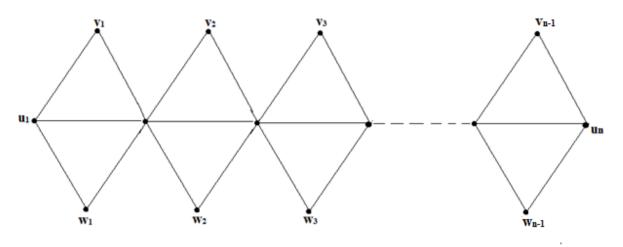
A Double Triangular snake $D(T_n)$ is a Super Geometric mean graph.

Proof

Let $D(T_n)$ be the Double Triangular snake.

Consider a Path $u_1 u_2, \ldots, u_n$.

Join $u_i u_{i+1}$ with two new vertices v_i and w_i , $1 \le i \le n-1$. The graph is displaced below.



Define a function f: $V(D(T_n) \rightarrow \{1,2,...,p+q\}by$,

 $f(u_1) = 4$

 $f(u_i) = 8i-7, \quad 2 \le i \le n$

$$f(v_1) = 1$$

 $f(v_i) = 8i-4, \qquad 2 \le i \le n-1$

$$f(w_i) = 8i-1 \qquad 1 \le i \le n-1$$

Edges are labeled with,

$$\begin{split} f(u_{1}u_{2}) &= 6 \\ f(u_{i}u_{i+1}) &= 8i{-}3, \qquad 2 \leq i \leq n{-}1 \\ f(u_{i}v_{i}) &= 8i{-}6, \quad 1 \leq i \leq n{-}1 \\ f(v_{1}u_{2}) &= 3 \\ f(v_{i}u_{i+1}) &= 8i{-}2, \qquad 2 \leq i \leq n{-}1 \\ f(u_{1}w_{1}) &= 5 \\ f(u_{i}w_{i}) &= 8i{-}5, \ 2 \leq i \leq n{-}1 \\ f(w_{i}u_{i+1}) &= 8i, \quad 1 \leq i \leq n{-}1 \\ Thus we get distinct edge labels \\ Hence D(T_{n}) is a Super Geometric mean graph. \end{split}$$

Example 2.2

A Super Geometric mean labeling of $D(T_5)$ is given below.

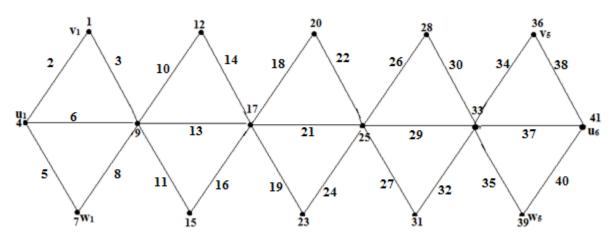


Figure: 2

Theorem 2.3

Alternate Double Triangular snake A $(D(T_n))$ is a Super Geometric mean graph.

Proof:

Let G be the graph $A(D(T_n))$

Consider the Path $u_1u_2...u_n$

To construct G, join u_i and u_{i+1} (alternatively) with two new vertices $v_i \qquad \mbox{ and } w_i$

There are two different cases to be considered.

Case 1: If $A(D(T_n))$ starts from u_1 , we need two subcases.

Subcase 1(a) If n is odd, then

Define a function f: V(G) $\rightarrow \{1, 2, ..., p+q\}$ by, f(u₁) = 4 f(u_{2i-1}) = 10*i*-9, $2 \le i \le \left(\frac{n-1}{2}\right) + 1$ f(u_{2i}) = 10*i*-1, $1 \le i \le \frac{n-1}{2}$ f(v₁) = 1 f(v_i) = 10*i*-6, $2 \le i \le \frac{n-1}{2}$ f(w_i) = 10*i*-3, $1 \le i \le \frac{n-1}{2}$ Edges are labeled with, f(u₁ u₂) = 6 f(u_iu_{i+1}) = 5*i*, $2 \le i \le n-1$ International Journal of Mathematics Trends and Technology – Volume 17 Number 1 – Jan 2015 $f(x_1, x_2) = 10^{12} \cdot 9 \cdot 1 < x_1 < x_2 < x_1 < x_2 < x_2 < x_1 < x_2 <$

$$f(u_{2i-1} V_i) = 10i-8, 1 \le i \le \frac{1}{2}$$

$$f(v_1 u_2) = 3$$

$$f(v_i u_{2i}) = 10i-4, 2 \le i \le \frac{n-1}{2}$$

$$f(u_1 w_1) = 5$$

$$f(u_{2i-1} w_i) = 10i-7, 2 \le i \le \frac{n-1}{2}$$

$$f(w_i u_{2i}) = 10i-2, 1 \le i \le \frac{n-1}{2}$$

Thus we ge get distinct edge labels.

The labeling pattern of A $(D(T_4))$ is shown below

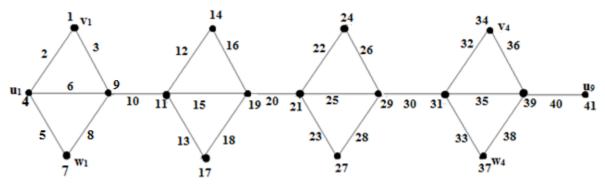


Figure: 3

Subcase 1(b): If n is even, then

Define a function f: V(G) \rightarrow {1,2,...,p+q} by, f(u₁) = 4 f(u_{2i-1}) = 10*i*-9, $2 \le i \le \frac{n}{2}$ f(u_{2i}) =10*i*-1, $1 \le i \le \frac{n}{2}$ f(v₁) = 1 f(v_i) = 10*i*-6, $2 \le i \le \frac{n}{2}$ f(w_i) = 10*i*-3, $1 \le i \le \frac{n}{2}$ Edges are labeled with f(u₁u₂) =6 f(u_i u_{i+1}) = 5*i*, $2 \le i \le n-1$ f(u_{2i-1} v_i) = 10*i*-8, $1 \le i \le \frac{n}{2}$ f(v₁u₂) = 3

ISSN: 2231-5373

 $\label{eq:international Journal of Mathematics Trends and Technology-Volume 17 Number 1 - Jan 2015 $f(v_i \ u_{2i}) = 10i-4, \ 2 \leq i \leq \frac{n}{2}$$

$$f(u_1 w_1) = 5$$

$$f(u_{2i-1} w_i) = 10i-7, \ 2 \le i \le \frac{n}{2}$$

$$f(w_i u_{2i}) = 10i-2, \qquad 1 \le i \le \frac{n}{2}$$

Therefore the edge labels are distinct.

The labeling pattern of $A(D(T_4))$ is displaced below.

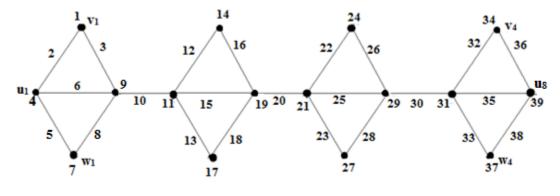


Figure: 4

In this case f provides a Super Geometric mean labeling of G.

Case 2: If $A(D(T_n))$ Starts from u_2 , we have to consider two subcases.

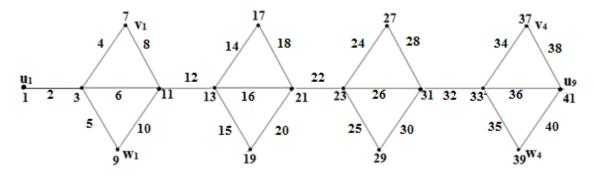
Subcase 2(a): If n is odd then,

Define a function f: V(G) $\rightarrow \{1,2,...,p+q\}$ by, f(u_{2i-1}) = 10*i*-9, $1 \le i \le \left(\frac{n-1}{2}\right) + 1$ f(u_{2i}) = 10*i*-7, $1 \le i \le \frac{n-1}{2}$ f(v_i) = 10*i*-1, $1 \le i \le \frac{n-1}{2}$ Edges are labeled with, f(u_{2i-1} u_{2i}) = 10*i*-8, $1 \le i \le \frac{n-1}{2}$ f(u_{2i} u_{2i+1}) = 10*i*-4, $1 \le i \le \frac{n-1}{2}$ f(v_i u_{2i}) = 10*i*-6, $1 \le i \le \frac{n-1}{2}$ International Journal of Mathematics Trends and Technology – Volume 17 Number 1 – Jan 2015

 $f(v_{i} u_{2i+1}) = 10i-2, \qquad 1 \le i \le \frac{n-1}{2}$ $f(u_{2i} w_{i}) = 10i-5, \qquad 1 \le i \le \frac{n-1}{2}$ $f(w_{i} u_{2i+1}) = 10i, \qquad 1 \le i \le \frac{n-1}{2}$

Thus we get distinct edge labels.

The labeling pattern of $A(D(T_4))$ is given below.



Subcase 2(b): If n is even, then

Define a function, f: V(G) $\rightarrow \{1,2,...,p+q\}$ by, f(u_{2i-1}) = 10*i*-9, $1 \le i \le \frac{n}{2}$ f(u_{2i}) = 10*i*-7, $1 \le i \le \frac{n}{2}$ f(v_i) = 10*i*-3, $1 \le i \le \frac{n-2}{2}$ f(w_i) = 10*i*-1, $1 \le i \le \frac{n-2}{2}$ Edges are labeled with f(u_{2i-1} u_{2i}) = 10*i*-8, $1 \le i \le \frac{n}{2}$ f(u_{2i} u_{2i+1}) = 10*i*-4, $1 \le i \le \frac{n-2}{2}$ f(v_i u_{2i}) = 10*i*-6, $1 \le i \le \frac{n-2}{2}$ f(v_i u_{2i+1}) = 10*i*-2, $1 \le i \le \frac{n-2}{2}$ f(u_{2i} w_i) = 10*i*-5, $1 \le i \le \frac{n-2}{2}$ f(w_i u_{2i+1}) = 10*i* $1 \le i \le \frac{n-2}{2}$

 \therefore The edge labels are distinct

 \therefore The labeling pattern of A (D(T₃)) is shown below.

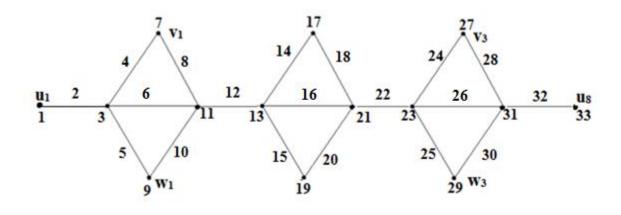


Figure: 6

In this case, f provides a Super Geometric mean labeling of G.

.:. From all the above cases, we conclude that Alternate Double Triangular snake

 $A(D(T_n))$ is a Super Geometric mean graph.

References:-

- [1] Gallian J.A., "A dynamic survey of graph labeling". The electronic Journal of Combinatorics 2011, 18# DS6.
- [2] Harary F., 1988, "Graph theory" Narosa publishing House, New Delhi.
- [3] Jeyasekaran.C, Sandhya. S.S and David Raj.C, "Some Results on Super

Harmonic mean graphs", International Journal of Mathematics Trend and Technology, Vol.6(3) (2014), 215-224.

[4] Somasundaram.S and Ponraj.R, 2003 "Mean Labeling" of graphs, National Academy of Science letters Vol.26, p.210-213.

[5] Somasundaram. S. Ponraj.R and Vidhyarani.P "Geometric mean labeling of graphs" Bulletin of Pure and Applied Sciences 30 E(2) (2011) p.153-160.