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Abstract— The present   paper deals with the determination of temperature distribution,   displacement components, 

Goodier’s thermoelastic displacement potential, Michell’s function and thermal stresses of     annular disc occupying 

the space D : ,bra  ,hzh   with boundary conditions of the radiation  type. I apply integral transform 

techniques to find the thermoelastic solution. The results are obtained as series of Bessel functions. Numerical 

calculations are carried out for   annular disc made of aluminium metal and illustrated graphically. 
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Introduction :           

Roy Choudhuri [4] has succeeded in determining the quasi-static thermal stresses in a circular plate 

subjected to transient temperature along the circumference of circular upper face with lower face at zero 

temperature and the fixed circular edge thermally insulated. Wankhede [5] has determined the quasi-static 

thermal stresses in circular plate subjected to arbitrary initial temperature on the upper face with lower 

face at zero temperature. However, there aren’t many investigations on transient state. Deshmukh et al. [3] 

have determined quasi-static thermal stresses in a thick annular disc. Khobragade et al. [2] have 

determined thermal deflection of a thin circular plate  with radiation . Dange [1] has determined thermal 

stresses of two –dimensional transient thermoelastic problem of hallow cylinder. 

In all aforementioned investigations, they have not however considered any thermoelastic problem with 

boundary conditions of radiation type, which satisfies the time-dependent heat conduction equation. This 

paper is concerned with transient thermoelastic problem of a   annular disc occupying the space 

D : ,bra  ,hzh   with boundary conditions of the radiation type. 

 Statement Of The Problem : 

  Consider the thick annular disc whose axis is coincident with z-axis, defined by ,bra   and ,hzh   

where a and b are the internal and external   radii respectively and ),,( tzr  are cylindrical coordinates. Heat 

conduction problem and the prescribed boundary conditions of the radiation type are considered with 

symmetry with respect to the z-axis. Then the temperature ),,( tzrT  at any point and thermal stresses of the 

disc are required to be determined. The equation for heat conduction is ),,,( tzrT  the temperature, in 

cylindrical coordinates, is:  
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 Subject to the initial and boundary conditions  

0)0,0,1,( TMt  for all  bra   , hzh                                       (2) 

,0),,1,( 1 akTMr  0),,1,( 2 bkTMr   for all  hzh   , 0t                                      (3) 

ohkTM z ),,1,( 3  )()exp(),,1,( 04 rrthkTM z     for all bra   , 0t                             (4) 

Where  )()exp( 0rrδtω   is the additional sectional heat available on its surface at z =   -h;   is the thermal 

diffusivity of the material of the disc (which is assumed to be constant); λ  being the thermal conductivity 

of the material. The most general expression for these conditions can be given by 

sfkfkskkfM   )ˆ(),,,(  

with prime ( ^ ) denotes as differentiation with respect to  ; )( 0rr  is the Dirac Delta function having 

bra  0 ; 0  is a constants; k  and k  are radiation coefficients of the disc, respectively.  

The Navier’s equations without the body forces for axisymmetric two-dimensional thermoelastic problem 

can be expressed as 
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where ru  and zu  are the displacement components in the radial and axial directions respectively and the 

dilatation e as 
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The displacement function in the cylindrical coordinate system are represented by the Goodier’s 

thermoelastic displacement potential  and Michell’s function M as 
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in which Goodier’s thermoelastic potential must satisfy the equation 
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and the Michell’s function M must satisfy the equation 
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                                               0)( 22  M                                                                                         (9)                                                                                                  

Where 
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The component of the stresses are represented by the use of the potential   and Michell’s function M as 
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and 
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where G  and υ  are the shear modulus and Poisson’s ratio respectively. 

The equations (1) to (13) constitute the mathematical formulation of the problem under consideration. 

Solution of the problem: 

Results Required: 

In order to solve fundamental differential equation (1) under the boundary condition (3),   first  introduce 

the integral transform of order n over the variable r. Let n be the parameter of the transform, then the 

integral transform and its inversion theorem are written as 

,),,()()( 21
b
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npnp rkkSCngrg                                           (14) 

where )(ng p  is the transform of )(rg  with respect to nucleus ),,( 21 rkkS np  . 

The Eigen values n  are the positive roots of the characteristic equation 

0),(),(),(),( 10202010  akYbkJbkYakJ   

The kernel function ),,( 210 rkkS n  can be defined as 
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and        


b
a nn drbkkSrC 2

210 )],,([   

in which )(0 rJ   and )(0 rY  are Bessel functions of first and second kind of order 0p  respectively.  

 Again  introduce another integral transform that responds to the boundary conditions of type  
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where )(mf  is the transformed function of  )(zf  and m is the transform parameter. The nucleus is given 

by the orthogonal functions in the interval hzh   as 

                                               )sin()cos()( zaWzaQzP mmmmm   

 where  

                                                ),cos()( 43 hakkaQ mmm    

                                               ),sin()()cos(2 43 haakkhaW mmmm    

                                               ][
2

)2sin(
][)( 22222

mm
m

m
mm

h

h
mm WQ

a

ha
WQhdzzP  



  

The eigen values am are the positive roots of the characteristic equation  

 

   

 

 Determination of Temperature Function ),,( tzrT : 

Applying the transform defined in equation (14) to the equations (1), (2) and (4), and using equation (3) to 

reduce the differential equation in Marchi- Zgrablich transform domain and then applying Marchi- Fasulo  

transform defined in equation (15) and making use of respective inversion as in (15) and (14) over the heat 

conduction equation one obtains  the expression for temperature distribution function as   
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Determination Of  Thermoelastic Displacement Potential ),,( tzr  :  

 Substituting the value of ),,( tzrT  from equation (16) to equation (8) one obtains the thermoelastic 

displacement function ),,( tzr  as. 

 ),,()()])(exp()exp([
))()((

1

1

1
),,( 210

1 1

22

2222

,
rkkSzPtat

aaC
tzr n

n m

mmn

mnmnm

mn

n

t 






 

























  









                                                                                                                                                                                                                                       

                                                                                                                                                                  (17) 

Determination Of  Michell’s Function ),,( tzrM : 

Using   equation (9) one obtains the Michell’s function ),,( tzrM as 
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Determination Of Displacement Components  ru , zu : 

Now, in order to obtain the displacement components,  substitute the values of thermoelastic displacement 

potential   and Michell’s function M in equations (6) and (7), one obtains 

 

 






 

























1 1

22

2222

, )])(exp()exp([
))()((

1

1

1

n m

mn

mnmnm

mn

n

tr tat
aaC

u 





  

          ),,()sinh()cosh()1()( 210 rkkSzzzzP nnnnnnm                       (19)                                      

 






 

























1 1

22

2222

, )])(exp()exp([
))()((

1

1

1

n m

mn

mnmnm

mn

n

tz tat
aaC

u 






 

         )sinh()21(2))cos()sin(([ zzaWzaQa nnmmmmm   

             ),,())]cosh()(sinh( 210

2 rkkSzzz nnnn                                                              (20)                                                                                                       

Thus making use of the two displacement components the dilation is established as  
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Determination Of Stress Components rr ,  , zz And rz :                                                            

  The stress components can be evaluated by substituting the values of thermoelastic displacement 

potential   from equation (17) and Michell’s function M from equation (18) in equations (10), (11), (12) 

and (13), one obtains 
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Numerical Results, Discussion and Remarks: 

To interpret the numerical computations, consider material properties of Aluminium metal.   The 

foregoing analysis performed by setting the radiation coefficients constants,  121  kk   , Thermal 

diffusivity  =0.86 cm
2
/sec ,Poisson ratio, = 0.281, Thermal expansion coefficient, t (cm/cm-

0
C) =25.5 

 10
-6  

, Shear Modulus , G[N/cm
2
] = 2.7  10

6
 , Inner radius, a (cm)=1, Outer radius, b (cm) = 2, Height h 

(cm) = 0.5. The other parameters considered are r0 (cm)= 1.5, and .  

Numerical results from (16)-(25) have been illustrated graphically (From figure 1-9) 

 Figure 1 represents graph of T versus r for different values of  t . It  is  observed  that T increases  from  
1r to 2.1r . Also it observed that T develops tensile stresses from 2.1r to 6.1r  . From  6.1r to 8.1r  
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),,( tzrT  is approximately zero and  from 8.1r to 2r  it is again goes on increasing in the circular region of the 

annular disc for different values of t.  

 

                                                         Fig 1:  Graph of T versus r for different values of t   

 

 

 

Figure 2 represents graph of ),,( tzr versus r for different values of  t . It is  observed  that ),,( tzr  goes 

on increasing  from  1r to 2r  in the circular region of the annular disc for different values of t.  

 

Fig 2:  Graph of ),,( tzr  versus r for different values of t 

 

 

 

Figure 3: represents graph of ),,( tzrM versus r for different values of  t . It is observed  that ),,( tzrM  

increases  from  1r to 2.1r   and from  8.1r to 2r it is also observed that M develops compressive  

stresses from 2.1r to 6.1r  .   ),,( tzrM  is approximately zero    from 6.1r to 8.1r  in the circular region of 

the annular disc for different values of t.   
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                                                 Fig 3:  Graph of ),,( tzrM  versus r for different values of t 

 

 

Figure 4: represents graph of ru versus r for different values of  t . It is observed  that ru  goes on 

decreasing  from  1r to 2.1r   and from  8.1r to 2r it is also observed that ru  develops compressive  

stresses from 2.1r to 6.1r  .   ru  is approximately zero    from 6.1r to 8.1r  in the circular region of the 

annular disc for different values of t.   

 
Fig 4:  Graph of ru  versus r for different values of t 

 

 

 

Figure 5: represents graph of zu versus r for different values of  t . It is observed that zu  goes on 

decreasing   from  1r to 2.1r   and from  8.1r to 2r it is also observed that zu  develops tensile   stresses 

from 4.1r to 8.1r   in the circular region of the annular disc for different values of t.   
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Fig 5:  Graph of zu  versus r for different values of t 

 
  

Figure 6: represents graph of rr versus r for different values of  t . It is observed that rr  develops 

compressive   stresses from 2.1r to 6.1r  . it is also observed that  rr is approximately zero    from 1r to 

2.1r  and  from 6.1r to 2r  in the circular region of the annular disc for different values of t.  . 

 
Fig 6:  Graph of rr  versus r for different values of t 

 

 

Figure 7: represents graph of  versus r for different values of  t . It  is observed  that   develops 

tensile   stresses from 4.1r to 8.1r  . it is also observed that   is approximately zero    from 1r to 4.1r  

and   goes on decreasing from 8.1r to 2r  in the circular region of the annular disc for different values of t.  . 
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Fig 7:  Graph of   versus r for different values of t 

 

Figure 8: represents graph of rz versus r for different values of  t . It  is observed  that rz  develops 

tensile   stresses from 2.1r to 6.1r  . it is also observed that  rz is approximately zero    from 1r to 2.1r  

and  rz goes on decreasing from 6.1r to 2r  in the circular region of the annular disc for different values of t.   

 
Fig 8:  Graph of rz  versus r for different values of t 

 

 

 Figure 9: represents graph of zz versus r for different values of  t . It is  observed  that zz  develops 

tensile   stresses from 1r to 3.1r  and compressive   stresses from 3.1r  to 6.1r . it is also observed that  

zz is approximately zero    from 6.1r to 8.1r  and  zz goes on decreasing from 8.1r to 2r  in the 
circular region of the annular disc for different values of t.   
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Fig 9:  Graph of zz  versus r for different values of t 

Conclusion  :  

In this study, I treated the two-dimensional thermoelastic problem of a annular disc with additional 

sectional heat, )()exp( 0rrt    available on its surfaces z = -h.. Under given conditions temperature 

distribution, displacement components, Goodiers thermoelastic displacement potential, Michell’s function 

and thermal stresses have been determined with the help of Marchi- Zgrablich transform, Marchi- Fasulo  

transform techniques.  Any particular case can be derived by assigning suitable values to the parameters 

and functions in the expressions .I may conclude that the system of equations proposed in this study can be 

adopted to design of useful structures or machines in engineering application in the determination of 

thermoelastic behaviour and illustrated graphically. 
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